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Parametrization for Surfaces with

Arbitrary Topologies

Abstract

Surface parametrization is a fundamental problem in computer graphics. It

is essential for operations such as texture mapping, texture synthesis, interac-

tive 3D painting, remeshing, multi-resolution analysis and mesh compression.

Conformal parameterization, which preserves angles, has many nice properties

such as having no local distortion on textures, and being independent of trian-

gulation or resolution. Existing conformal parameterization methods partition

a mesh into several charts, each of which is then parametrized and packed to

an atlas. These methods suffer from limitations such as difficulty in segmenting

the mesh and artifacts caused by discontinuities between charts.

This work presents a method that was developed with collaboration with

Professor Shing-Tung Yau to compute global conformal parameterizations for

triangulated surfaces with arbitrary topologies. Our method is boundary free,

hence eliminating the need to chartify the mesh. We compute the natural con-

formal structure of the surface, which is determined solely by its geometry. The

parameterization is stable in the sense that if the geometries are similar, then

the parameterizations on the canonical domain are also close. The parameter-

ization is conformal everywhere except on 2g − 2 number of points, where g is

the number of genus. We prove the gradients of local conformal maps form a
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linear space and develop practical algorithms to compute its basis. By linearly

combining the bases we can construct any global conformal parametrization of

the surface. The algorithms only involve solving linear systems and are easy to

implement.

In this work, we also propose to remesh an arbitrary surface onto a com-

pletely regular structure, we call a geometry image. This part of the thesis was

completed under the supervision of Professor Steven Gortler. A geometry im-

age captures geometry as a simple 2D array of quantized points. Surface signals

like normals and colors are stored in similar 2D arrays using the same implicit

surface parameterization-texture coordinates are absent. To create a geometry

image, we cut an arbitrary mesh along a network of edge paths, and parametrize

the resulting single chart onto a square. Geometry images unify the geometry

and image format and make it possible to apply many techniques in the image

processing field to geometry directly.
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1 Introduction

1.1 Problem Statement

This work aims to solve the problem of parameterizing surfaces with arbitrary

topologies and represent the surfaces using the parameterization. There are

two closely related topics in this work, geometry images and global conformal

parameterizations. Geometry image modifies the topology of the surface, and

resamples the surface by regular pattern using special parameterizations. Global

conformal parameterization conformally maps the surface to a canonical domain,

while preserving the conformality everywhere.

The research of geometry images was done under the supervision of Professor

Steven Gortler. The work for global conformal parameterization was supervised

by Professor Shing-Tung Yau.

1.1.1 Geometry Images

Surface geometry is often modeled with irregular triangle meshes. The process

of remeshing refers to approximating such geometry using a mesh with (semi)-

regular connectivity. Resampling geometry onto a regular structure offers a

number of benefits. Compression is improved since the connectivity of the sam-

ples is implicit. Moreover, remeshing can reduce the non-uniformity of the geo-

metric samples in the tangential surface direction, thus reducing overall entropy.

The regularity of sample neighborhoods helps in applying signal processing op-

erations and in creating hierarchical representations of multi-resolution viewing

and editing.

However, current techniques for remeshing arbitrary surfaces create only

semi-regular meshes. The original mesh is typically decomposed into a set of

disk-like charts, onto which the geometry is parametrized and sampled. Al-

though the sampling on each chart follows regular subdivision, the chart do-
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mains form an irregular network over the surface. This irregular domain net-

work complicates processing, particularly for operations that require accessing

data across neighboring charts.

The major problems need to be solved here are:

1. How to use a single chart to parameterize the entire mesh and remesh

it using a completely regular pattern, and represent the geometry in an

image format.

2. How to conformally parameterize the entire mesh, and preserve the con-

formality even across the cut boundary.

Representing surfaces as geometry images presents challenges:

• A cut must be found that opens the mesh into a topological disk, and that

also permits a good parameterization of the surface within this disk. We

describe an effective, automatic method for cutting arbitrary 2-manifold

meshes (possibly with boundaries).

• The image boundary must be parametrized such that the reconstructed

surface matches exactly along the cut, to avoid cracks. Traditional texture

mapping is more forgiving in this respect, in that color discontinuities at

boundaries are less noticeable.

• The parameterization must evenly distribute image samples over the sur-

face, since undersampling would lead to geometric blurring. We do not

make a technical contribution in this area, but simply apply the geometric-

stretch parameterization of [36, 35].

• Straightforward lossy compression of the geometry image may introduce

tears along the surface cut. We allow fusing of the cut by encoding the

cut topology as a small data sideband.
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1.1.2 Global Conformal Parameterization

Surface parameterization is a fundamental problem in computer graphics. It is

essential for many geometric operations, such as texture mapping, remeshing,

compression, visualization and shape analysis. A parameterization defines a

mapping between regions on the 2D plane and the surface embedded in the 3D

space, and enables these operations to be performed as easily as if the surface

is flat.

Ideally, the mapping between the triangulated surface and the planar tri-

angulation should be isometric, preserving both angles and distances. Unfor-

tunately, with the exception of developable surfaces, general surfaces are not

isometric to the plane. Distortion has to be introduced during the parameter-

ization. One choice is the conformal parameterization, which preserves angles

and scales distance isotropicly at local regions. Conformal parameterization has

several advantages: It is intrinsic, dependent only on geometry and indepen-

dent of triangulation and resolution; it scales the geometry locally, so there is

no local distortion on textures; it is numerically stable. Therefore, conformal

parameterization is desirable and suitable for practical purposes.

Existing algorithms for conformal parameterization can only handle topo-

logical disks. The conformality can not be preserved along boundaries. Sophis-

ticated schemes have been designed to segment the mesh and to freely move the

boundary. So far, no previous work has achieved global conformality.

For global conformal parameterization, the major difficulties are:

• The parameterization should be global without any seams and singulari-

ties. But there are topological obstacles, for all vector fields have singu-

larities on general surfaces.

• Every local region affects the entire surface. It is impossible to find a local

conformal parameterization for a patch then extend the parameterization
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conformally to cover the whole mesh. So the solution is not local and the

parameterization should be solved globally.

• There are infinitely many global conformal parameterizations. In order

to find all of them, we have to discover the group structure and find the

generators of this group.

• In practice, meshes are used to approximate smooth surfaces. This ap-

proximation may introduce inaccuracy and instability for computations.

It is difficult to verify if the mesh has a good quality and improve the

mesh quality for this purpose.

• The problem itself is a nonlinear problem, and it is difficult to convert it

to a pure linear problem. How to handle the non-linearity is a challenging

problem.

• Meshes in real application have millions of vertices, faces. Efficiency is

critical for processing these data sets.

1.2 Contributions

Under the supervision of Professor Steven Gortler and with collaboration with

Hugues Hoppe, I develop a method to parameterize meshes with arbitrary topol-

ogy to a single chart, and remesh it using regular sampling pattern, represent

geometry as an image. This geometry representation may unify the processing

methods for both geometry and image. By representing geometry as texture, the

architecture of rendering hardware may be simplified and rendering efficiency

will be improved.

Under the supervision of and with collaboration with Professor Shing-Tung

Yau, I develop discrete global conformal theory completely in this thesis. We

show that each smooth surface admits a triangulation with all acute angles and
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also demonstrate that each cohomology class has a unique discrete harmonic

one-form. Then we define wedge product, and discrete Hodge star operator.

We also define the discrete holomorphic differentials, and prove their linear

space is 2g dimensional. We introduce a systematic method to compute simpli-

cial cohomology, harmonic 1-forms and holomorphic differentials. The methods

introduced here are very general and can be applied to other problems in pro-

cessing geometry. For example, the global conformal structure can be used to

classify surfaces, find isometries etc. We introduce a practical algorithm to com-

pute global conformal parameterization without any boundary. This avoids the

complicated boundary handlings in previous approaches.

1.3 Overview

Overview for geometry images. Given a mesh M , we unwrap the geometry

into a single disk. We cut open the mesh in an appropriate way, so that it can

be unwrapped onto a simply connected domain on the plane. The topological

complexity of the mesh is transformed into the way that the boundary vertices

coincide. For the geometry image applications, the cutting method should be

appropriate for both topologically operation and good quality parameterization.

We locate the special dense regions and allow the cuts to reach these special

regions. Then the mesh is parameterized onto this planar domain, and remeshed

by using regular 2D array sample pattern. The parameterization minimizes the

ununiformity of the sampling. This representation may unify geometry and

image processing methods.

Overview for global conformal parametrization. In order to compute

global conformal parameterizations, a special intrinsic natural structure, the

conformal structure is introduced. Conformally equivalent surfaces share the

same conformal structures, which are determined by geometry only, and the
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mapping from the metric to the conformal invariants is continuous. So it is

feasible to compute conformal structures numerically. This work introduces a

systematic way to compute conformal structures and conformally map surfaces

to other domains.

Any genus zero face can be conformally mapped to a sphere. The sufficient

and necessary condition for the map to be conformal is that the map is harmonic.

Harmonic mappings are the smoothest mapping between surfaces. It can be

represented as an energy formula, which measures the length of gradients, and

harmonic maps reach the critical points of this energy. In order to compute

a conformal map between a genus zero surface to a sphere, one can simply

optimize the harmonic energy defined for the mesh. Because the range is a

sphere, the gradient field is constrained on the tangent spaces of the sphere

during the optimization.

All conformal maps between two genus zero surfaces form a 6 dimensional

group, the so called Mobius Group, which can be constructed mathematically.

The solutions are not unique. Extra constraints are added to ensure the unique-

ness of the solution.

For non-zero genus surfaces, the conformal structure is much more compli-

cated. Instead of examining conformal maps themselves, we first examine their

gradient fields, which are the tangential vector fields. These vector fields form

a linear space, the dimension of which is two times the number of the genus of

the surface. We locate each handle of the surface, and open that handle to a

square. The gradient fields of this map are diffused to be harmonic and orthog-

onalized in each tangent space. The obtained vector fields are the bases of that

linear space. By integrating the linear combinations of these vector fields, one

can compute the global conformal parameterization with arbitrary topologies.

This parameterization has no charts, no boundaries, and is globally conformal

everywhere. We use the torus case as an example to explain each step.
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(a) Homology bases (b) Open handle

(c) Map to the plane (d) Texture on the plane

(e) Texture mapping (f) Conformality across
cut boundaries

Figure 1: Processing the torus mesh
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Example. This process is illustrated in figure 1. Suppose M is a mesh of

genus one. The face set of M is {σ0, σ1, . . . , σn}, the edge set is {e0, e1, . . . , em},
and the vertex set is {v0, v1, . . . , vk}. We can define patch space, curve space

and vertex space as linear spaces respectivly as follows:

C2M = {
n∑

i=1

ciσi|ci ∈ Z}, C1M = {
m∑

i=1

ciei|ci ∈ Z}, C0M = {
k∑

i=1

civi|ci ∈ Z}.

They are representations of patches, curves, and points on M . Then we can

define boundary operator ∂2 : C2K → C1K intuitively as

∂2σ = [v0, v1] + [v1, v2] + [v2, v0], σ = [v0, v1, v2].

Similarly for ∂1 : C1K → C0K,

∂1e = v1 − v0, e = [v0, v1].

Boundary operators are linear on the patch space, curve space and vertex space.

The null space of ∂1 is the set of all closed curves. The image space of ∂2 is the

set of all the boundaries of patches on M . It is obvious that all the boundaries

are closed. The quotient space

H1(M) =
ker∂1

img∂2

is the set of special curves. All the boundary operators are represented as linear

matrices, so it is easy to find the bases of H1(M) by linear algebra techniques.

Figure 1 (a) shows two such cycles on the mesh. We denote them as e0 and e1.

Then we cut the torus open along e0, e1 and map the patch to a unit square

[0, 1] × [0, 1], boundary to boundary, corner to corner. This step is shown in

figure 1 (b) and (c). Suppose the map is f = (fx, fy), we get the gradient field

of fx and fy, denoted as ω0, ω1. They satisfy

∫

ei

ωj = δj
i , i, j = 0, 1. (1)

13



where δj
i is the Kroneck symbol. We represent ωi as a function defined on edges,

such that

ωi([v0, v1]) = fi(v1)− fi(v0).

Then ω0, ω1 is a basis of the so called cohomology of M, denoted as H1(M).

Next step, we want to diffuse ω0, ω1 to be harmonic, and preserve the above

relation 1. We can add another gradient field δF0 to ω0, such that ω0 + δF0 is

harmonic. F0 is defined on vertices of M , then

(ω0 + δF0)([v0, v1]) = ω0([v0, v1]) + F0(v1)− F0(v0)

By adjusting F (vi), we can minimize the harmonic energy defined as

∑

ei∈M

kei ||(ω0 + δF )(ei)||2.

Then we assign ωi ← ωi + δFi. Next step, we want to locally rotate ωi by a

right angle about the normal at each point on M . This can be done by solving

a special linear system. We denote the rotated result as ∗ωi, then

ωi +
√−1 ∗ωi, i = 0, 1

are the bases of all gradient fields of conformal mappings.

In order to visualize this complex vector field, we use the texture mapping

technique. We integrate this complex gradient field over mesh M , and get a

planar region as shown in figure 1(c). Then we put a regular checker board

pattern over this domain in (d), map the texture back to M , as shown in (e). It

is clear that all the right angles for each square are preserved, each of them in the

checker board is mapped to a square. The planar region might not be aligned

with the checker board image, the texture pattern along the left boundary may

be different from that along the right boundary. So the texture is discontinuous

across the cut boundaries on the mesh. But the conformality is kept across the
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cut boundaries, the stretching factor and the direction of iso-u,iso-v lines are

consistent, which is shown in (f). 2

The closed curve space is described as homology group, the gradient fields

ωi’s are represented as cohomology. Those gradient fields with the minimum

energy are called harmonic 1-forms. Local rotation is described as Hodge star

operator. The gradient fields of conformal maps are called holomorphic 1-forms.

In this work, we rigorously define the harmonic 1-forms, holomorphic 1-

forms for simplicial complexes and prove their existence, uniqueness, and give

the dimensions of their linear spaces. This global discrete conformal theory is

completely established in this work.

Using piecewise polygonal models to approximate smooth surfaces, espe-

cially for the purpose of discrete harmonic analysis, special triangulations are

preferred. In this work, we prove that for any smooth surface, there exists a tri-

angulation with all acute angles. This triangulation is important for computing

discrete conformal structures.

The entire computation process can be represented as the diagram in figure

2. In order to locate handles, the homology group is computed explicitly. Then

we compute the dual basis of cohomology group. We diffuse the cohomology

basis to be harmonic, and locally rotate them, pair them to a holomorphic one-

form basis. By linearly combining the bases, we can obtain any holomorphic one-

form of conformal maps of the surface. Then intgeration of a holomorphic one-

from on a fundamental domain produces a global conformal parametrization.

1.4 Motivating Applications

Parameterization and geometry images have many important applications in

computer graphics. The following are some examples of them.
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1−forms

Holomorphic 1−formsIntegrate within 
foundmental domain

Diffuse to harmonicCompute homology Dual cohomology

Local rotation by

Hodge star

Figure 2: Process for computing global conformal parameterization

1.4.1 Efficient Hardware rendering

Using geometry images to represent meshes, the connectivity is implicit, and

the texture coordinates are implicit. Therefore, in the rendering hardware,

connectivity buffer and texture coordinates buffer are unnecessary. Because

the connectivity pattern is completely regular, no complicated vertex caching

scheme is needed. This will save the bandwidth between graphics rendering

hardware and the main memory. These factors will improve the efficiency for

hardware rendering.

1.4.2 Texture Mapping

A 3D paint system makes it possible to enhance the visual appearance of a 3D

model by interactively adding details to it, such as colors, normals, reflections

etc. If the discretization of the surface is fine enough, it is possible to directly

paint its vertices. However, in most cases, the desired precision for the colors

is finer than the geometric details of the model. Assuming that the surface to

be painted is provided with a parameterization, it is convenient to use texture

mapping to store colors in the parameter space, and virtually glue the texture

image to the model. Texture mapping is at the heart of modern computer

graphics rendering techniques.
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1.4.3 Remeshing

Geometric models are always represented as irregular meshes. By mapping them

to the plane, one can resample the geometric surface description using different

planar pattern for different purposes. In order to improve the efficiency for

hardware rendering, one can use regular planar sampling pattern; in order to do

finite element computations, equilateral triangulations are preferred; in order to

filter the geometry, the geometry can be treated as signals over planar domain

through the parameterization.

1.4.4 Compression

Geometric models can be represented as functions on a parameter domain, then

by using wavelet tools, they can be compressed. By using parameterization,

they can be remeshed as subdivision surfaces, and using wavelets defined on

these subdivision domain, they can be compressed.

1.4.5 Visualization

By selecting a special parameterization, conformal parameterization, a surface

can be mapped to the planar domain conformally. Conformal mapping pre-

serves angles, and is described as similarities in the small. Locally, shapes are

preserved and distances and areas are only changed by a scaling factor. With

complicated geometry flattened out, it can be better analyzed by a human

viewer.

1.4.6 Shape Analysis

Geometric surfaces can be classified by conformal transformation group. This

group is coarser than the isometric group and refiner than topological equiva-

lence and suitable for many applications. Furthermore, by intrinsicly parametriz-

ing surfaces to a canonical domain, one can easily compare them.
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1.5 Overview of Thesis

This section introduces the motivation and the central problems solved in this

work. Next section will review previous work in parameterization and confor-

mal structure. In section 3, the algorithm for creating geometry images will be

explained in details. Section 4 focuses on the theoretic background for global

conformal parameterization. Discrete harmonic analysis concepts will be intro-

duced and the theorems of holomorphic differentials, Laplacian spectrum will

be proven rigorously. Section 5 explains the method to construct a conformal

mapping from a genus one surface to a sphere. Section 6 goes through the al-

gorithms to compute the bases of holomorphic differentials. Section 7 applies

the result to parametrize non-zero genus surfaces. Section 8 discusses the ad-

vantages and disadvantages of these methods. Future research directions are

elaborated in the last section.

The research on geometry images is supervised by Professor Steven Gortler.

The research on global conformal parameterization and discrete Riemann ge-

ometry is completed under Professor Shing-Tung Yau’s supervision.

2 Previous Work

This section will review previous works related to parameterization and com-

puting conformal structures in the fields of computer graphics and mathematics.

2.1 Parameterization

The theory on graph embedding has been studied by Tuette [44], where barycen-

tric maps are introduced. Given a topological disk, the boundary is mapped

to a convex polygon on the plane. Tutte embedding maps each vertex to the

barycentric center of its neighbors. The solution exists and the bijectivity of

this parameterization is guaranteed.
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Floater [13] uses a specific weight to improve the quality of the mapping in

terms of area deformation and conformality. His method is shape preserving in

the sense that for a planar convex mesh the parameterization is affine invariant.

Maillot et al. [30] introduce a deformation energy to measure the distortion

introduced by the mapping. Basically they measure the edge length deviations

and the area differences. For isometry, the deformation energy is zero. The

energy is optimized using the conjugate gradient method. The weighting be-

tween edge springs and area-preservation terms must be adjusted to produce an

embedding.

Levy and Mallet [27] define a metric as a combination of orthogonality and

isoparametric terms. The whole optimization is non-linear. In order to solve it,

they iteratively fix one texture component and solve for the other using linear

optimization. The solution converges and is unique. The continuity is preserved

across the boundary.

Sheffer et al. [40] introduce a angle based flattening method to flaten a mesh

to a planar plane so that it minimizes the relative distortion of the planar angles

with respect to their counterparts in the three-dimensional space.

Eck et al. [9] introduce the discrete harmonic map. The harmonic energy is

represented as a string energy, which measures the norm of gradient of the pa-

rameterization. Sometimes, the string constants are negative and the mapping

has flipped faces.

Levy et al.[28] compute quasi-conformal parameterizations of topological

disks by approximating the Cauchy-Rieman equation using the least square

method. They design the segmentation in such a way that the chart boundaries

are along geometric features. They show rigorously that the quasi-conformal

parameterization exists uniquely, is invariant by similarity, independent of res-

olution and preserves orientations.

Mathieu et al. [1, 4] compute the discrete Dirichlet energy on triangulations
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to achieve discrete conformal parameterization, and apply this parameteriza-

tion for interactive geometry remeshing. They also prove that this method is

equivalent to the one based on approximating the Cauchy-Riemann equation.

Sander et al. [36] develop a texture-stretch metric to minimize texture

stretch and texture deviation. Furthermore, Sander et al. [35] design the signal-

stretch parameterization metric to measure the signal error. This metric is de-

fined as a tensor on the surface. In order to minimize this nonlinear metric, they

use a coarse-to-fine hierarchical solver, followed by fine-to-coarse propagation of

the integrated metric tensor.

All of the above methods are in the same framework. A special energy is

defined to reflect the deviation of the parameterization from isometry. Then

algorithms are used to minimize the energy.

Our method is quite unique, because

1. It handles meshes with arbitrary topologies. All of the above methods

deal with genus zero meshes only.

2. Our solution is boundary free. The conformality is preserved across the

boundary.

3. We find all the solutions to minimize the objective functional, instead of

just finding one solution.

4. Instead of finding the minimum directly, we compute the structure of the

solution space.

2.2 Remeshing

There exist several schemes for semi-regular remeshing of arbitrary surfaces.

Eck et al. [8] achieve remeshing by cutting a mesh into multiple charts using

a Voronoi-like decomposition. Each chart is parametrized using a harmonic
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map, sampled using a regular triangular subdivision pattern, and compressed

using a triangular wavelet construction [29].

Khodakovsky et al. [23] use the MAPS scheme [26] to partition the mesh

into charts and create the chart parameterizations. They obtain impressive

compression results using zero-tree coding of local-frame wavelet coefficients.

Lee et al. [25] create a multi-chart domain using mesh simplification. They

define a subdivision surface over this domain and fit it to the original surface.

The fit residual is expressed as a semi-regular scalar displacement map over the

smooth subdivision surface.

Guskov el al. [19] use a MAPS-like approach to create multiple charts. These

charts are recursively subdivided, and newly introduced vertices are expressed

using displacements from the previous mesh, mostly as scalar displacements.

In our setting of geometry images, previous semi-regular remeshing ap-

proaches can be viewed as representing a surface as a collection of abutting

geometry images. The crux of our contribution is to represent the entire sur-

face as a single geometry image, by cutting the surface and sampling it using a

completely regular quad grid. We optimize the creation of the cut to allow for

a good parameterization.

2.3 Global Conformal Parameterization for Genus Zero
Surfaces

Haker et al. [20] introduce a method to compute global conformal mappings

from a genus zero surface to a sphere. First a set of conformal coordinates for

the surface is chosen, and the sphere is mapped to the complex plane using the

stereo-graphic projection. Then the map is defined from the complex plane to

the complex plane. Because this map is a conformal map from C to C, it is in

the Mobius group, and has the format of a linear rational. Then the Laplacian

operator can be formulated explicitly. The differential equation is solved by the
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finite element method.

In this work, a new approach is introduced, which is based on minimizing the

harmonic energy. While Haker’s method is linear, ours is nonlinear. Haker’s

method suffers from the following limitations: The stereo-graphic projection

is nonliner, using piecewise linear mapping to approximate it will introduce

inaccuracies. For the regions near the north pole, this problem is very severe

and can cause instability for the computation. For example, when we tested

it using the bunny model, Haker’s method did not converge. We do all the

optimization in the tangent spaces of the sphere, there is no stereo-graphic

projection. Hence our method is more stable.

Circle packing [42] has been studied intensively. A circle packing is a con-

figuration of circles with a specified pattern of tangencies. Maps between circle

packings which preserve tangency and orientation act in many ways as discrete

analogues of analytic functions. Moreover, classical analytic functions and more

general classical conformal objects can be approximated using circle packings.

But in general surfaces in R3, the circle packing method only considers the

connectivity without geometry, so it is not suitable for our parameterization

purpose.

2.4 Global Conformal Parameterization for Surfaces with
Arbitrary Topologies

In my paper with Professor Yau [16], a systematic method to compute global

conformal structures of closed surfaces is introduced. We approximate the De

Rham cohomology by simplicial cohomology and represent the Laplace-Beltrami

operator, the Hodge star operator by linear systems. A basis of holomorphic

one-forms is constructed explicitly. We then obtain a period matrix by integrat-

ing holomorphic differentials along a homology basis. We also study the global

conformal mappings between genus zero surfaces and spheres, and between gen-
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eral surfaces and planes.

In another paper with Professor Yau [17], we introduce a method to com-

pute global conformal parameterizations for surfaces with arbitrary topologies

without partitioning surfaces to topological disks. The method can be applied

to surfaces with or without boundaries. Conformality of the parameterization is

preserved everywhere except for very few points depending on the genus num-

ber of the surface, and there is no boundary of discontinuity. We analyze the

structure of the solution space and find all possible solutions instead of finding

just one solution.

2.5 Computational Topology

The process of slicing a mesh open of arbitrary topology has been studied in

the computational literature.

Lazarus et al. [45, 24] introduce an incremental method to compute a canon-

ical polygonal schema of an oriented mesh. The method is based on Morse

theory. The mesh is constructed by adding faces one by one along the current

boundary. If the topological type of the boundary is changed, the merging or

splitting vertices is recorded. The “gradient” curves connecting these critical

vertices are on the boundary of the schema.

Dey et al. [6, 5] compute the polygonal schema and use it to verfy if two

closed curves are homotopic equivalent on the surface.

Optimally cutting a mesh of arbitrary genus into a disk is studied in [10].

Erickson and Han-Pelled prove that it is NP-hard to minimize either the total

number of cut edges or their total length when cutting a set of edges on a

polyhedral manifold surface to obtain a single topological disk.
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2.6 Conformal Structure

Conformal structure has been studied in the computational Riemann Geometry

literature. In mathematics, Riemann surfaces, algebraic curves and Jacobian

varieties are objects represented in different categories. Some research has been

done in order to convert one to another and study conformal invariants. [38, 33]

Sepala et al. introduce a method to compute period matrices on the Riemann

surfaces represented as algebraic curves.

These methods deal with the surfaces defined implicitly. In our application,

we handle surfaces represented as meshes, so their methods are not suitable for

our purpose.

2.7 Spectral Compression

Fourier analysis has been studied extensively in the signal processing fields. Fre-

quency spectrum can be used to compress signals. The Laplacian eigenfunctions

form a basis of the function space defined on a surface, so each function can be

decomposed as a linear combination of these eigenfunctions. The spectrum can

be applied for compression purposes. In [22], the spectral methods are applied

to 3D mesh data to obtain compact representations. This is achieved by pro-

jecting the mesh geometry onto an orthonormal basis derived from the mesh

topology. The mesh is partitioned into a number of balanced submeshes with

minimal interactions, and each is compressed independently. The eigenfunctions

are derived from the topological Laplacian operator.

3 Geometry Images

This section describes a novel geometry representation method, Geometry Im-

ages. The basic idea is to topologically transform a surface to a genus zero disk,

and embed the disk in a canonical planar domain, resample the geometry us-
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ing regular pattern. This representation unifies geometry and image, the image

processing techniques can be applied to geometry directly. Especially, this rep-

resentation simplifies the architecture of graphics hardware, and the improves

the efficiency of rendering process.

3.1 Creation of Geometry Images

From a 2-manifold triangle mesh M , we create a geometry image consisting

of an n × n array of [x, y, z] data values. If we plan to render using normal

mapping, we also create another 2D array of normal values [nx, ny, nz]. (See

Figure 8.)

Our approach is to cut the mesh M to form a new mesh M ′ that has the

topology of a disk (Figure 3). The cut ρ is specified as a set of edges in M . To

create M ′, we split each non-boundary edge in ρ into two boundary edges to

form the opened cut ρ′. This directed loop of edges ρ′ is the boundary of M ′.

We say that two edges in ρ′ are mates if they result from the splitting of an

edge in ρ.

A vertex v with valence k in ρ is replicated as k vertices in ρ′. Vertices in ρ

that have valence k 6= 2 in the cut are called cut-nodes. (We still refer to these

as cut-nodes when replicated in ρ′.) A cut-path is the set of boundary edges

and vertices between two ordered cut-nodes in the loop ρ′. Each cut-path has

a mate defined by the mates of its edges (unless its edges were boundary edges

in ρ).

Let D be the domain unit square for the geometry image. The parameteriza-

tion φ is a piecewise linear map from the unit square D to M ′, defined by associ-

ating domain coordinates (s, t) with each mesh vertex in M ′. The domain D has

a rectilinear n× n grid, where grid points have coordinates (i/(n−1), j/(n−1))

with i, j = 0..n−1. We evaluate φ at the grid points to sample the mesh geome-

try, as well as any other surface attributes (e.g. color, skinning weights, radiance
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transfer coefficients).

The geometry image samples are used to reconstruct an approximation of M .

In this work, we use linear basis functions (triangles) to define the reconstruction

interpolant for geometry. Our goal is to find a good cut ρ and parameterization

φ, such that this reconstruction is a good approximation of M for moderate

sampling rates.

Approach overview Our strategy for finding a good cut ρ and parameteri-

zation φ is as follows. We first find a topologically sufficient cut, and create an

initial parameterization using this cut. We use information from the parame-

terization to improve the cut, and reparameterize based on the new cut. This

process of cutting and reparametrizing is iterated until the parameterization no

longer improves. To aid in the exposition, we first describe how a parameteri-

zation is found given any cut ρ (Section 3.1.1). We then describe how the space

of cuts is explored (Section 3.1.2).

3.1.1 Parameterization

For now, assume that we are given a cut ρ. To create a parameterization, we

first fix a mapping between the opened cut ρ′ and the boundary of the unit

square D. Next, we solve for a map of M ′ onto D that is consistent with these

boundary conditions. We now describe these two steps in more detail.

Boundary parameterization In order to avoid cracks in the reconstructed

geometry, it is necessary that each cut-node in ρ′ be exactly sampled in the

remesh. This implies that we must map cut-nodes to grid points on the bound-

ary of D. (Other vertices in ρ′ are not constrained to lie on grid points.) In

addition, cut-path mates must be sampled at identical surface points to avoid

cracks, which requires that cut-path mates be allocated the same length on the

boundary of D. To accomplish this, we allocate for each cut-path an amount of
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the boundary proportional to its length in ρ′. This allocation is then rounded

to an integer multiple of 1/(n−1). If due to rounding we have over- or under-

allocated the boundary, we redistribute the residual to the various cut-paths in

units of 1/(n−1), making sure to treat cut-path mates identically. Note that an

n×n geometry image can represent a surface with genus at most n.

To avoid degeneracies, we must enforce two more constraints. First, no

triangle in M ′ can have all its three vertices mapped to one of the four sides of

the square, for it would become parametrically degenerate. If such a triangle

arises, we split the triangle by introducing new vertices at the midpoints of its

non-boundary edge(s), and split neighboring triangles so as to avoid T-junctions.

Second, as we lay out ρ′ along the boundary of D we must break any edge

that spans one of the four corners of D. Otherwise a single boundary edge in

M ′ would map to an “L” shape in D. The edge is broken by introducing a

vertex at the domain corner, thus splitting its adjacent triangle into two. To

enforce topological consistency across the cut, the same procedure is applied to

its mate edge.

Finally, we find that placing a valence-1 cut-node at a corner of D results in

poor geometric behavior, so if this occurs we rotate the boundary parameteri-

zation.

Interior parameterization Having fixed the boundary of the parameteriza-

tion, we now solve for its interior. When creating a parameterization, there are

numerous metrics that can be used to measure its quality, e.g. [8, 12, 20, 26, 34].

For our application, an ideal metric would be some measure of surface accuracy

after sampling and reconstruction. As shown by the analysis in [35], the L2

geometric-stretch metric introduced in [36] is in fact an approximation of this

ideal measure.

Geometric stretch measures the amount of spacing that occurs on the surface
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when the parameter domain is uniformly sampled. Thus, minimizing geomet-

ric stretch tends to uniformly distribute samples on the surface. In [35], the

stretch metric is shown to be related to signal-approximation error (SAE) —

the difference between a signal defined on the surface and its reconstruction

from a discrete grid sampling. Specifically, the stretch metric corresponds to

the first-order Taylor expansion of SAE under the assumption of locally constant

reconstruction. In our context, the signal is the geometry itself, and therefore

geometric stretch can be seen as a predictor of geometric reconstruction error.

In Section 3.3, we show the advantage of using a geometric-stretch parameteri-

zation over the Floater “shape-preserving” parameterization.

We compute a geometric-stretch parameterization using the hierarchical op-

timization algorithm described in [35]. First, the interior of M ′ is simplified to

form a progressive mesh representation [21]. The few interior vertices in the

resulting base mesh are optimized within D by brute-force. Then, we apply

vertex splits from the progressive mesh to successively refine the mesh. For

each inserted vertex, we optimize the parameterization of its neighborhood to

minimize stretch using a local, non-linear optimization algorithm.

3.1.2 Cutting

We now describe how we automatically find a good cut ρ for M . Starting with

a surface of arbitrary genus, we first find an initial cut that opens M into a

disk. Given the resulting topological disk, we use a novel algorithm to augment

the cut in order to improve the subsequent parameterization and reconstruction

quality.

Initial cut It is well known that any closed surface can be opened into a

topological disk (called a polygonal schema) by cutting along an appropriate

set of edges [31]. Such a cut was used in [11] as part of a geometric modeling
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system for creating smooth surfaces. Piponi and Borshukov [34] describe an

interactive system allowing a user to manually cut a genus-zero manifold into a

single chart using a tree of edge cuts.

The computational complexity of optimally cutting a mesh of arbitrary genus

into a disk is studied in [10]. Algorithms for finding special kinds of cuts (those

that form reduced and canonically reduced polygonal schemata) are described

in [6, 24, 45].

Our algorithm, which is most similar to that of [6], works as follows. If the

mesh has boundaries, let B be the set of original boundary edges. This set

remains frozen throughout the algorithm, and is always a subset of the final cut

ρ. After removing a single seed triangle from the mesh, we apply two phases.

In the first phase we repeatedly identify an edge e 6∈ B adjacent to exactly

one triangle, and remove both the edge and the triangle. Note that the two

remaining edges of the triangle are left in the simplicial complex, even if they

are dangling. In order to obtain a result of “minimal radius”, we order triangle

removals according to their geodesic distance from the seed triangle. When this

first phase terminates, we have removed a topological disk that includes all of

the faces of the mesh. Thus, the remaining vertices (which is in fact all of them),

and the remaining edges must form a topological cut ρ of M . At this point, ρ

consists of a set of connected loops along with some unnecessary trees of edges

(and is similar to the construction of [43]).

In a second phase, we repeatedly identify a vertex adjacent to exactly one

edge (i.e. a dangling edge), and remove both the vertex and the edge. This sec-

ond phase terminates when all the edge trees have been trimmed away, leaving

just the connected loops. Since the resulting cut ρ may be serrated (it is not

made up of shortest paths), we straighten each cut-path in ρ by computing a

constrained shortest path that connects its two adjacent cut-nodes and stays

within a neighborhood of the original cut-path.
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Figure 3: Columns (a–d) show iterations of the cut improvement algorithm.
Upper images show the mesh M with the current cut ρ (blue except red where
occluded). Bottom images show the Floater parameterization (over circle) of the
corresponding M ′, together with the shortest path to an extremal point,which
will be added to ρ. Column (e) shows the final cut ρ and the geometric-stretch
parameterization (over square).
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For the case of a closed mesh of genus 0, the resulting ρ will consist of a

single vertex, since it has no loops. Because our parameterization requires that

we map ρ′ onto a square, we add back to ρ two adjacent mesh edges.

Iterated cut augmentation Through experiment, we have found that to

obtain efficient geometry images, it is important for ρ to pass through the var-

ious “extrema” of M . For example, in the hand model a good cut should pass

through its five fingers (see Figure 3). Therefore our goal is to find these extrema

and augment the cut so that it passes through them. A similar subproblem is

investigated by Sheffer [39], who classifies extrema as vertices with high (dis-

crete) curvature. Unfortunately, this type of local method will not be able to

find protrusions with widely distributed curvature.

Our approach to finding extrema is to search for mesh regions that behave

poorly (have large geometric stretch) under a parameterization using the cur-

rent cut. Specifically, we map the vertices of ρ′ to the unit circle C, spaced

according to their edge lengths over the surface. (We use the unit circle at this

point instead of the unit square in order to avoid boundary constraints.) The

cut mesh M ′ is parametrized into the interior of C using the shape-preserving

parameterization of Floater [12]. Given the resulting map we identify the trian-

gle with maximum geometric stretch, and pick one of its vertices as an extremal

vertex.

The intuition for this method is that any protrusion of the mesh experi-

ences high geometric stretch under a Floater parameterization. For instance,

it can be shown that when parametrizing a tube closed at its top and open at

its base, a triangle at a height h from the base has geometric stretch exponen-

tial in h, reaching a maximum at the tube apex. It is important to use the

Floater parameterization for protrusion detection, since the geometric-stretch

parameterization would evenly distribute stretch, thus hiding the extrema.

31



Having identified an extremal point, we find the shortest path from it to the

current boundary of M ′ (measuring distance on the mesh), and add this path

to ρ. This maintains the invariant that ρ is a valid cut of M .

We repeatedly apply this augmentation process, as shown in Figure 3. To de-

termine when to stop, we run our geometric-stretch parameterization algorithm

(Section 3.1.1) after each cut, and stop if the geometric stretch increases.

As a further improvement in the case of genus-zero meshes, when we find

the first extremal point, we discard the original cut, which was based on an

arbitrary random seed point, and replace the cut with a pair of adjacent edges

at this extremum.

3.1.3 Topological sideband

A geometry image is a parametric sampling of the topological disk M ′. Its

reconstruction looks like M because its boundary vertices coincide geometrically.

For some applications though, it is important to be able to “fuse” the boundary

of D so that it has the original topology of ρ. This fusing could be achieved

by searching for geometric correspondences on the image boundary, but this

process might be error-prone, particularly if the geometry image undergoes lossy

compression.

Since the necessary topological cut information is extremely compact, we

record it into a sideband signal as follows. We associate a pair of labels e.g. {a, a}
to each cut-path and its mate. We then store the string of labels corresponding

to the sequence of cut-paths on the boundary of M ′, e.g. ababcc. From this

string, we can recover the topology of the cut, i.e. the valence k of each cut-node

in ρ and the ordering of the cut-nodes along ρ′. We also store for each cut-path

a its discretized length on the boundary of domain D, and we store the starting

boundary location of the first cut-path. From this topological and parametric

information, we can later establish the correspondence of all boundary grid
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vertices.

The size of this sideband information is O(q log n) bits, where q is the number

of cut-paths and n is the sampling rate over D. For our models, q ranges between

3 and 10, and the sideband is approximately 12 bytes long.

3.2 Applications

Rendering To render geometry images on current hardware, we span each

2×2 quad of grid points using two triangles, by splitting along the shorter of

the two diagonals.

Level-of-detail rendering is implemented by mip-mapping the geometry im-

age, as shown in Figure 6. In order to avoid cracks at multiple levels of details,

we use geometry images of size (2j + 1)× (2j + 1), and minify using simple

sub-sampling. Also, the boundary mapping φ of Section 3.1.1 is constructed to

place cut-nodes to grid-points of the lowest intended resolution (65×65 for all

of our examples). Unlike [34], our boundary samples coincide exactly across the

cut so we need no special boundary treatment, even for mip-mapping.

For hardware that implements normal mapping, we also create a normal

map using the exact same parameterization φ. Usually, we sample the normals

into an image of higher resolution than the geometry since the normal-map

signal tends to be more detailed. During rendering, the normal-map signal

is rasterized over the triangles by hardware texture-mapping, using bilinear

reconstruction of each quad in the normal map. (Texture coordinates at the

vertices are assigned the range [(0.5)/n′, . . . , (n′−0.5)/n′] where n′ is the texture

resolution, for correspondence with the texture samples.)

Because geometry images have the same regular structure as texture im-

ages, one can envision hardware that would use bilinear (or even bicubic) basis

functions to reconstruct the geometry. Moreover, the rendering process should

be inherently simpler than with traditional texture mapping. The attribute
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samples can be accessed in scan order rather than backward-mapped through

random-access texture coordinates. Also, the attribute samples have a regular

correspondence with the geometry samples, and therefore do not require general

tri-linear interpolation lookup.

Both view-frustum and backface culling could be implemented in a unified

setting by constructing hierarchies on the geometry image and the normal image

respectively.

Compression and Decompression For compression we use the image-compression

coder provided by Davis [3]. For decompression, we decode the wavelet coeffi-

cients to recreate an n×n grid of [x, y, z] values. Our wavelet decoder produces

floating-point coordinate values as output. Quantizing these values to 12-bit

integers provides sufficient resolution for our models.

Since this wavelet coding is lossy, cut-path mates may be reconstructed dif-

ferently, leading to cracks in the mesh (see Figure 8d). To address this problem,

we also record and losslessly compress the topological sideband (Section 3.1.3).

During decompression, we use this topological information to geometrically fuse

the cut. We first determine the equivalence classes of boundary grid points.

Most boundary grid point are paired up with a single other grid point, while

grid points that sample a cut-node are grouped with k−1 other grid points,

where k is the valence of the cut-node in ρ. We average together the [x, y, z]

values of equivalent grid points, and replace their data with this common av-

erage. We record the vector displacement added due to this averaging for later

error diffusion.

This simple averaging scheme gives rise to a continuous surface, but can

lead to unsightly steps in the reconstructed geometry near the cut. In order to

smooth these steps, we apply a simple error diffusion technique, spreading the

displacements towards the center of the square. The result of this fusing process
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Figure 4: Rate distortion for geometric reconstruction from compressed geom-
etry images of the bunny (at 257×257 and 513×513 resolutions, and using a
Floater-parameterization), compared to [23].

is shown in Figure 8e.

3.3 Results

We have run our system on a number of high-resolution models, with and

without boundaries. Uncompressed examples are shown in Figure ??. These

required about an hour to convert offline. The conversion bottleneck is the

sequence of parameterizations in the iterated cut augmentation process. Cur-

rently, we set the geometry image resolution n manually (most often n = 257),

but this parameter could be set automatically to achieve a desired accuracy.

Geometry images tend to be relatively smooth, and therefore provide op-

portunity for compression. Even simple image compressors will define basis

functions that span the whole surface, and therefore allow high compression ra-

tios. Figure 4 shows rate-distortion curves when using the image wavelet-coder

of [3]. These curves measure the reconstruction accuracy for various compres-

sion rates applied to the geometry image. Error is measured as Peak Signal to
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Noise Ratio PSNR = 20 log10(peak/d), where peak is the bounding box diagonal

and d is the symmetric rms Hausdorff error (geometric distance) between the

original mesh and the reconstructed geometry. The blue curves show results for

wavelet-compressed geometry image created using a geometric-stretch parame-

terization and two different sampling rates. The green curve corresponds to a

geometry image formed using the same cut, but with a Floater parameteriza-

tion, and is noticeably less efficient. For comparison, the red curve is the result

of the compression scheme described in [23], which is more efficient by about

3dB. Reconstructions from compressed geometry images are shown in Figure 7.

3.4 Summary and Future Work

We have introduced geometry images, a completely regular representation for

approximating the geometry of an irregular mesh. Geometry images can be

easily rendered and compressed using current hardware and software. Due to

their simplicity, we envision that geometry images may inspire new hardware

rendering approaches.

We have found that we can create efficient geometry images on a wide variety

of models. However, models of high genus can be problematic. Such models

may require long cuts to open up all the topological handles. In that case,

much of the surface lies near the cut boundary, making it difficult to create a

parameterization without significant geometric stretch and poor resampling.

Figure 5 shows examples of trouble areas in the remeshing of the Buddha

model. Our genus-6 Buddha model was obtained by filtering out tiny topological

handles from a genus-104 scanned model [48]; working directly on the genus-104

surface would have been impossible.

In general, remeshing techniques can have difficulty capturing sharp surface
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features accurately at low sampling rates. In semi-regular remeshing, one tech-

nique to improve accuracy is to make the chart boundaries correspond with the

most significant features, so that the subdivided domain edges follow these fea-

tures [26]. Another technique is feature-sensitive remeshing [46], which warps

the parameterization as a post-process to align the remesh edges with the sharp

surface features. When creating our geometry images, adding a pass of feature-

sensitive remeshing could improve reconstruction results for meshes with sharp

geometry.

Since we used off-the-shelf compression code, we did not explore the ex-

tra savings that could be obtained using local-frame detail representation [23].

Adding this to our system may improve compression efficiencies.

(a) 49 KB (b) 12 KB

Figure 5: Example artifacts in the Buddha geometry image: aliasing (jagged-
ness) near sharp features, and regions of high anisotropy.
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Original mesh (342K faces) Geometry image (257×257)

Mip-mapped (129×129) Mip-mapped (65×65)

Figure 6: Mip-mapping a geometry image. As in all examples, the boundary
parameterization is constructed for a 65×65 domain grid.
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(a) 49 KB (b) 12 KB

(c) 3 KB (d) 49 KB

Figure 7: (a–c) Surfaces reconstructed from a 257×257 geometry image under
increasing levels of wavelet compression. (d) Reconstructed from a 257×257
Floater-parametrized geometry image. All models are flat-shaded.
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(a) Original mesh with cut (b) Geometry image 257×257
70K faces; genus 0 (b∗) Compr. to 1.5KB (not shown)

(c) Geometry reconstructed (d) Geometry reconstructed
entirely from b entirely from b∗
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(e) Geometry of d topology-fused (f) Normal-map image 512×512
(f∗) Compr. to 24KB (not shown) normal-mapped using f

(g) Geometry of c (h) Geometry of e
normal-mapped using f∗

Figure 8: Creation, compression, and rendering of a geometry image. Images
b∗ and f∗ (not shown) are compressed using an image wavelet-coder. Geom-
etry image is 12-bit [x, y, z] visualized as [r, g, b]. Normal-map image is 8-bit
[nx, ny, nz] visualized as [r, g, b].
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(a) Original (500K faces; genus 1) (b) Geometry Image [257x257]

(c) Reconstruction (PSNR=66.8) (d) Normal map (512x512)

(e) Normal-mapped reconstruction (b+c)

Figure 9: Dragon mesh: original meshes with cut, geometry images and their
reconstructions, and use of normal-mapping.
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(a) Original (500K faces; genus 6) (b) Geometry Image (257x257)

(c) Reconstruction (PSNR=64.9) (d) Normal map (512x512)

(e) Normal-mapped reconstruction (b+c)

Figure 10: Buddha mesh: original meshes with cut, geometry images and their
reconstructions, and use of normal-mapping.
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(a) Original (47K faces; genus 3) (b) Geometry Image (129x129)

(c) Reconstruction (PSNR=75.2) (d) Normal map (256x256)

(e) Normal-mapped reconstruction (b+c)

Figure 11: Three holes torus mesh: original meshes with cut, geometry images
and their reconstructions, and use of normal-mapping.
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(a) Original (480K faces; genus 0) (b) Geometry Image (257x257)

(c) Reconstruction (PSNR=78.2) (d) Normal map (512x512)

(e) Normal-mapped reconstruction (b+c)

Figure 12: Gargoyle mesh: original meshes with cut, geometry images and their
reconstructions, and use of normal-mapping.
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(a) Surface (b) Triangulation

Figure 13: David mesh with 20000 faces

4 Discrete Riemann Geometry

Riemann geometry for smooth surfaces has be well established, though there are

still many unsolved problems. This section will transfer the thereoms for smooth

surfaces to discrete meshes. The mathematical tools are mainly combinatorics

and linear algebra. We approximate a smooth surface by a sequence of meshes,

and if we show all the results hold for the limit process, then the proofs described

in this section can also be used to prove the thereoms in the smooth case.

A sharp difference between the smooth case and the discrete case is embbed-

edness. A smooth surface homeomorphic to a disk can be conformally embedded

in a convex planar region. But this is not true in the discrete case. If all the

string constants are positive, then the discrete conformal embedding exists. For

the genus nonzero case, if all the string constants are positive, then whether the

local conformal embedding exists except for 2g − 2 singularities is unknown. I

conjecture that such local embedding exists as long as all the string constants

are positive.

4.1 Surface Triangulations
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Triangulation is the division of a surface or plane polygon into a set of triangles,

usually with the restriction that each triangle side is entirely shared by two

adjacent triangles. It has been proven that every surface has a triangulation,

but it might require an infinite number of triangles and the proof is difficult

[14]. A surface with a finite number of triangles in its triangulation is compact.

In order to approximate smooth surfaces by triangular meshes, special tri-

angulation is preferred. We want to prove that each smooth surface admits

a triangulation with all acute angles. The result is intuitive, but the proof is

nontrivial.

Theorem 4.1 Suppose S is a closed surface, then S admits a triangulation

where all angles are acute.

Proof. A smooth genus zero surface M can be conformally mapped to a

sphere. Suppose the metric on the sphere is (E, F, G), then there is a con-

tinuous function ρ from S2 to R, such that the metric on M is (ρE, ρF, ρG).

Furthermore, ρ is positive everywhere on the sphere. Because S2 is compact and

ρ is uniformly continuous, ρ reaches its minimum on S2. Suppose l is the lower

bound of ρ. Given any ε, we can find δ, such that if p1, p2 ∈ S2, ||p1 − p2|| < δ

then |ρ(p1) − ρ(p2)| < ε. We choose ε to be far less than l. We can triangu-

late S2 by subdividing an icosahedron, and map the edges to geodesics of the

sphere. Because this triangulation is symmetric, all angles of this triangulation

are either of 60 or of 72 degrees on the sphere.

Suppose the triangulation of S2 is refine enough, such that the diameter of

each curved triangle is less than δ. Then we map this triangulation back to S.

Because the map is conformal, all the angles are of either 60 or 72 degrees on

S. Also, within each spherical triangle on S2, the scaling factor ρ is almost a

constant. The change of aspect ratio is between 1 − 2ε
l−ε and 1 + 2ε

l−ε . If ε
l is

small enough, the above range is close to 1. Because the triangulation on sphere
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is almost equilateral, the triangulation on M is near equilateral.

Suppose M is a topological torus, then M can be conformally mapped to a

parallelogram on R2. We can easily triangulate the parallelogram with all acute

angles, and map back the triangulation to M .

For surfaces with higher genus and boundaries, the proof can be conducted

in a similar way. First we subdivide the surface to several patches, each of which

is homomeomorphic to a torus with several disks removed(a pant). Each pant

can be conformally mapped to an annulus, and the conformality is preserved

across the boundaries. We use equilateral triangles to telleslate the whole plane,

and triangulate the annulus, then map the triangulation back to surface M . 2

Any smooth surface can be approximated by a simplicial complex with ar-

bitrary accuracy in the sense of Haudorff metric. In order to perform har-

monic analysis on the polygonal model, the angles are more important, and the

Hausdorff approximation is not good enough. We require to use triangulations

with all acute angles. In later sections, this will be explained in more details.

A mesh is a piecewise linear triangular polyhedron, and can be used to ap-

proximate a smooth surface. Arbitrary precision can be achieved by subdividing

a mesh.

Definition 4.2 Let K be a simplicial complex whose topological realization

M = |K| is homeomorphic to a compact 2-dimensional manifold. We call such

a complex a simplicial surface. Suppose that in addition there is a piecewise

linear embedding

F : |K| → R3, (2)

we call the pair (K, F ) a triangular mesh.

Figure 4.1(b) shows a triangular mesh, and the surface it approximates (a).

The surface is Michelangelo’s David.
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4.2 Simplicial Homology

All closed curves on a surface form a linear space. Different curves can be merged

together and deformed among each other. Homology is the mathematical tool

to represent the curve space and study the equivalence among curves. The

merging of curves is expressed algebraicly, the deforming from one to another is

represented as the quotient space. Homology is deeply related to the topology

of the surface. In our setting, surfaces are represented as triangular meshes.

All curves are represented as linear combinations of edges. For the purpose of

locating each handle on a mesh, we apply simplicial homology tools.

A chain complex

C = {Cq, ∂q} (3)

is a collection of (additive) Abelian groups Cq one for each integer q, and of

homoemorphism ∂q : Cq → Cq−1 such that ∂q · ∂q−1 = 0 for each q. Elements

of Cq are called q − chains of C, and ∂q is called the boundary operator.

The kernel of ∂q is denoted by Zq(C), and its element is called a q − cycle

of C. The image of ∂q+1 is denoted by Bq(C), and its element is called a

q − boundary of C. The relation ∂q · ∂q+1 = 0 implies Bq(C) ⊂ Zq(C). The

quotient group Zq(C)/Bq(C) is denoted by Hq(C), the qth homology group of

C. Elements of Hq(C) are called q− dimensional homology classes of C. Two

cycles representing the same homology class are said to be homologous. The

direct sum
⊕

q Hq(C) is denoted by H∗(C) and is called the homology group of

C.

Suppose K is a simplicial complex, the oriented faces, edge, and vertices

are simplices. Let CqK denote the Abelian group generated by the oriented

q-simplexes of K. Each element of CqK is written uniquely as a finite sum

∑

i

giσi, gi ∈ Z.
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The boundary operator is a homeomorphis

∂q : CqK → Cq−1K.

Intuitively,

∂2[v0, v1, v2] = [v0, v1] + [v1, v2] + [v2, v0], ∂1[v0, v1] = v1 − v0, ∂0v0 = 0.

Then the incidence number [σq
i : σq−1

j ] ∈ Z is defined by

∂q(σ)iq) =
∑

j

[σq
i : σq−1

j ]σq−1
j .

Then ∂q∂̇q−1 = 0, the q-th homology group is

HqK =
ker∂q

img∂q+1
.

H1 is the set of curves that are closed but not boundaries of any surface patches

on M .

4.3 Simplicial Cohomology

Cohomology is the linear functional space of homology. Intuitively, it is the

gradient of functions on M and can be represented as tangential vector fields.

Cohomology has similiar group structures as homology, but it has wedge prod-

ucts, so it has a ring structure.

A cochain complex

C = {Cq, δq} (4)

is a collection of Abelian groups Cq, one for each integer q, and of homomor-

phisms

δq : Cq → Cq+1 (5)

such that δq+1 ◦ δq = 0. Elements of Cq are called q− cochains, and δq is called

the coboundary operator.
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Let Hom(A,B) denote the group of homomorphism from an Abelian group

A to an Abelian group B. Given a chain complex C and an Abelian group G,

a cochain complex C∗ = Hom(C,G) is defined by

Cq = Hom(Cq, G) (6)

(δqu)(c) = u(∂q+1c)(u ∈ Cq, c ∈ Cq+1) (7)

.

Suppose M is a simplicial complex. Let ∆p be simplexes, define linear

functional ∆q ∈ Hom(Cp, R), such that

∆q(∆p) = δpq. (8)

Then {∑ fq∆q, fq ∈ R} are cochains. The coboundary operator δ is

δ∆q =
∑

[∆q : ∆p]∆p. (9)

The cohomology group is

Hq(K) =
kerδq

imgδq−1
. (10)

4.4 Interaction Between Homology and Cohomology

We can integrate a cocyle on a cycle, the result only depends on the homology

class of the cycle and the cohomology type of the cocyle.

Theorem 4.3 Suppose r, r′ ∈ Z1(K), ω, ω′ ∈ Z1(K), r and r′ are in the same

homology class, ω and ω′ are in the same cohomology class, then

∫

r

ω =
∫

r′
ω′.

Proof. There exists σ ∈ C2K, such that r − r′ = ∂σ. Also there exists

τ ∈ C2(K) such that ω − ω′ = δτ ,
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∫

r

ω −
∫

r′
ω =

∫

∂σ

ω =
∫

σ

δω = 0.

On the other hand,

∫

r′
ω −

∫

r′
ω′ =

∫

r′
δτ =

∫

∂r′
τ = 0.

So equation 4.3 holds. 2

The integration between cycle and cocyles is only determined by their ho-

mology class and cohomology class.

4.5 Conformal Structure for Meshes

Every simplicial surface has a natural underlying complex analytic structure.

This is proven in [7].

The embedding F endows M with a conformal structure. This means that

there is a natural notion of complex analytic function on |K|, therefore, many

of the techniques in complex analysis can be used to study |K|.
A conformal structure is given by the following data: a collection of open

sets Uj ⊂ M covering M , together with a collection of homeomorphisms

Φi : Ui → C (11)

onto open sets in the complex plane, called a complex analytic atlas. The

individual maps Φi’s are called charts and they are required to satisfy the

compatibility condition that

Φj ◦ Φ−1
i : Φi(Ui ∩ Uj) → Φj(Ui ∩ Uj) (12)

are all holomorphic (complex analytic).

The conformal structure on |K| can be defined as below. For each vertex

v ∈ K, let Uv ⊂ |K| denote the interior of the simplicial neighborhood of v, and
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let φv : Uv → C be the chart constructed as follows:

If v is an interior vertex of valence n, write Uv as the union

Uv =
n⋃

k=1

Tk, (13)

where Tk = |{v, vk, vk+1}| − |{vk, vk+1}|, and vn+1 = v1.

Next let θk be the angle of Tk at the vertex v, and set

Θ1 = 0,Θk =
k−1∑

j=1

θj , Θ =
n∑

j=1

θj . (14)

Let fk : Tk → C be the isometry defined by the equations

fk(v) = 0, fk(vk) = ||vk − v||, fk(vk+1) = ||vk+1 − v||eiθk , (15)

where || · || is the Euclidean norm in R3. Finally let ψ : C → C be the map

ψ(z) = za, where a = 2π/Θ, v to 0 ∈ C. Then the chart φv is defined as follows:

φv(p) = ei2π/Θkψ ◦ fk(p) ∀p ∈ Tk (16)

Then the maps φv : Uv → C form a complex analytic atlas.

4.6 Harmonic Maps on Smooth Riemann Surfaces

Harmonic maps have been intensively studied in mathematics. The following

concepts are defined in [37] and [7].

Let M be a smooth compact surface with boundary ∂M , and let g be a

Riemannian metric on M . Suppose f : M → R is a smooth function. The

harmonic energy of f is the quantity

Eg[f ] =
1
2

∫

M

|df |2gdAg, (17)

where | · |g is the norm with respect to g and dAg is the area element on M

induced by g. Let g = gijdxidxj where xi, i = 1, 2 are local coordinates on M .

Then the integrand has the local coordinate expression

|df |2dA =
∑

1≤i,j≤2

∂f

∂xi

∂f

∂xj

√
det(g)dx1 ∧ dx2, (18)
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where gij denotes the inverse of the matrix gij , and det(g) denotes the determi-

nant of gij .

Consider the functional

E : H → R (19)

on the space of smooth functions on M with fixed boundary value f∂ : ∂M → R,

where f∂ is a smooth function. The critical points for E are called harmonic

functions. There is a unique harmonic map f assuming the prescribed bound-

ary values f∂ .

The harmonic energy depends only on the conformal class of g. That is if

g̃ = eλg, for λ : M → R smooth, then

Eg[f ] = Eg̃[f ]. (20)

Also, Let φ : (M, g) → (N, h) be a biholomorphism between two compact

Riemann surfaces, and let f : N → R be a smooth function, then

Eh[f ] = Eg[f ◦ φ]. (21)

4.7 Discrete Harmonic Energy

Discrete harmonic energy is defined in [7]. Consider a mesh F : |K| → R3, the

underlying space M = |K| has two structures: a piecewise linear structure given

by the simplicial complex K, and a conformal structure (M, g) induced by the

embedding F . The functional Eg depends on the conformal structure, but it

can be computed in terms of the PL structure.

Let Tα ⊂ |K|, α = 1, . . . , n be the collection triangular faces of |K|. Notice

that the union of the interiors of the faces is an open subset of |K| of full

measure. It follows that

Eg[f ] =
1
2

∫

M

|df |2gdAg =
1
2

∑
α

∫

Tα

|df |2gdAg, (22)
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where f : M → R is a piecewise smooth function. Then the following formulae

hold:

∫

Tα

|df |2gdAg =
1
2

∑

i,j

aα
vi,vj

)|f(vi)− f(vj)|2 (23)

aα
v1,v2

=
1
2

(v1 − v3) · (v2 − v3)
|(v1 − v3)× (v2 − v3)| (24)

aα
v2,v3

=
1
2

(v2 − v1) · (v3 − v1)
|(v2 − v1)× (v3 − v1)| (25)

aα
v3,v1

=
1
2

(v3 − v2) · (v1 − v2)
|(v3 − v2)× (v1 − v2)| (26)

.

The final formula for E[f ], in the case where f is piecewise linear function

on a complex K, involves certain spring constants. For e = {u, v}, an internal

edge of K, let

ke = aα
u,v + aβ

u,v, (27)

where Tα and Tβ are the faces of K adjacent to e. If e is a boundary edge let

ku,v = aα
u,v. (28)

Let F : k → R3 be a mesh and let (M, g) denote the conformal structure on

M = |K| induced by F . If f : K → R is a piecewise linear function then

Eg[f ] =
1
2

∑
u,v

ku,v|f(u)− f(v)|2. (29)

Eg[f ] may be thought of as a “spring energy”, where each edge {u, v} of K is

viewed as a spring with spring constant ku,v.

4.8 Discrete Laplacian Operator

Discrete Laplacian operator is defines in [7]. The harmonic energy defines a

quadratic form

Q : C0K × C0K → R (30)
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given by the equation

Q(f, g) =
1
2

∑

{u,v}
ku,v(f(u)− f(v))(g(u)− g(v)). (31)

Q is the positive definite inner product on C0K.

Harmonic function f is the unique function in CPL(K) which minimizes the

quantity Q(f, f). For all h ∈ C0K, the derivative

d

dt
Eg[f + th] = 2Q(f, h) + 2tQ(h, h) (32)

vanishes at t = 0.

The discrete Laplacian is the linear operator

∆ : C0K → C0K (33)

on the space of PL functions on K, ∆ is defined by the formula

∆f(u) =
∑

{u,v}∈K

ku,v(f(v)− f(u)). (34)

Then

Q(f, g) = −1
2

∑

u∈K

f(u)∆g(u). (35)

A function f ∈ C0K is harmonic if and only if

∆f(v) = 0 (36)

for every interior vertex v of K. This is equivalent to the mean−value property

that

f(v) =

∑
j=1 dkv,vj f(vj)∑

j=1 dkv,vj

. (37)
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4.9 Discrete Harmonic 1-Forms

The harmonic 1-forms are the gradient fields of harmonic functions. Therefore,

harmonic 1-forms should minimize the harmonic energy.

Definition 4.4 Suppose ω ∈ Z1K, if

∆ω|u =
∑

[u,v]∈K

ω([u, v]) = 0, ∀u ∈ K

then ω is harmonic.

Each cohmology class has a unique harmonic form, and all harmonic forms

form a linear space, the dimension of this space is two times the genus of K.

Theorem 4.5 Given ω ∈ H1(K,R), there exists a unique ω′, such that ω′ is

cohomologous to ω and ω′ is harmonic.

Proof. Construct a τ ∈ C0K, such that ω + δτ is harmonic. Then τ satisfies

the relation

∑

[u,v]∈K

ku,v(ω([u, v]) + τ(u)− τ(v)) = 0, ∀u ∈ K.

Then we construct a linear system

Dτ = b.

D is indexed by the vertices in K. Suppose u, v are different vertices in K, u, v

are connected, then Du,v = −ku,v, otherwise it is zero. Du,u = −∑
u 6=v Du,v.

τu = τ(u). bu = −∑
[u,v]∈K ω([u, v]). The null space of D is

H = {λ(1, 1, . . . , 1)T |λ ∈ R}.

Suppose Dψ = 0, then

∑

[u,v]∈K

ku,v||ψ(u)− ψ(v)||2 = 0.
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Then ψ is constant on each vertex. ψ ∈ H. Therefor D maps the normal

complement H⊥ of H to itself. By definition,

H⊥ =
∑

u∈K

ψ(u) = 0.

Now we want to verify b ∈ H⊥.

∑

u∈K

∑

[u,v]∈K

ω([u, v]) =
∑

[u,v]∈K

(ω([u, v]) + ω([v, u])) = 0.

So equation 4.9 has a unique solution. Hence for each cohomology class, there

exists at least one harmonic form.

Now we prove the uniqueness. Suppose ω and ω′ are cohomologous and

harmonic. Then ψ = ω − ω′ is equal to δτ ,

∆ψ = ∆(ω − ω′) = ∆ω −∆ω′ = 0.

Then
∑

[u,v]∈K

ku,v||τ(u)− τ(v)||2 = 0.

Hence τ(u) is a constant for all u ∈ K. δτ = 0. So ω = ω′. 2

Theorem 4.6 A mesh S is of genus g, then the discrete harmonic 1-forms

form a real linear vector space, the dimension of which is 2g.

Proof. Laplacian operator ∆ : Z1K → R is a linear operator. Its null space

is also a linear space. Harmonic 1-forms are in its null space. Suppose S is a

genus g surface, we choose a set of homology bases H1, {e1, e2, . . . , e2g}, then

we construct the dual cohomology bases, {ω1, ω2, . . . , ω2g}, such that

∫

ei

ωj = δj
i ,

where δj
i is the Kroneck symbol. According to theorem 4.5, we can diffuse ωi to

be harmonic. We want to show these harmonic forms are linearly independent.
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Assume there are 2g coefficients ci ∈ R, such that
2g∑

i=1

ciωi = 0.

Then

0 =
∫

ej

2g∑

i=1

ciωi =
2g∑

i=1

ci

∫

ej

ωi = cj .

Therefore {ω1, ω2, . . . , ω2g} are linearly independent. Now we want to show any

harmonic 1-form can be represented as a linear combination of ωi’s. Suppose ω

is harmonic, then

ci =
∫

ei

ω (38)

τ = ω −
2g∑

i=1

ωi, (39)

τ is harmonic. Furthermore,
∫

ei

τ =
∫

ei

ω −
∫

ei

2g∑

j=1

cjωj = ci −
2g∑

j=1

cjδ
i
j = 0.

Given any cycle r ∈ Z1K, r can be represented as a linear combination of

ei’s, suppose r is cohomologous to
∑2g

i=1 riei, then integration

∫

r

τ =
2g∑

i=1

ri

∫

ei

τ = 0.

We want to show that τ ≡ 0. Suppose there exists an edge [v0, v1] ∈ C1K,

such that τ([v0, v1]) > 0, then we can expend [v0, v1] to a path {v0, v1, . . . , vn},
such that τ([vk, vk+1]) > 0, k = 0, . . . , n − 1. We extend this path as long as

possible. Then there must be no self intersection of this path. Otherwise, we

can find a cycle r = {vj , vj+1, . . . , vk}, 1 ≤ j < k ≤ nvj = vk, then

0 =
∫

r

τ =
∑

i = jk−1τ([vi, vi+1] > 0.

On the other hand, because the number of vertices of M is finite, the path has

to stop at some vertex vn. By our construction,

τ([vn, u]) ≤ 0, ∀u, [vn, u] ∈ K.
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We know vn−1 is adjacent to vn, τ([vn, vn−1 > 0. Then

∆τ |vn 6= 0.

This is contradictory to the fact that τ is harmonic. So τ must always be zero.

Hence the harmonic 1-form space is 2g dimensional. 2

4.10 Discrete Hodge Star Operator

Simplicial cohomology has a wedge operator, which is a linear map

∧ : Z1K × Z1K → Z2K.

Theorem 4.7 Suppose ω, τ ∈ Z1K, for each face [v0, v1, v2],

ω ∧ τ([v0, v1, v2]) =
1
6

∣∣∣∣∣∣

ω([v0, v1]) ω([v1, v2]) ω([v2, v0])
τ([v0, v1]) τ([v1, v2]) τ([v2, v0])

1 1 1

∣∣∣∣∣∣
.

Proof. Suppose ω and τ are two closed 1-forms. We construct local isometric

coordinates of a face T = [A,B, C], A(0, 0), B(a, 0), C(b, c), here a = ||B − A||,
b = ||C −A||cosA, c = ||C −A||sinA. ω and τ can be represented as piecewise

constant 1-forms with respect to the coordinates

ω =
1
ac

(cω[A,B]dx + (aω[A, C]− bω[A,B])dy) (40)

τ =
1
ac

(cτ [A,B]dx + (aτ [A,C]− bτ [A,B])dy). (41)

By direct wedge product defined for De Rham 1-forms, we get

ω ∧ τ =
1
ac

(−ω[A,B]τ [C,A] + ω[C,A]τ [A,B])dx ∧ dy. (42)

Then ∫

T

ω ∧ τ =
1
2
(−ω[A,B]τ [C,A] + ω[C,A]τ [A,B]). (43)
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Because A,B, C are circular symmetric, similarly, we can get
∫

T

ω ∧ τ =
1
2
(−ω[B, C]τ [A,B] + ω[A,B]τ [B, C]) (44)

∫

T

ω ∧ τ =
1
2
(−ω[C, A]τ [B, C] + ω[B,C]τ [C, A]) (45)

. Then ∫

T

ω ∧ τ =
1
6

∣∣∣∣∣∣

ω[A,B] ω[B,C] ω[C,A]
τ [A,B] τ [B, C] τ [C, A]

1 1 1

∣∣∣∣∣∣
(46)

2

If we treat each 1-form ω as a tangential vector field of M , then locally in

each tangent space, we can rotate the vector by a right angle about the normal

at that point, then construct a new tangential vector field ∗ω. This operator is

called Hodge star operator. In simplicial cohomology, the cocycles can not be

represented as smooth tangential vector fields directly, but we can compute the

wedge product of ∗ω with any τ ∈ Z1K directly. So we define a linear operator

∧∗ : Z1K × Z1K → Z2K, and define ∗ω as follows:

Definition 4.8 Given ω, τ ∈ Z1K, the wedge star is a linear map

∧∗ : Z1K × Z1K → Z2K

such that

ω ∧∗ τ([v0, v1, v2]) = ωMτ.

Here ω = (ω([v0, v1]), ω([v1, v2]), ω([v2, v0])), τ = (τ([v0, v1]), ω([v1, v2]), ω([v2, v0]))T ,

M is
1

24S




2(b2 + c2) a2 + b2 − c2 a2 + c2 − b2

b2 + a2 − c2 2(c2 + a2) b2 + c2 − a2

c2 + a2 − b2 c2 + b2 − a2 2(a2+2)


 , (47)

where a = ||v1 − v0||, b = ||v2 − v1||, c = ||v0 − v2||, and S is the area of the

triangle.

Definition 4.9 Given ω ∈ Z1K, the Hodge star of ω is denoted as ∗ω, for any

τ ∈ Z1

∫

M

τ ∧ ( ∗ω) =
∫

M

τ ∧∗ ω
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.

These definitions are derived from De Rham cohomology. Suppose τ ∈ Z1,

then we build local a coordinates system and represent τ as formula [6] using

the formula of Hodge star

{ ∗dx = +dy
∗dy = −dx

Suppose T is a face, and the lengths of its three edges are {a, b, c}, then

∫

T

ω ∧ ∗τ = aMbt,

where a = (ω[AB], ω[CA]) and b = (τ [AB], τ [CA])

M =
1

8S

(
2b2 b2 + c2 − a2

c2 + b2 − a2 2c2

)
. (48)

Because a, b, c are circular symmetric, by ciculating a, b, c, we get other two

equations. Adding them together, we get the definiton 47.

We also would like to show the uniqueness of the Hodge star operator.

Theorem 4.10 For each ω ∈ Z1K, there exists a unique ∗ω ∈ Z1K. Also, the

Hodge star operator ∗ : Z1K → Z1K is linear.

Proof. We choose a set of cholomology bases {ω1, ω2, . . . , ω2g}. In order to

obtain ∗ω we need to solve the linear system

ωi ∧ ( ∗ ω) = ωi ∧∗ ω, i = 1, 2, . . . , 2g.

Because ∗ω is in H1(K,R),

∗ω =
2g∑

i=1

ciωi.

Then we can build the linear system

Ωc = d,
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where Ω has entries
∫

M
ωi∧ωj , c = (c1, c2, . . . , c2g), and d has entries

∫
M

ωi∧∗ω.

Because ωi’s are cohomology bases and Ω is non-degenerated, the above equation

has a unique solution. Suppose we want to compute ∗(aω0+bω1), where a, b ∈ R,

then we can construct the linear system for ω0, ω1 individual. Ωci = di, i = 0, 1,

then Ω(ac0 + bc1) = ad0 + bd1. This shows

∗(aω0 + bω1) = a ∗ω0 + b ∗ω1.

2

4.11 Discrete Laplacian Spectrum

The Laplacian operator is positive semidefinite, all the eigenvalues are real and

nonnegative. All the eigenfunctions are orthogonal to each other. Furthermore,

they form a basis of all functions on the mesh. This is valuable for potential

signal processing and data compression directly on meshes.

Theorem 4.11 A mesh M is with all sharp angles. Given the discrete Lapla-

cian operator ∆ on M , all the eigenvalues of ∆ are positive real numbers except

for one zero. All the eigenfunctions of ∆ are orthogonal and form a complete

basis of C0K.

Proof. From the definition of ∆, we can construct the matrix representation

of it as D.
∑

u,v∈K

ku,v||f(u)− f(v)||2 = fT Df .

Then D is symmetric, so all its eigenvalues are real. D is semi-positive, all

the eigenvalues are nonnegative. Furthermore, all the eigenvectors of D are

orthorgnal and form the bases for the whole space,

∆f = λif ,∆g = λjg
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implies
∑

u∈K

fugu = 0.

2

4.12 Discrete Holomorphic Differentials

The gradient fields of conformal mappings are represented as holomorphic dif-

ferentials or holomorphic one-forms, which are harmonic and locally orthogonal

with equal lengths. All holomorphic differentials also form a real linear space,

the dimension of which is also 2g, where g is the genus of M .

Definition 4.12 Suppose ω is in Z1K and harmonic, then the holomorphic

1-form is

ω +
√−1 ∗ ω

The Hodge star operator ∗ is linear so the linear relation of holomorphic

forms is determined by its real part. We already know the harmonic 1-forms

are 2g dimensional, so are the holomorphic 1-forms.

Theorem 4.13 All holomorphic 1-forms form a real linear space, which is 2g

dimensional.

Proof. We choose a set of harmonic 1-form bases {ω1, ω2, . . . , ω2g}. Then

given any holomorphic 1-form ω +
√−1 ∗ω, ω =

∑2g
i=1 ciωi, then

ω +
√−1 ∗ω =

2g∑

i=1

ci(ωi +
√−1 ∗ω).

2

4.13 Surface Complex Structure

A 2-dimensional manifold M has a natural complex structure. In our setting

where M is a mesh, the complex structure is constructed explicitly in [7].
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Any genus zero surface M is conformally equivalent to S2. u : M → S2 is

conformal if and only if u is harmonic. The conformal auto-morphism group

of S2 is 6 dimensional, which is the Mobius transformation group defined on

the complex plane C. If we fix the images of 3 points, then there is a unique

conformal map from M to S2.

For non-zero genus surfaces, we study the structure of its holomorphic dif-

ferential group. The following form

τ +
√−1ω, τ, ω ∈ Ω1(M ; TM) (49)

is called a holomorphic form if both τ and σ are harmonic and ∗τ = ω, here ∗ is

the Hodge star operator. Suppose {v1, v2} are orthonormal bases of a tangent

space on M , then

ω(v1) = ∗ω(v2) (50)

The set of holomorphic 1-forms is denoted as H1,0(M,C). Let M be a

compact Riemann surface of genus g and B = {e1, e2, · · · , e2g} be an arbitrary

basis of H1(M, Z). The intersection matrix C of the above basis has entries

cij = −ei · ej (51)

where the dot denotes the algebraic number of intersections. A basis B∗ =

{ω1, ω2, · · · , ω2g} of real vector space H1,0(M,C) is the dual of B if

Re

∫

ei

ωj = cij . (52)

From Riemann bilinear relations [2] it follows that matrix S with entries

Im

∫

ei

ωj = sij (53)

is symmetric and positive definite. The complex structure in H1,0(M,C) is

given by a matrix R with respect to the basis B and satisfies R2 = −I. The

following relation holds

CR = S. (54)
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After Weyl [47] and Siegel [41], the matrix R is called the period matrix of M

with respect to the basis B. Let a be a holomorphic automorphism of M , and

let [a] denote the matrix of its action on the homology and cohomology with

respect to the above basis, then

[a]−1R[a] = R, [a]T C[a] = C. (55)

The pair (R, C) determines the analytic structure of a given Riemann surface in

the following sense: Two such pairs, (R1, C1) and (R2, C2) determine the same

structure if and only if there exists an integral matrix N whose determinant is

±1 such that

N−1R1N = R2, N
tC1N = C2. (56)

If the bases B1 and B2 are canonical ones, then both C1 and C2 are identities,

and N is an integral symplectic matrix.

5 Conformal Mapping for Genus Zero Surfaces

Given two genus zero meshes M1,M2, there are many conformal mappings be-

tween them. The algorithm for computing conformal mapping is based on the

fact that harmonic maps are conformal for genus zero surfaces. All conformal

mappings between M1,M2 form a group, which is the so-called Mobius group.

Our method is as follows: First find a homeomorphism h between M1 and M2,

then diffuse h so that h minimizes the harmonic energy. In order to ensure the

convergence of the algorithm, special constraints are added so that the solution

is unique.
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5.1 Constrained Variational Problem

Suppose M1 and M2 are genus zero meshes, h : M1 → M2 is a degree one

mapping. We would like to minimize the harmonic energy E(h),

E(h) =
∑

[u,v]∈K1

ku,v||h(u)− h(v)||2,h = (h0, h1, h2). (57)

The Laplacian for h is simply

∆PLh = (∆PLh0,∆PLh1,∆PLh2). (58)

Then if h is harmonic, the tangential component of ∆PLh is zero. Define the

projection operator

Pv = I − v ⊗ vT

vT v
,v ∈ R3, (59)

where ⊗ is tensor product and I is an identity matrix. Then h is harmonic if

and only if

Pn◦h∆PLh = 0, (60)

where n is the normal on M2.

In order to ensure that the process converges to a unique solution, we have

to add extra constraints. We force the center of mass of the surface to be at its

origin, that is, ∫

M2

hdσM1 = 0 (61)

where dσM1 is the area element on M1. This constraint will guarantee the

solution is unique up to a rotation. Then we can construct the partial differential

equation
∂h
∂t

+ Pn◦h∆PLh = 0 (62)

with constraints 61. The steady state solution of h is the conformal mapping

from M1 to M2. Equation 62 can be solved by iterative methods.
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5.2 Steepest Descendent Algorithm

In our implementation, we fix M2 as S2. In order to compute the initial homeo-

morphism from M1 to S2, we first compute the spherical baricentric embedding,

which minimizes the barycentric string energy. The barycentric energy is defined

as in eqn. 29, here we let

ku,v ≡ 1. (63)

The corresponding Laplacian is defined as eqn. 34 with constant unit ku,v. Then

the following algorithm computes the spherical barycentric embedding,

Input mesh M, step length δt, threshold ε.

Output sphereial barycentric mapping h.

1. Compute the Gauss map n from M to S2, h ← n.

2. Compute the barycentric energy E(h), if δE < ε

then return h.

