
Monte Carlo Model Checking�

Radu Grosu and Scott A. Smolka
Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA

E-mail: {grosu,sas}@cs.sunysb.edu

Abstract. We present MC2, what we believe to be the first randomized,
Monte Carlo algorithm for temporal-logic model checking. Given a spec-
ification S of a finite-state system, an LTL formula ϕ, and parameters
ε and δ, MC2 takes M = ln(δ)/ ln(1 − ε) random samples (random walks
ending in a cycle, i.e lassos) from the Büchi automaton B = BS × B¬ϕ

to decide if L(B) = ∅. Let pZ be the expectation of an accepting lasso in
B. Should a sample reveal an accepting lasso l, MC2 returns false with l as
a witness. Otherwise, it returns true and reports that the probability of
finding an accepting lasso through further sampling, under the assump-
tion that pZ ≥ ε, is less than δ. It does so in time O(MD) and space
O(D), where D is B’s recurrence diameter, using an optimal number
of samples M . Our experimental results demonstrate that MC2 is fast,
memory-efficient, and scales extremely well.

1 Introduction

Model checking [7, 23], the problem of deciding whether or not a property speci-
fied in temporal logic holds of a system specification, has gained wide acceptance
within the hardware and protocol verification communities, and is witnessing in-
creasing application in the domain of software verification. The beauty of this
technique is that when the state space of the system under investigation is finite-
state, model checking may proceed in a fully automatic, push-button fashion.
Moreover, should the system fail to satisfy the formula, a counter-example trace
leading the user to the error state is produced.

Model checking, however, is not without its drawbacks, the most promi-
nent of which is state explosion: the phenomenon where the size of a system’s
state space grows exponentially in the size of its specification. See, for example,
[27], where it is shown that the problem is PSPACE-complete for LTL (Lin-
ear Temporal Logic). Over the past two decades, researchers have developed a
plethora of techniques (heuristics) aimed at curtailing state explosion, including
symbolic model checking, partial-order reduction methods, symmetry reduction,
and bounded model checking. A comprehensive discourse on model checking,
including a discussion of techniques for state explosion, can be found in [6].

We present in this paper an alternative approach to coping with state explo-
sion based on the technique of random sampling by executing a random walk
through the system’s state transition graph. Such a technique was first advocated
by West [31, 32] and Rudin [24] to find errors (safety violations) in communica-
tion protocols. We show how this this technique can be extended and formalized
in the context of LTL model checking.

Our approach makes use of the following idea from the automata-theoretic
technique of Vardi and Wolper [30] for LTL model checking: given a specification
S of a finite-state system and an LTL formula ϕ, S |= ϕ (S models ϕ) if and
only if the language of the Büchi automaton B = BS ×B¬ϕ is empty. Here BS

� R. Grosu was partially supported by the NSF Faculty Early Career Development
Award CCR01-33583.

is the Büchi automaton representing S’s state transition graph, and B¬ϕ is the
Büchi automaton for the negation of ϕ. Call a cycle reachable from an initial
state of B a lasso, and say that a lasso is accepting if the cycle portion of the
lasso contains a final state of B. The presence in B of an accepting lasso means
that S is not a model of ϕ. Moreover, such an accepting lasso can be viewed as
a counter-example to S |= ϕ.

To decide if L(B) is empty, we have developed the MC2 Monte Carlo model-
checking algorithm. Underlying the execution of MC2 is a Bernoulli random vari-
able Z that takes value 1 with probability pZ and value 0 with probability
qZ = 1− pZ. Intuitively, pZ is the probability that a random walk in B, starting
from an initial state and terminating at a cycle, is an accepting lasso. MC2 takes
M = ln(δ)/ ln(1 − ε) such random walks through B, each of which can be un-
derstood as a random sample Zi. The random walks are constructed on-the-fly
in order to avoid the a priori construction of B, which would immediately lead
to state explosion. Should a sample Zi correspond to an accepting lasso l, MC2

returns false with l as a witness. Otherwise, it returns true and reports that the
probability of finding an accepting lasso through further sampling, under the
assumption that pZ ≥ ε, is less than δ.

The main features of our MC2 algorithm are the following.
– To the best of our knowledge, MC2 is the first randomized, Monte Carlo algo-
rithm to be proposed in the literature for the classical problem of temporal-
logic model checking.

– MC2 performs random sampling of lassos in the Büchi automaton B = BS ×
B¬ϕ to yield a one-sided error Monte Carlo decision procedure for the LTL
model-checking problem S |= ϕ.

– