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Abstract

An efficient multiresolution method to compute
global conformal structures of nonzero genus trian-
gle meshes is introduced. The homology, cohomology
groups of meshes are computed explicitly, then a ba-
sis of harmonic one forms and a basis of holomor-
phic one forms are constructed. A progressive mesh
is generated to represent the original surface at differ-
ent resolutions. The conformal structure is computed
for the coarse level first, then used as the estimation
for that of the finer level, by using conjugate gradient
method it can be refined to the conformal structure of
the finer level.

1 Introduction

Geometric surfaces are represented as triangle
meshes in computer aided geometry design and com-
puter graphics. We treat the surfaces as complex
manifolds and compute their holomorphic differen-
tials (conformal structures). The obtained conformal
structures and conformal invariants have broad ap-
plications, such as geometric classification by confor-
mal transformation groups, geometric pattern recog-
nition, global surface parameterization, texture map-
ping, and geometric processing etc. In the biomedical
fields, global conformal parameterization can be ap-
plied to cortical surface matching problems.

The computation of conformal structures for
meshes is based on theories from Riemann geometry.
In our previous works, we have established practical
algorithms to compute conformal structures. To the
best of our knowledge, we are the first group to de-
velop an algorithm to compute conformal structures
for arbitrary surfaces represented as meshes. In this
paper, we address the efficiency problem of the algo-
rithms by introducing a multiresolution computation

method.

The conformal structures are only determined by
the geometry of the mesh, independent of triangula-
tion and insensitive to resolution. Based on this fact,
we are able to use the multiresolution method to im-
prove the efficiency of the algorithm. For each mesh,
we construct a progressive mesh first. Because the
holomorphic differentials defined on the coarse level
mesh are good approximations for those on the fine
level mesh, we can compute them on the coarse level
mesh, then refine them along with the mesh refine-
ment. Our numerical experiments demonstrate that
the multiresolution method improves the efficiency a
great deal.

2 Previous work

Conformal parameterization method for genus zero
surfaces have been studied and developed for the pur-
pose of texture mapping, remeshing, but they can not
discover the conformal structure of the surfaces.

Most works in conformal parametrization only deal
with genus zero surfaces. There are several basic ap-
proaches, such as variational method [13, 12, 11, 5],
approximation of Riemann-Cauchy equation [1], lin-
earization of Laplacian operator [6].

The problem of computing global conformal struc-
tures for general closed meshes is first solved by Gu
and Yau in [5] and [4]. The proposed method approx-
imates De Rham cohomology by simplicial cohomol-
ogy, and compute a basis of holomorphic one-forms.
The method has solid theoretic bases. Gu and Yau
generalize the method for surfaces with boundaries in
[4]. Also the method is simplified, such that there is
no restriction of the geometric realization for homol-
ogy basis.

The conformal structure can be directly computed
using global conformal parameterization method.
The method introduced in this paper is based on



those in [5] and [4] and improved by multiresolution
method. This method is much more efficient and au-
tomatic.

The progressive mesh has been introduced by
Hoppe et al in [7, 9], and widely used for mesh
optimization [3, 14], efficient rendering applications
[15, 8].

Global surface parameterization is also studied by
Khodakovsky et al. in [10]. In [2], a novel method
to solve sparse linear system using hardware with
conjugate gradient method combined with multigrid
method.

3 Progressive Mesh

Hoppe et al. [7] introduce a multiresolution repre-
sentation for meshes - Progressive Mesh, which trans-
form a mesh by edge collapse transformations, and
recover it by vertex split transformations. An edge
collapse transformation ecol{vs,v;} unifies 2 adja-
cent, vertices vs; and v; into a single vertex vs;. The
vertex v; and the two adjacent faces {vs,vs, v} and
{v¢,vs,v,} vanish in the process. The edge col-
lapse transformations are invertible. The inverse
transformation is vertexsplit. A vertex split trans-
formation wsplit{s,l,r,t, A} adds near vertex vs; a
new vertex v; and two new faces {vs,vs,v;} and
{vt,vs,v-}. Because edge collapse transformation
is invertible, we can therefore represent an arbi-
trary triangle mesh M as a simple mesh M° to-
gether with a sequence of n wsplit records. The
progressive mesh representation of a mesh M is
(MO, {vsplity,vsplity, - -, vsplit,_1}).