3. Compute the tangential Laplacian of h, δh ← Pn◦h∆PLh

4. Update h by h ← h− δt× δh.

5. Repeat 2 through 4.

Algorithm 1. Spherical barycentric embedding

In practice, the barycentric embedding converges faster than the spherical

harmonic embedding, and there are no extra constraints. Hence we use it as

the initial embedding to compute spherical conformal mappings. The spherical

conformal embedding algorithm is more complicated. In each iteration an extra

normalization step is inserted so that the mass center of the surface stays in the
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origin during the entire process.

Input Mesh M, step length δt, threshold ε.

Output Spherical harmonic map h.

1. Compute the spherical barycentric map b from M to S2,

h ← b.

2. Compute the harmonic energy E(h), if δE < ε then return h.

3. Compute the tangential Laplacian of h, δh ← Pn◦h∆PLh.

4. Update h by h ← h− δt× δh.

5. Compute a Mobius transformation m, such that m ◦ h

satisfies the center of mass constraint equation 61.

6. Repeat 2 through 5.

Algorithm 2. Spherical Conformal Embedding

In step 5 above, the Mobius transformation on S2 is in the form φ−1 ◦ f ◦φ,

where φ is the stereo-graphic projection from S2 to the complex plane,

φ(x0, x1, x2) = (
x0

1 + x2
,

x1

1 + x2
), (x0, x1, x2) ∈ R3. (64)

f is a Mobius transformation on C,

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0. (65)

In practice, it is computationally expensive to normalize h by a Mobius transfor-

mation, we simply shift the center of mass of h(M1) to the origin and normalize

h(v), v ∈ K to the unit vector.
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(a) Gargoyle mesh (20000 faces) (b) Conformal spherical mapping

(c) Barycentric mapping (d) Zoom into the face region of (b)

(e) Conformal texture mapping (front view) (f) Conformal texture mapping (back view)

Figure 14: Gargoyle model spherical conformal mapping & barycentric mapping

70



(a) Original Bunny (20K faces) (b) t = 0.3

(c) t = 0.8 (d) t = 1.0 onto sphere

Figure 15: Bunny model spherical barycentric morphing
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(a) Original Bunny model (b) Conformal map to sphere

(c) Mobius transformation of (b) (d) Conformal texture mapping

Figure 16: Spherical conformal map of the bunny mesh. The stretching factors
of the bunny ears are much bigger than those of the other parts.
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5.3 Results

A spherical barycentric embedding result is shown in figure 14. A mesh model

of gargoyle with 20000 faces is mapped to a sphere using algorithm 1. Figure

(14)(b) shows the conformal spherical embedding. (c) shows the barycentric

spherical embedding. The normal information is preserved so the shading indi-

cates the correspondence. When we zoom in to examine the neighborhood of

a vertex in (d), we can see that the vertex is at the barycentric center of all

its neighbors. During the optimization, the head and wing parts converge more

slowly than the other regions. Special local optimization is performed for these

parts.

Figure 14 (e) and (f) show the conformal texture mapping. First, the gar-

goyle mesh is mapped to a sphere using conformal mapping (b). The upper and

lower hemispheres are projected to the tangent planes through its north pole and

south pole individually. The projections are stereo-graphic projections. Then

the gargoyle mesh is mapped to 2 planes conformally. The texture coordinates

are defined as the plane coordinates. The texture is a regular checker board

image. From the snapshot, we can tell that all the right angles of parametric

curves are preserved. For the head and wing regions, the texture coordinates

are scaled. So the entire texture mapping is a multi-resolution texture-mapping.

Figure 15 demonstrates the spherical barycentric embedding. In order to

show the correspondances, a geometric morphing process is illustrated. The

morphing is constucted as a linear combination of the original surface and the

final one. Parameter t gives the blending factors. From the morphing, we can

tell that the ear parts are mapped to relatively small regions on the sphere.

Figure 16 shows the spherical conformal embedding of the bunny mesh. (c)

is obtained by spherical Mobius transforming of (b). We can tell that the head

part is zoomed in uniformaly. On the conformal texture mapping result (d), the
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texture scaling is quite different.

We define the stretching factor function as the scaling factor of the first

fundamental forms. Suppose the first fundamental form of the mesh is ds2, and

(u, v) are the conformal coordinates (or texture coordinates in our case), then

ds2 = λ(u, v)2(du2 + dv2), (66)

where λ(u, v) : M → R is the stretching factor function.

The stretching factor is distributed non-uniformly. On the ears of the bunny,

stretching factors change rapidly. This is indicated by the texture on those parts.

In general, any extruding parts have greater gradients of stretching factors. In

practice, multi-resolution texture mapping should be applied to mitigate this

problem.

Figure 18 shows the spherical conformal mapping of a brain mesh and its con-

formal texture-mapping. (a) and (b) are the same brain scanned twice. There

are some minor deviations caused by the noise during data aqquisition and in-

accuracy of reconstruction algorithms. (c) and (d) are the spherical conformal

mapping results of (a) and (b) respectively. Because a conformal mapping is a

local scaling of the first fundamental form, it preserves the shape locally. There

is no distortion between the mesh and its image on a sphere. By comparing

figures 18 (a) and (c), one can find the correspondence of major geometric fea-

tures easily. Also, the conformal parameterization is stable, the small deviation

on the original mesh does not affect the final parameterization too much.

Figure 17 demonstrates that the conformal parameterization is resolution

independent. (a) is the original brain mesh with 50000 faces. (c) is a simplified

version of (a), with only 20000 faces. (b) and (d) are the conformal embedding

of (a) and (c) respectively. By comparing (b) and (d), we can recognize the cor-

respondences of major features of the brain. Figure 17 (e) and (f) demonstrate

that the embedding is conformal. We stereographicly project the sphere to the
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complex plane, use planar coordinates as texture coordinates, and conformally

map the plane to the sphere, as shown in (f). Then we assign the texture coor-

dinates of the sphere to the brain mesh, and texture map the brain mesh using

the checker board texture. It is clear that all the right angles of each square are

preserved on the highly convoluted brain surface. Figure 19 also demonstrates

the mapping’s independence of resolution and triangulation on a male face.

I implemented the algorithm in Haker’s paper [20] on the same bunny mesh

model in order to compare the efficiency and convergence of the algorithms, the

program ran for hours and did not converge.
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(a) 50K faces mesh (b) Spherical conformal map of (a)

(c) 20K faces mesh (d) Spherical conformal map of (c)

(e) Conformal texture mapping (f)Conformal texture map of the sphere

Figure 17: Conformal texture mapping of the brain mesh. Comparison of (a)
and (c) shows that the conformal parameterization is independent of resoultion
and triangulation. (e) and (f) show the mapping is angle preserving.
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(a) Brain mesh (40K faces) (b) Brain mesh, scanned different times

(c) Conformal map of (a) to a sphere (d) Conformal map of (b) to a sphere

Figure 18: Brain meshes conformal spherical maps. The shapes of the main
geometric features are preserved.
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(a) Mesh with 5K faces (b) Mesh with 2K faces

(c) Conformal mapping of (a) (d) Conformal map of (b)

(e) Texture mapping of (c) (f) Texture mapping of (d)

Figure 19: Conformal mapping of the same geometry with different resultions
and triangulations. It demonstrates that the mapping is independent of resolu-
tion and triangulation.
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6 Computing Conformal Structures for Non-zero
Genus Meshes

6.1 Overview

For the purpose of computing global conformal parameterizations, we need to

apply some abstract mathematical concepts. We first explain the main ideas in

an intuitive way.

Instead of studying maps directly, we first study their gradient vector fields.

Suppose M is a surface, f : M → R, then its gradient 5f is a tangential vector

field on M . f can be recovered from 5f by integration. In [15], it is shown

that a special set of curves C can be found, such that their complement M/C is

a topological disk. We fix a base point p0, for any point p, choose an arbitrary

path r from p0 to p, and integrate 5f along r. The following relation holds as

long as r has no intersection with C,

f(p)− f(p0) =
∫

r

5fdr. (67)

The above definition is independent of the choice of r, because the divergence of

5f is zero. For any tangential vector field with zero divergence, this definition

is also valid. We call such vector fields closed 1-forms.

Suppose there exists a map f : M → R2, if f = (f0, f1) is conformal, then

the gradient fields

5f = (5fx,5fy) (68)

satisfy the following constraints,

1. Both 5fx and 5fy are harmonic.

2. At each point p, 5fy(p) = n(p)×5fx(p), where n is the normal on M .

The definition of harmonic in constraint (1) is given below. Suppose ω is a
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vector field on M , then harmonic energy is defined for vector fields as

E(ω) =
∫

M

||ω||2dσ, (69)

where dσ is area element on M , || · || is Euclidean norm. If ω minimizes the

harmonic energy, then we call it harmonic. We can diffuse any closed 1-form ω

to be harmonic by adding a gradient field 5f to it, such that ω+5f minimizes

the harmonic energy. ω and ω +5f have the same values for integration along

any closed curves on M .

Constraint (2) means that 5fy can be obtained by rotating 5fx a right

angle about the normal at each point on M . We call a pair of closed 1-forms

(ω0, ω1) holomorphic 1-form, or holomorphic differential if they satisfy the above

constraints. Our goal is to find all holomorphic 1-forms on M . In Chapter 3, we

have proven that all harmonic 1-forms on M form a linear space, the dimension

of which is two times of the genus of M . Constraint (2) is also linear. Therefore,

there is a linear vector space of all holomorphic forms on M . We introduce a

method to find a set of bases of this space, construct holomorphic 1-forms by

linearly combining the bases, then build conformal maps by integrating them.

Amazingly, for a genus g surface, the dimension of this holomorphic one-form

space is 2g. Furthermore, each base corresponds to one handle respectively.

For the genus one case, we find two oriented loops a, b on M , a, b intersect

at only one point p, cut M along them and open M to a topological disk D, the

boundary of D is aba−1b−1, where a−1 is the reverse of a, and the neighborhood

of p is split to four corners. Then we map D to a unit square, corner to corner,

boundary to boundary. Suppose the map is f : D → R2, f = (f0, f1), then we

can diffuse 5f0 and 5f1 to harmonic 1-forms (ω0, ω1). {ω0, ω1} are the bases

of harmonic 1-forms on torus M . In order to meet constraint (2), we rotate ω0

at each point n×ω0. The rotation does not change the harmonity, the resulting

1-form is still harmonic. So we can find a linear combination of ω0 and ω1,
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p, q ∈ R, such that

pω0 + qω1 = n× ω0. (70)

Then (ω0, pω0 + qω1) is a holomorphic form.

For the genus g > 1 case, we can select one handle at each time, and “col-

lapse” the other handles. We treat the collapsed M as a torus, and compute

a holomorphic 1-form on it. The g holomorphic 1-forms corresponding to g

handles are the bases of all holomorphic 1-forms on M .

The pipeline of our algorithm is as follows: First we locate the handles, then

open each handle, map it to a unit square, then diffuse the gradient vector fields

of these maps to harmonic 1-forms. Finally, we rotate the harmonic forms and

pair them to holomorphic forms.

The rigorous definition of handles is homology group. The linear space struc-

ture of tangential vector fields is described as De Rham cohomology group. The

gradient, divergence operators are the sepcial cases of exterior differentiation.

The operator to rotate a vector field is Hodge star operator.

The above discussion assumes that the surface M is smooth. In practice,

surfaces are represented as piecewise linear meshes. We approximate the smooth

vector fields by piecewise linear vector fields. It is natural to use simplicial

homology and cohomology to represent the algorithms. But the computations

are derived from De Rham cohomology.

For non-zero genus meshes, the computation of conformal structure is much

more complicated. The goal is to find the complete bases of the holomorphic

1-form group. The algorithm can be summarized in the following steps:
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Input A mesh M

Output A set of bases of holomorphic differentials.

1. Compute homology group bases B = {e1, e2, · · · , eg, eg+1 · · · , e2g}.
2. Compute cohomology group bases Ω = {ω1, ω2, · · · , ω2g}

which are the dual of B.

3. Compute harmonic 1-forms ζ = {ζ1, · · · , ζ2g},
such that ζi is homologous to ωi.

4. Apply Hodge star on ζi, and compute holomorphic 1-forms

ζi +
√−1(∗ζi).

Algorithm 3. Compute holomorphic differentials

The following subsections explain each step in details.

6.2 Computing Homology

There are many methods for computing homology groups H∗K of a simplical

complex K. In our implementation, we use the classic algorithm, which is

based on reducing boundary operator matrices ∂q to their Smith normal forms

[32]. In order to avoid the substantial computational cost of the reduction to

Simth normal form, the mesh is simplified by using progressive mesh algorithm

introduced in [21]. Once the homology bases B are found on the coarser mesh,

they are mapped back to the finer mesh through a sequence of vertex splits. At

each vertex split step, we check the neighborhood of current split vertex, and

preserve the connectness of each homology base cycle in B. Finally, on the finer

mesh, we use the Dijkstra algorithm to shorten each base cycle, and perturb

them such that they intersect transversely.
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Figure 20: Homology basis curves of a genus g surface

For genus g surface M , there are 2g homology classes in H1. Becuase geo-

metric data are represented as triangular meshes, they have a natural simplicial

complex structure. Denote a vertex as σ0
i , an edge as σ1

j , a face as σ2
k

∂1 ◦ ∂2 = 0. (71)

We represent boundary operators by integer matrices,

∂k =




[σk
0 : σk−1

0 ] [σk
0 : σk−1

1 ] · · · [σk
0 : σk−1

n ]
[σk

1 : σk−1
0 ] [σk

1 : σk−1
1 ] · · · [σk

1 : σk−1
n ]

· · · · · · · · · · · ·
[σk

m : σk−1
0 ] [σk

m : σk−1
1 ] · · · [σk

m : σk−1
n ]


 (72)

where [σk
i : σk−1

j ] is +1, −1 or 0.

Then homology group H1 is defined as

H1(M, Z) =
Ker∂1

Img∂2
. (73)

In general cases, the canonical base curves are like the ones in figure 20.

By computing the Smith canonical forms of these matrices, we can get the kernal

space and image space of the boundary oerpators. Therefore, we can find the

bases in the homology group by taking the quotient.

The bases obtained so far are not canonical. The following algorithm will

transform (b1, · · · , b2g) to a canornical one. We represent each chain bi as a cyclic
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list of vertices {v1, v2, · · · , vm}. First we compute the intersection number of two

chains.

Input Two chains c0 = {v1, v2, · · · , vm} and c1 = {u1, u2, · · · , un}.
Output Intersection number of c0 and c1.

1. Compute common vertices c0 ∩ c1.

2. For each v ∈ c0 ∩ c1, compute its index, ind(v) ∈ {±2,±1, 0}
3. Compute intersection number Int(c0, c1)

Int(c0, c1) =
1
2

∑
v∈c0∩c1

Ind(v)

.

Algorithm 4. Compute intersection number of two cycles.

The index of each common vertex is computed easily. If two curves are

tangentially touched, then the index is zero. If c0 traverses c1 from its left side

to the right side, then the index is +2. If c0 crosses c1 from the right side

to the left side, the index is −2. The tricky case is when c0 and c1 merge or

split. Suppose c0 is splitted from c1 and goes to the right side, the index is +1,

otherwise the index is −1. If c0 merges with c1 from left side, the index is +1,

otherwise it is −1. Figure 21 depicts these different situations.

Then the intersection matrix can be constructed easily. Suppose the bases

computed so far are Γ = {b1, b2, · · · , b2g}, the intersection matrix

Γt · Γ =




b1 · b1 · · · b1 · b2g

· · · · · · · · ·
b2g · b1 · · · b2g · b2g


 = Q,

where bi · bj is the intersection number of bi and bj . Q is skymetric, Qt = −Q,
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Figure 21: Index of a common point on two loops b0 and b1

then there exists an integer matrix A, such that

AtΓt · ΓA =
(

0 Ig

−Ig 0

)
= Λ, A ∈ Z2g×2g, (74)

where Ig is a g × g identity matrix. Q is congruent to the normal form Λ.

The congruence matrix A can be computed by using the Gaussian elimination

method. Then we transform the current bases Γ to Γ′ = ΓA, Γ′ is a set of

canornical bases of K.

The computation of the Smith normal form could be computationally ex-

pensive for large scale meshes. In practice, we simplify the mesh first, and use

the highly simplified mesh to compute the homology. Then we map the coarser

curves back to the finer mesh. The following meshes are examples of a simplified

mesh, and its corresponding refined mesh.
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(a) Simplified mesh with 500 faces (b) Original mesh with 4000 faces

Figure 22: Computing holomogy bases of a torus

Figure 22 shows the homology bases of a torus mesh. The original mesh

has 4000 faces and it is simplified to 500 faces. The base cycles are computed

on the coarse mesh then lifted back to the original mesh. Figure 26 (a) shows

the homology bases of a genus 2 mesh. Figure 26 (b) shows the fundamental

domain of the 2 hole torus mesh.

6.3 Computing Cohomology

Once we obtain a set of homology bases B, we can compute a set of cohomology

bases Ω which is dual to B, such that

∫

ei

ωj = δj
i . (75)

We chose a handle and the pair of conjugate homology cycles on it, denoted

as {ei, ei+g}. Then we split the mesh along these 2 cycles, map the mesh

boundary to the boundary of a unit square, embed the interior to the unit

square by the Floater embedding algorithm described in [13]. Suppose the

embedding is (fx, fy) respectively. Then the 1-forms {dfx, dfy} are the duals of

{ei, ei+g}.
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Figure 23: Wedge on mesh and splitted along the colored edges

First, we would like to splice the mesh open. The following is the algorithm

for slicing a mesh.

Definition 6.1 Suppose M is a triangluar mesh, given a face f , the three angles

are called corners. All the cornners adjacent to a same vertex v form a wedge

w. w is associated with v.

Input A set of curves C, C is homotopic to 0

Output Open mesh with boundary along C

1. Label all edges in C.

2. For each vertex v construct a wedge w, all corners

adjacent to v are also associated with wedge w.

3. Split w to w1, w2 along the labeled edges. Associate

all corners in w1 with w1, all corners in w2 with w2.

4. Construct a new mesh M ′. Vertices are all wedges on M.

For each face f ∈ M, three corners are {c0, c1, c2},
the associated wedges are {w0, w1, w2}. Construct a face

f ′ ∈ M ′, using {w0, w1, w2} as vertices.

Algorithm 5. Mesh slicing
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(a) Original triangular Mesh (b) Conformal embedding

(c) Barycentric embedding (d) Floater embedding

Figure 24: Floater embedding vs. Tuette Embedding
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This algorithm is illustrated in figure 25. A pair of conjugate homology bases

is drawn in (a). Then the mesh is cut open along these two cycles, as shown in

(b). Suppose mesh M is sliced to M ′ along curve set C, then the mapping

τ : Edge(M ′) → Edge(M)

is one to one, τ is defined as follows,

τ([u0, u1]) = [v0, v1] ifu0 ∈ wedge(v0), u1 ∈ wedge(v1).

The immersion is computed by general Floater or Tuette embeding method.

These embeddings are demonstrated in figure 24. The original mesh (a) is

mapped to a disk by using Tuette and Floater embeddings with the same bound-

ary condition. From the examples, we can see that the Tuette parameterization

tends to shrink exponentially (c) and the Floater parameterization is shape pre-

serving (d), which has rigorous meanings. If the mesh is a convex polygon, the

range is also a convex polygon. If the boundary mapping is affine, then the

whole mapping is affine.

Given mesh M , with ∂M simple connected, the Floater (Tuette) immsersion

φ : M → [0, 1] × [0, 1] uniquely exists. The entire algorithm for computing

comhomology bases is
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Input Homology bases {r0, r1, · · · , r2g}
Output Dual cohomology bases {ω0, ω1, · · · , ω2g}

1. Select a pair of homology bases {ri, ri+g}, slice M along

them, get M ′.

2. Compute the Floater immersion φ.

3. Suppose φ = (φx, φy), compute 1-forms ωx = dφx ,ωy = dφy.

4. Pull back ωx, ωy from M ′ to M,

ωi ← ωx ◦ τ−1, ωi+g ← ωy ◦ τ−1.

5. Repeat until all homology bases are processed.

Algorithm 6. Compute dual cohomology bases

In Figure 25 (c) the entire mesh is mapped to the unit square. The mapping

is of degree one but not an immersion. The second handle of the mesh is

collapsed to the central region, which is shown in (d) with that region zoomed

in.

6.4 Diffusion

Suppose the cohomology bases of mesh M are Ω = {ω1, ω2, · · · , ω2g}, we deform

them to harmonic forms by adding exact 1-forms δfi, where fi ∈ C0K, such

that ωi + dfi minimizes the harmonic energy in equation 29. So the Laplacian

is zero

∆(ωi + δfi) = 0. (76)

Then for each vertex u ∈ M ,

∑

[u,v]∈K

ku,v(ωi[u, v] + fi(u)− fi(v)) = 0. (77)
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We construct a linear system to solve fi. Define matrix D as follows: If u 6= v

and [u, v] is an edge of M , then

Du,v = −ku,v. (78)

If u = v, then

Du,u = −
∑

u 6=v

Du,v. (79)

It has been proven that the kernel space of D is

H = {λ(1, 1, . . . , 1)T |λ ∈ R}, (80)

and D is a real-valued symmetric sparse matrix, D is semi-positive definite.

Suppose Dx = 0, then xT Dx =
∑

ku,v||xu − xv||2 = 0, so x ∈ H. Therefore

D maps H⊥, the orthogonal complement of H, bijectively to itself. The linear

system of 77 is

Dfi = Ω, (81)

where fi is with entries fi(u), u is a vertex of M . The u-th entry of Ω is

Ωu = −∑
[u,v]∈K ku,vω[u, v]. We need to show that Ω is in H⊥, then the

solution uniquely exists. f ∈ H⊥, if and only if
∑

u fu = 0 . Then

∑
u

Ωu =
∑

u

∑

[u,v]

ku,vω[u, v] =
∑

[u,v]

ku,v(ω[u, v] + ω[v, u]) = 0. (82)
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Hence Ω ∈ H⊥. We use the following iterative algorithm to diffuse 1-forms.

Input 1-form ω ∈ C1K.

Output Harmonic 1-form ω.

1 F ← 0.

2 Compute the Laplacian

∆PLF =
∑

[u,v]∈K

ku,v(F (u)− F (v) + ω[u, v]) (83)

3 F ← F −∆F × δt.

4 Compute the harmonic energy E(ω + δF ).

if δE < ε then ω ← ω + δF, return.

5 Repeat 2 through 4.

Algorithm 7. Compute harmonic 1-Forms

This is the most time-consuming step during the whole procedure. In practice,

we perform local optimization for the extruding parts on the surface. Because

the matrix D is symmetric, positive semidefinite, and sparse, special linear

algebra techinques can be applied to improve the efficiency of the algorithm.

6.5 Compute Holomorphic 1-Forms

Given a set of harmonic 1-form basis Ω = {ω1, · · · , ω2g}, we can construct the

bases of holomorphic 1-forms directly by pairing ωi with its conjugate ∗ωi. ∗ωi

is also harmonic, so it can be represented as a linear combination of ωj ’s.

∗ω =
2g∑

i=1

αiωi. (84)

92



We consider the wedge product
∫

M

ωi ∧ ∗ω =
2g∑

j=1

αi

∫

M

ωi ∧ ωj . (85)

Then we construct the following linear system

Wa = b, (86)

where W has entries

wij =
∫

M

ωi ∧ ωj , (87)

and vector b has entries

bi =
∫

M

ωi ∧ ∗ω. (88)

Because {ω1, ω2, · · · , ω2g} are dual to {e1, e2, · · · , e2g}, matrix W equals the

intersection matrix, i.e. wij = ei ∩ ej . Therefore W is nondegenerate, linear

system 86 has a unique solution. We denote ζi = ωi +
√−1 ∗ωi i = 1, 2, . . . , g.

Then ζi’s are a set of basis of the complex linear space of holomorphic forms.

The following is the algorithm to compute holomorphic 1-forms.

Input Bases of a harmonic 1-form group {ω1, ω2, · · · , ω2g},
a harmonic 1-form ω.

Output Holomorphic 1-form ω +
√−1 ∗ω.

1. Compute
∫

M
ωi ∧∗ ω.

2. Compute
∫

M
ωi ∧ ωj.

3. Solve the linear system ∗ω =
∑

i αiωi

(
∫

M

ωi ∧ ωj)(αi) = (
∫

M

ωi ∧∗ ω)

4. ζ ← ω +
√−1 ∗ω, return ζ.

Algorithm 8. Compute holomorphic forms
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6.6 Results

By applying the above algorithm, we can compute holomorphic differentials on

M . Suppose we treat the holomorphic differentials as a complex vector space,

we denote a set of bases as {ζ1, ζ2, · · · , ζg}, where g is the genus of M . Figure

26 shows the results of computing holomorphic 1-forms on a genus two mesh.

By integrating ζ1 on a foundamental domain shown in (b), we map the mesh

conformally to the complex plane. Then we treat the plane as the texture

parameter space, texture map a checker board texture the mesh, and we obtain

(c). (d) is constructed in the same way by integrating ζ2.

By linearly combining ζi’s, we can construct all holomorphic 1-forms on M .

By integrating holomorphic 1-forms on the fundamental domain, the mesh is

globally conformally mapped to the plane with finite singularities. The number

of singularities on M is 2g − 2. Figure 27 (a) shows ζ1 + ζ2, figure 27(b) shows

ζ1− ζ2. The singularities of ζ1 + ζ2 are at the front and back sides of the torus.

Those of ζ1 − ζ2 are on the left and right sides.

Figure 27 also shows the level sets of stretching factors as defined in equation

66. (c) and (d) show the stretching factor level sets on the fundamental domains

embedded in the complex plane. (e) and (f) show the level sets on the meshes.

These level sets have rich geometric information of mesh M .

Figure 28 show holomorphic 1-forms on different surfaces. (a) and (b) show

the bases of holomorphic 1-forms on a genus 2 vase surface. (c) is a complicated

genus 2 mesh with knotted handles. (d) is a holomorphic 1-form visualized by

texture mapping. All the parameterizations are globally conformal and bound-

ary free.
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(a) A handle and homology bases on it (b) Sliced open

(c) Mapped to the planar domain (d) Zoomed in to the other handle

Figure 25: Computing dual cohomology
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(a) Homology Bases (b) Foundamental Domain

(c) Holomorphic 1-form ζ0 (d) Holomorphic 1-form ζ1

Figure 26: Homology bases and holomorphic differential bases
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(a) ζ0 + ζ1 (b) ζ0 − ζ1

(c) Stetch level set of (a) (d) Stretch level set of (b)
on a foundamental domain on a foundamental domain

(e) Stretch level set of (a) (f) Stretch level set of (b)

Figure 27: Holomorphic 1-form and stretching level sets of stretch factors
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(a) Holomorphic 1-form ζ0 for the vase mesh (b) Holomorphic 1-form ζ1 for the vase mesh

(c) Genus 2 knot mesh (d) Holomorphic 1-form of knot mesh

Figure 28: Holomorphic 1-forms from different meshes
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7 Global Conformal Parameterization

Our goal is to parametrize a mesh with arbitrary topology while preserving the

conformality everywhere. In this section this parameterization will be described

in details. The common structure of such parameterization will be explained

and illustrated. In general, there must be finite number of singularities, which

we call branch points, and each handle can be parametrized by a modular space,

the curves separating the handles are the boundaries on the parameter domain,

we call them handle separators.

Suppose we have obtained a set of bases of holomorphic 1-forms. We can

linearly combine them to get any holomorphic 1-form, and integrate it on the

foundamental domain of M . The mapping from M to the complex plane is the

desired global conformal parameterization. In this section we will analyze the

properties of this kind of parameterization.

7.1 Branch Points

The mapping is conformal everywhere except at finite points. Suppose we choose

a holomorphic 1-form ζ +
√−1 ∗ζ, where ζ could be treated as a vector field

on M . According to the Hope-Poincare theorem [18], ζ must have zero points

if M is not homeomorphic to a torus. At the zero points of ζ, the mapping is

degenerated. Such points are called branch points. For a genus g surface, there

are totally 2g−2 branch points. The map wraps the neigborhood of each branch

points twice and double cover the neighborhood of f(p) on the complex plane.

In other words, if we draw a closed loop r on M around p, then the image of r

f(r) is also a closed loop and around f(p) twice.

In order to find the branch points, we define the following streching factor

for each vertex u ∈ M ,

stretch(u) =
1

valence(u)

∑

[u,v]∈K

||ζ[u, v]||2
||[u, v]||2 . (89)
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(a) Front view (b) Back view

(c) On the surface (d) On the complex plane

Figure 29: Branch points (degree 2)
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The branch points are the vertices with local minimum streching factors.

Figure 29 illustrates the branch points on a 2 hole torus. (a) and (b) show two

singularities at the center of the mesh. (c) and (d) show the winding number

is changed to two by the conformal mapping. Figure 31 illustrates the branch

points of a genus three mesh and its conformal mapping to the complex plane.

7.2 Modular Structure of Each Handle

Given a torus M , we get the foundamental domain D, and integrate a holomor-

phic 1-form ζ on D, map D to a region on the complex plane. We can extend

this map across the boundary of D. We fix one point p0 ∈ D near the boundary,

and extend the map on its neighborhood N in the following way: For any point

p ∈ N , find a path r from p0 to p, and r is totally contained in N , then

f(p)− f(p0) =
∫

r

(ζ +
√−1 ∗ζ. (90)

This way we can extend f to cover the whole complex plane. The images

of p are a discrete point set, and they satisfy the following relation: Suppose

fα(p) and fβ(p) are two images of p, then

fα(p)− fβ(p) = ia + jb, i, j ∈ N, a, b ∈ C, (91)

where a, b are two constant complex numbers, which we call the periods of M .

The periods can be computed explicitly, suppose {e0, e1} are a set of homology

bases, then

a =
∫

e0

ζ +
√−1 ∗ζ, b =

∫

e1

ζ +
√−1 ∗ζ. (92)

In other words, the torus is conformally mapped to a modular space C/Λ, where

Λ is a lattice defined as

Λ = {ia + jb|i, j ∈ N}. (93)

The mapping is globally conformal, and boundary free.
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Suppose the genus of M is greater than one. Then f still maps each handle to

a modular space, but each handle has different periods. In our implementation,

we can simply treat each modular space as a planar parallelogram, using a, b as

its two edges. The next section will explain how to separate each handle, and

map each handle to a modular space respectively.

7.3 Handle Separation

Suppose M is of genus g, the homology bases are {e1, e2, · · · , e2g}. There are

g handles {h1, h2, · · · , hg}, such that {ei, ei+g} ⊂ hi. Then f maps hi to a

modular space, represented as a paralleloogram Si. Our goal is to separate M

to handles, such that hi, hj are either disjoint, or intersect at a closed curve.

More importantly, f is one to one and onto from hi to Si.

As shown in figure 30, the three hole torus is separated into three handles

in different colors, each handle is conformally mapped to a modular space. The

mapping across the boundary is still conformal. Figure 32 shows the modu-

lar structure for each domain. The white disks on the meshes are across the

boundaries of these domains, and across the corners.

We separate the handles by the following algorithm. First we compute the

fundamental domain of M , and integrate the holomorphic 1-forms. f maps D

to g overlapping parallelograms, denoted as S1, S2, · · · , Sg. If Si is attached to

Sj , there must be two branch points p and q on both of them. Find one planar

curve r, from p to q, and r ∈ Si, r ∈ Sj . Then we map back r from Si to M get

a curve Ri on M , map r back from Sj to M , we get Rj . The closed loop RiR
−1
j

is the cycle to separate handles hi and hj . Figure 7.1 (a) is a genus 3 mesh. The

holomorphic 1-form is visualized by conformal texture mapping. From (c) and

(d) we can recognize the 4 branch points. The integration on its foundamental

domain gives 3 overlapping planar domains, as shown in (b).

In figure 33, on the mesh, r is the boundary between the red handle and
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the green handle. r is mapped to the middle line segment in S0 and S1. If we

exit from the left side of r on S0, we enter S1 to the right side of r. If we exit

from the right side of r on S0, we enter S1 to the left side of r. The mapping is

conformal across R on M .