As an example, the mesh M of figure 3 was sim-
plified down to the coarse mesh M of figure using
edges collapse transformations. The original mesh is
with 50k faces, the base mesh M? is as simple as 4
faces.

4 Computing Homology

Given a triangle mesh M = {F, E, V'}, we use com-
binatorial method to compute the homology group
H, (M, Z) generators. Our method is similar to the
classical retraction method in algebraic topology. The
basic process is to remove a topological disk D as
large as possible from M, then H; (M, Z) is equiva-
lent to Hy(M/D,Z). If D includes all the faces of
M, then G = M/D is a graph formed by some edges
and vertices of M. The computation for Hy(G, Z) is
relatively easier. D is called a fundamental domain
of M. The following is the detailed algorithm.

In the following discussion, we assume all faces and
edges are oriented. We use [v1, va, - - -, vk] to represent

the simplex spanned by wvi,vs,- -, vk, and use 0 to
represent the boundary operator. For examples, sup-
pose a face f = [vg, v1, v2], where v; are counter clock
wisely ordered, then df = [vg, v1] + [v1, v2] + [v2, Vo],
8[1)0,’01] = U1 — V9.

4.1 Fundamental Domain

In the following algorithm, the given mesh is de-
noted as M, the fundamental domain is denoted as D,
its boundary 0D is an ordered list of oriented edges.
@ is a queue to store all non removed faces attaching
to D.

1. Choose an arbitrary face fy € M, let D = fjy,
0D = Jfy, put all the neighboring faces of fy
which share an edge with fy to a queue Q.

2. while @ is not empty

(a) remove the first face f in Q, suppose 9f =
eyg +e1 + eo.

(b) D=DU .

(c) find the first e; € Jf, such that —e; € 9D,
replace —e; in D by {e;1, €12} (keeping
the order).

(d) put all the neighboring faces which share an
edge with f and not in D or @ to Q.

3. Remove all adjacent oriented edges in 9D, which
are opposite to each other, i.e. remove all pairs
{ex, —er} from OD.

The resulting D includes all faces of M, which are
sorted according to their enqueuing order. Define the
graph G = {e,vle € ID,v € OD}. The edges and
vertices of the final boundary of D form the graph G.
We will compute the homology basis of GG, namely
H, (G, 2).

4.2 Homology Generators

Suppose T is a spanning tree of G, then G/T =
{e1,e2, -, ea4}, €; are disjoint edges. Suppose de; =
t; — s;, t; and s; are two ending vertices of edge e;,
also two leaves of T.

We choose one vertex r as the root of T'. By using
depth first traversing T', we can find the shortest path
from 7 to any leave. Suppose [r,s;] is the shortest
path from r to s;, [r,t;] is the shortest path from r
to t;, then ¢; = [r,s;] Ue; U—[r,t;] is a closed loop,
where —[r, t;] means the reversed path of [r,t;].

Then {¢1,¢2,- -+, {24} is a set of basis of H1(G, Z),
also Hy(M, Z).
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(a) 4k faces resolution (b) Result of (a)

(c) 34K faces resolution

(d) result of (c)

Figure 1. Surfaces are represented as triangle meshes. (a) and (c) are such representations
with different resolutions. (b) and (d) are holomorphic differentials of (a) and (c), visualized by the
texture-mapping of a checker board image. The conformality is illustrated by this texture mapping.

5 Computing Cohomology

We want to construct explicitly a basis for the co-
homology group of M, HY(M,Z). A one form is a
function defined on the edges of M, w: E — R. We
will find a set of one forms {wi,ws, -, waq}, such
that w; is closed,

| @ =wsteo) e +usle =0 (1
of

where Of = ey + e1 + €2, f is an arbitrary face of M.
Also wj; is dual to homology base ¢,

[o=d. @)

i

where 67 is the Kronecker symbol.
The following is the algorithm for constructing w;.

1. let w;(e;) =1 and w(e) = 0, for any edge e € G
and e # e;.

2. Suppose D is ordered in the way that D =
{f1,f2,.--, fn}, reverse the order of D to
{fnafn—la"'7fl}~

3. while D is not empty

(a) get the first face f of D, remove f from
D,af = €p + e + es.

(b) divide {ex} to two sets, I' = {e € df| —e €
0D}, I1={e€ df| —e ¢ OD}.

(c) Choose the value of w;(ey), ex, € II arbitrar-
ily, such that  _.jwi(e) = —>  rwile),
if IT is empty, then the right hand side is
Z€To.

(d) Update the boundary of D, let 9D = 9D +
of.

6 Computing Harmonic one forms

In this step, we would like to diffuse the one forms
computed in the last step to be harmonic. A har-
monic one form is defined as the one minimizing har-
monic energy. First we define discrete harmonic en-
ergy, given an edge [u,v] € M, the harmonic energy
string coefficient is defined as

1
by = §(ctanoc + ctanf), (3)

where o and 3 are two angles opposite to edge [u, v].
The harmonic energy for a one form w on M is given
by
1
E(w) = 5 Z ku,vw([uv”])2~ (4)
[u,v]eM

Then the discrete Laplacian is a function defined on
all the vertices on M. Suppose u € M is a vertex,

Aw(u) = > kuow([u,v]), (5)
[u,v]le M

Auw is the discrete Laplacian of w. Harmonic one form
satisfies the following condition, for any vertex u € M

Aw(u) = 0. (6)

Given a closed one form w, we would like to find a
function f: V — R, such that A(w + df) = 0, where
df is defined as

df ([u, v]) = f(v) — f(u) (7)

df is called an exact one-form. Hence we can add
an exact one form to a closed one form, such that

Alwtdf)(u) = Y~ kup(w(lu, o)+ f(0)=f(u) =0
[u,v]eM
(8)

The above equation is a sparse linear system, and can
be solved using conjugate gradient method directly.
This way we can convert the closed one forms com-
puted in the last step to harmonic one forms.



7 Computing Holomorphic one forms

Suppose a set of harmonic one form basis
{w1,ws, -+, wag} have been found, we can define
the discrete hodge star operator on them as follows.
Given a face f, Of = eg + e1 + €3, we embed f in R?,
and build a local coordinate system (x,y) on f. Then
all closed one form w can be represented as ¢pdx+7dy,
such that

pdx + 7dy = w(e;) (9)
where ¢ and T are piecewise constant functions de-
fined on faces. Then Hodge star operator is defined
as

*(ddr + Tdy) = (¢dy — Tdzx). (10)

We denote the Hodge star result of w as *w, then
*w is well defined on each face, we call it the con-
jugate one form of w. Given an edge e, there
are two faces fp,f1 associated with it, we define
*w(e) = 2(*wy,(e) + *wp(e)). The the holomor-
phic one form basis is given by {w; + v/—1*wy,ws +

vV—=1%wg, - ,Wag + V -1 *wgg}.
8 Surface with boundaries

For surface with boundaries, we use double cov-
ering techniques to convert it to a symmetric closed
surface.

Suppose surface M has boundaries, we construct a
copy of M denoted as M’, then reverse the orientation
of M’ by changing the order of vertices of each face
from [u,v,w] to [v,u,w]. We then glue M and M’
together along their boundaries. The resulting mesh
is denoted as M, and called the double covering of
M. The double covering is closed so we can apply
the method discussed in the previous sections.

For each interior vertex v € M, there are two
copies of v in M, we denote them as v; and vs, and
say they are dual to each other, denoted as 77 = vy
and 73 = v;. For each boundary vertex v € M, there
is only one copy in M, denoted as v, we say v is dual
to itself, i.e. 7 = v.

We now compute harmonic one forms of M. Ac-
cording to Riemann surface theories [16], all symmet-
ric harmonic one forms of M restricted on M are also
harmonic one forms of M. A symmetric harmonic
one form has the following property:

wlu,v] = wlu, 7). (11)
Given a harmonic one form w on M, we can define
a symmetric harmonic one form @ as the following
1

w([u, v]) = 5 (w(lu, v]) + w([@, 7). (12)

Assume {wq,ws, -+, wag} is a set of harmonic one
form basis of M, then {®7,ws, - -,Wa,} is a basis of
harmonic one forms of M. Then we can proceed to
compute the holomorphic one form basis of M.