7.4 Algorithm for Parameterization

We summarize our procedure for conformal parameterization as follows:

Input Mesh M

Output Conformal parameterization

1. Compute holomorphic 1-form bases.

2. Construct a holomorphic 1-form.

3. Locate the branch points.

4. Separate the handles.

5. Compute Modular space for each handle.

Algorithm 9. Global conformal prametrization

All the computations are based on mesh structures, and it is convenient

to use meshes as the base structure. 1-forms are represented as a function

defined on oriented edges, so we associate each edge with a real number. We

approximate the branch points by vertices. The homology bases are represented

as lists of edges. Each face has a unique handle id. Each corner of a face stores

the coordinates on the complex plane. The modular space Si is represented

as a piecewise linear polygon on the complex plane. The boundary of Si is

eiei+ge
−1
i e−1

i+g. Each half edge on the boundary has a mate on the opposite

side. The handle separators are also represented as a list of half edges. Suppose

Si and Sj share two branch points p,q, path ri : p → q on Si is the mate of

rj : q → on Sj , and vise versa, path r−1
i on Si is the mate of r−1

j .
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(a) Front view (b) Patch 0

(c) Patch 1 (d) Patch 2

Figure 30: Modular structures of the global conformal parameterization for each
handle
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(a) Mesh (b) Embedding

(c) Front view (d) Back view

Figure 31: For the genus 3 mesh, there are 4 branch points, and 3 handles are
mapped to 3 overlapping patches
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Mesh Patch

Mesh Patch

Figure 32: Moduler structure for each handle domain

7.5 Results

Some surfaces with complicated topologies are globally conformally parameter-

ized. The results are shown in figure 34. (a) shows a surface with 3 boundaries.
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(a) Mesh (b) Upper handle parameter domain

(c) Lower handle parameter domain (d) Conformality preservation across
boundaries (red curves)

Figure 33: Separation of handles. The separator is mapped to both patch
domains.

We first make two copies of it, and glue them together along these three bound-

aries, the obtained surface is closed and with genus four. We global conformally

parameterize the double covering surface, and choose a symmetric holomorphic

one-form and visualize it by texture mapping.
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(a) Hyperbolic surface (b) Knot surface

(c) Teri mesh (d) Genus three scultpure

Figure 34: Examples of global conformal parametrizations

Figure 34 (b) illustrates a genus one surface parameterized by the method

described in this work. (c) is a genus seven surface, there are totally 12 singu-

larites, some of them can be recognized easily on the snapshot. (d) is a surface

scanned from a real sculpture model, which is of genus three. The streching

factors are highly nonuniform.
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(a) Front view (b) Back view

Figure 35: Global conformal parameterization of David mesh

The David model is of genus three too. We make 2 holes on the surface

in order to improve the uniformity of the parameterization. This only changes

the topology, which will lead to big changes of the parameterization without

affecting the appearance too much. One is at the bottom, the other is at the

top of the head. Then we construct a double covering of the surface, which is of

genus seven. From the back view, we can see there are some singularites on the

shoulders and the base. The parameterization is quite uniform and conformal.
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8 Performance Analysis and Applications

This section will analyze the performance of the algorithms, the major difficul-

ties and ways to tackle them. Some potential applications are also introduced

here. Some of the applications are quite novel and demand intensive research

in the future.

8.1 Performance Analysis

8.1.1 Independence

The algorithm is independent of the choice of geometric realization of homology

cycles, but dependent on their homology classes. In future work, we will give a

method to compute a global conformal parameterization which is independent

of the choice of the homology classes. Figure 36 shows the result of holomor-

phic one-forms using different cuts. In figure 36 (a), there are two conjugate

homology cycles represented as the colored curves. In (c), one of them is de-

formed to keep the homology type. (b) and (d) are the resulting holomorphic

forms integrated on the fundamental domain where complex coordinates are

used as texture coordinates. From these figures, we can see that the texture

mapping pattern and the stretching factors are very similar. We can also see

that conformal mapping is global, even across the cut boundaries.

8.1.2 Extruding Region

Figure 37 shows the embedding of a cow head to the plane. It is obvious that

the extruding parts, like the nose, ears and horns are mapped to relatively small

regions. Those planar regions are very dense. During the optimization process,

these regions converge more slowly. In general, special local optimization is

necessary for these regions.
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8.1.3 Triangulation

The energy form ku,v||f(u)− f(v)||2 is determined by ku,v. During our experi-

ments, we find that if ku,v are all positive, then the algorithm converges faster.

For the harmonic energy minimization, the edge coefficients can be reformulated

as

ku,v = cot∠α + cot∠β. (94)

Here there are two faces sharing edge [u, v] and α, β are the two angles in

these faces opposite to the edge. For the venus model shown in figure 37 (c),

the barycentric embedding converges very fast. The harmonic optimization

converges much more slowly. In (c), there are too many obtuse angles on the

triangle mesh, so many ku,v’s are negative. In our implementation, we carry

out some preprocessing on the meshes to swap or split edges with negative ku,v.

This process improves the convergence speed.

Input A Mesh M.

Output Remesh of M, such that all ku,v’s are positive.

1. For each edge on M, compute ku,v.

2. For each edge [u, v] with negative ku,v, split [u, v].

3. For the edges with negative ku,v, swap the edges.

4. Repeat 2,3 until most ku,v’s are positive.

Algorithm 10. Remeshing to improve string constants.

The above algorithm can improve the convergence speed in practice.
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(a) Homology bases (b) Holomorphic 1-form computed from (a)

(c) Homology bases (d) Holomorphic 1-form computed from (c)

Figure 36: Boundary independent conformal mapping

112



(a) Cow Head (b) Cow head conformaly mapped to a sphere

(c) Venus mesh (d) Obtuse angles on the mesh

Figure 37: Convergence analysis: The extruding parts converge slowly. The
negative string constants cause divergence.
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8.2 Potential Applications

There are many applications for global parameterizations and geometry images,

because all geometric processing problem are related to parameterizations. Ge-

ometry image unifies the geometry and image representation, a lot of image

processing techniques can be applied to geometry directly by utilizing this tech-

nique. The followings are a few of applications. They will be explored more in

the future.

8.2.1 Constructing Geometry Images

Conformal parameterization can be applied to construct geometry images. Com-

pared with other metrics, the conformal parameter is nonuniform, which will

cause some inefficiency. But conformal parameterization does not change aspect

ratio, and no skewed triangles will be generated. Therefore, the normals can be

reconstructed with high quality. In [15], it is difficult to recover normals from

geometry images, a special normal map has to be used to metigate this problem.

In figure 41, we conformaly map the brain mesh to a sphere using the conformal

map, and resample it using regular grids. We apply wavelet compression on the

geometry image, and it can be seen that the reconstructed normals have very

good quality. For a mesh with general shapes, we can decompose it to different

submeshes with different topologies, and construct a geometry image for each

submesh.

8.2.2 Texture Mapping and Synthesis

Texture mapping is the most important field in computer graphics. Because the

mesh vertices resolution is much lower than the pixel resolution during rendering

process, more information can be stored in texture space, and illustrated by

texture mapping.
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Figure 38: Surface texture mapping
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Conformal parameterization is valuable for texture mapping, because it cre-

ates no distortion between the texture image and the texture on the surface. It

is easy to design the texture without considering compensation for distortion.

For texture synthesis on surfaces, the conformality can simplify the synthesis

process a great deal. For the interior part of each modular space, it is as simple

as pasting the copies of a local texture. Special treatments are necessary for the

regions near the boundaries and handle separators.

Figure 38 shows some texture mappings on the genus 2 torus. Each tile of

the texture is shown on the left corner of each snapshot. The texture looks

natural without distortion.

8.2.3 Surface Classification

Non-zero genus surfaces can be classified by their conformal structures naturally.

After the bases of holomorphic 1-form group are computed, it is straightforward

to compute the period matrices. During the construction of homology bases,

we can obtain a canonical set of homology bases, that is

{
ri ∩ rg+i = +1, i = 1, 2, · · · , g
ri ∩ rj = 0, j 6= g + i

(95)

Then the period matrix is

P =




∫
r1

ζ1

∫
r1

ζ2 · · · ∫
r1

ζ2g−1

∫
r1

ζ2g∫
r2

ζ1

∫
r2

ζ2 · · · ∫
r2

ζ2g−1

∫
r2

ζ2g

· · · · · · · · · · · · · · ·∫
r2g

ζ1

∫
r1

ζ2 · · · ∫
r2g

ζ2g−1

∫
r2g

ζ2g


 (96)

If two surfaces M1,M2 are conformally equivalent, then there exists an integral

symplectic matrix N , such that N−1P1N = P2. N is the homology bases

transformation matrix.

116



(a) Knotty Surface (b) Angle = 85.1, ratio = 31.150

(c) Machine part (d) Angle = 85.43, ratio = 4.9928

(e) Teapot mesh (f) Angle = 90, ratio = 2.2916

Figure 39: Surface classification by period matrices
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For the genus one case, the period matrix can be equivalently represented

as shape factors. Each genus one surface can be conformally mapped to a

parallelogram. The shape factors are the edge length ratio and the acute angle

that determine the parralogram. The following are the shape factors of our

computing results. Figure 39 shows different genus one surfaces, with different

shape factors.

Shape Factors of genus one meshes
Mesh Angle (degree) Length Ratio Size
Torus 89.9874 2.2916 1089 vertices, 2048 faces
Teapot 89.95 3.0264 17024 vertices, 34048 faces
Knot 85.1 31.150 5808 vertices, 11616 faces

Machine Part 85.4321 4.9928 3750 vertices, 7500 faces

Different genus one meshes can be classified by their shape factors and dif-

ferentiated without resorting to further geometric features. From the above

results, the knot mesh has the greatest length ratio, which is consistent with

our expectation. The teapot and the torus are symmetric, so the anglse are

right angles.

8.2.4 Laplacian Spectrum Representation

According to the theorem of Laplacian eigenfuctions, all eigenfunctions form

a basis of the functional space defined on the surface. Any function can be

represented as a linear combination of these eighen functions. If the surface is a

torus, then this setting is exactly the 2D Fourier transformation. If the surface

is a sphere, then the eigenfunctions are the so called spherical harmonics.

Figure 41 illustrates geometric compression using spherical harmonic func-

tions. The brain mesh is mapped to a sphere conformally and resampled by

regular spherical grids. The reconstructed surface is compressed using spherical

harmonic functions, which are the eigenfunctions of the Laplace-Beltrami oper-

ator on spheres. From the figure we can tell the reconstructed normals are with

good qualities.
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The eigenvalues of a Laplacian operator are determined by geometry, and

invariant of the triangulation or resolution. Figure 40 shows two plots of eigen-

value spectrums of two meshes approximating the same geometry. Although the

two meshes have quite different resolutions, their spectrum plots look similar.

This demonstrates the spectrum is an intrinsic property of the geometry, and

invariant of resolutions.
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(a) Spectrum for mesh with 1000 faces (b) Spectrum for mesh with 5000 faces

Figure 40: Spectrum independent of resolution

We can map a mesh M to a canonical mesh M0 conformally, and compute the

eigenfunctions on M0, and treat M as a vector function on M0. By computing

the spectrum and filtering out high frequencies, we can conduct geometric data

compression.
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a. Original b. Compression ratio 8

c. Compression ratio 16 d. Compression ratio 32

e. Compression ratio 128 f. Compression ratio 256

Figure 41: Surface compression

120



The following is an algorithm for data compression using eigenfunctions.

Input Base mesh M0, a mesh M.

Output Spectrum of M

1. Construct the Laplacian operator matrix of M0.

2. Compute the eigenvalues and eigefunctions of M0.

3. Decompose M with resepct to the eigenfunctions on M0.

4. Return the spectrum.

Algorithm 11. Harmonic anylasis

The harmonic synthesis is similar, using spectrum to linearly combine eigen-

functions. A compression result is shown in Figure 42. Different meshes are

reconstructed using different lengths of the spectrums. From the figure, we can

tell that only 10% of the spectrums can sufficiently reconstruct the original ge-

ometry with high fidelity. Figure 42 shows the reconstruction result from the

Laplacian spectrum. The original number of vertices is 766. From the snap-

shots, we see that the first 30 parameters in the spectrum are good enough to

reconstruct the entire mesh with very high accuracy.

This method is different from the topological Laplacian spetrum introduced

in [22]. First the eigenfunctions are defined for meshes with arbitrary topologies,

not only topological disks. More importantly, the Laplacian operators used

in our work are geometric not topologic. If we change the triangulation of

the surface, we will get the same eigenfunctions. Therefore, it is intrinsic and

connectivity independent. The topological Laplacian operator depends on the

triangulation.
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(a) First 5 frequencies (b) First 10 frequencies

(c) First 13 frequencies (d) First 15 frequencies

(e) First 18 frequencies (f) First 30 frequencies

Figure 42: Surface reconstruction from Laplacian Spectrums

122



9 Summary and Future Research

In this work, a set of discrete Riemann geometry concepts is established, and

essensial facts are proven. Any surface admits a triangulation with all acute

angles. On this kind of mesh, there exists a linear space of all discrete harmonic

1-forms, the dimension of which is two times its genus. The discrete Hodge

star operator is defined, and then the real linear space of discrete holomorphic

1-forms is studied. The dimension of this space is also two times its number of

genus. Furthermore, the bases are constructed explicitly.

By applying the discrete Riemann theory, a set of pratical algorithms is in-

troduced to find the bases of the discrete holomorphic differentials. Global con-

formal parameterization is obtained by integrating these holomorphic 1-forms.

A new method for computing conformal map from a genus zero mesh to a

sphere is also introduced. Compared to the previous approaches, this method

is more stable and flexible for different applications.

There are a lot of directions for future research, the following are the major

ones.

9.1 Homology Independent Global Conformal Parameter-
ization

Current parameterization is independent of the geometric realization of homol-

ogy bases, but it is dependent on the homology class of them. Once the ho-

mology bases are replaced by another set of bases, and if the transformation is

nontrival, the parameterization will be different.

We can introduce an implicit metric, under which special geodesics can be

found. The mesh is sliced open along these geodesics, and each patch can

be mapped to anulas conformally. The conformality will be preserved across

these boundaries. This global parameterization method is independent of the

homology type of the bases.
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9.2 Multiresolution Parameterization

From the computing results, it is clear that the streching factors vary too much

for a general surface. Using a uniform sampling rate can not satisfy the real

purpose. Different resolutions should be introduced for different surface regions.

From the bunny model, it is obvious that the ear part has the highest streching

factor. Texture with uniform resolution can not cover the ear part sufficiently

as it does on the other regions. In practice, we can increase the resolution of

the texture for the ear parts only.

Another approach is to find a developable surface as parameter domains,

conformally map the surface to these domains, and make the streching factors

on these domains as uniform as possible by adjusting these developable surfaces.

Then we can unwrap the developable surface to the plane easily. For example,

we can conformally map the two ears of the bunny mesh to two cylinders, and

unwrap the cylinders to the parameter domain.

9.3 Generalization to Other Surface Representations

Geometric objects can be represented in many formats. Mesh is the dominent

one. Sometimes it is convenient to use implicit surfaces or level sets. We would

like to generalize our algorithms to these representations. Compared to the

mesh representation, level sets are formulated as partial differential equations

and easier to deal with mathematically. But level sets and implicit surfaces

can not represent a surface immersed in R3. During the computation, surfaces

can intersect itself in the transistion stage. For meshes, the resolution does not

change for the whole process, for some surface regions with too sparse vertices,

high inaccuracy will be introduced. It will be interesting to explore how to

generalize the methods in this work to other geometry representaions.
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9.4 Embedding in Hyperbolic Domain

For non-zero genus surfaces, their universal covering space can be embedded

in the hyperbolic space. Computing such embedding requires solving a partial

differential equation. By curvature flow, a general surface can be converged

to its embedding in the hyperbolic space. In the future, this approach will be

tested. This method will lead to general conformal maps between surfaces.
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