9 Multiresolution

The complexity of computing homology basis, har-
monic one-form basis and holomorphic one-form basis
are linear respectively. But for large scale geometric
models, the computing process is still very time con-
suming. In order to improve the efficiency, we apply
multi-resolution method to compute them.

Progressive mesh is used for this purpose, because
edge collapse won’t change the topology of the orig-
inal surface, we can compute the homology basis in
the coarse level. Also we compute harmonic one form
in the coarse level. When we refine the mesh by ver-
tex split transformation, we can use the coarse level
result as the initial estimation for the harmonic one
form of the finer level, and apply conjugate gradient
algorithm to refine it. The following is the detailed
algorithm:

1. Compute the progressive mesh of M, the base
mesh is M.

2. Compute homology basis for the base mesh M.

3. Compute Cohomology basis for M.

4. Compute harmonic one form basis for M.

5. Refine My by a sequence vertex split transforma-
tions, and refine the harmonic one form:

(a) perform a vertex split, {vs, v¢, vy, vy, A}

(b) set w(lvy, u]) = w(lvs,n])w([ve,vr]) =
w([v57vr])7 w([vmvt]) =0.

(c) if the number of vertex split transformation
reaches a threshold, using conjugate gradi-
ent method to find a function f, such that
w + df is harmonic. Let w = w + df.

6. Use conjugate gradient method to find a function
f, such that w + df is a harmonic one form.

The conformal structure of surfaces is defined as
the period matrix, which can be computed as the fol-
lowing:

P=(s)= [ w+VTw (1

From P, it can be verified whether two surfaces can be
mapped to each other through conformal mappings.



10 Implementation and Results

We implement our algorithm using C' + + on win-
dows platform. We test the method for several real
surface models. All meshes are constructed by laser
scanners. Figure 3 illustrates a teapot model with
different resolutions. The holomorphic one form is
demonstrated by texture mapping. Figure 4 shows
a result using multiresolution method. The bunny
mesh is represented as a progressive mesh, and the
holomorphic one forms are computed for different lev-
els of resolution. Figure 4 and 3 demonstrate that the
conformal structure is intrinsic to the geometry, and
insensitive to the resolution. Figure 5 illustrates a
surface with boundary case. We punch small holes at
the tips of each finger, and double cover the mesh with
boundaries. The five holomorphic one form bases are
illustrated in the figure. The mesh has 60k faces.

We compare the speed for computing conformal
structure for the same model with and without using
multiresolution method. The speed is improved to
two to ten times.

:>
X

vplit

Figure 2. Edge collapse and vertex split
transformations. vy, Uy, Vs, Uy @re shown in
the figure.

11 Summary and Discussion

We introduce an efficient method to compute
global conformal surface parameterization using mul-
tiresolution method. The computing process is as fol-
lows: we first compute a homology basis, construct a
cohomology basis, then diffuse the cohomology ba-
sis to be harmonic 1-forms, then apply Hodge star
operator on the harmonic 1-forms to get holomorphic
1-forms. Because global conformal structure is intrin-
sic to the surface geometry, so the lower resolution
result can be used as a good estimation for that of
higher resolution. We use conjugate gradient method
to solve the large sparse linear system and use the
lower resolution result as the initial estimation. The
algorithm speed is improved up to ten times faster.
The method introduced here can be generalized for
zero genus surfaces, which is non-linear. The method

can be generalized for other surface parameterization
methods also.
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(a) 50K faces (b) 25K faces (c) 12 K faces (d) 6K faces

Figure 3. Progressive mesh for the dragon model. (a) through (d) are the mesh at different level of
details.
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Figure 4. Multi-resolution for the Stanford bunny model. The resolutions are 5k faces, 10k faces,
18k faces and 40k faces respectively. The holomorphic one forms are visualized by texture
mapping a checker board image. It is shown that the holomorphic one form is intrinsic to the

geometry, and insensitive to the resolution.
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Figure 5. Double covering surface of the hand model. A hole is punched at each finger tip, and the
bottom of the wrist is removed. There are five holomorphic one form bases, illustrated by texture
mapping.



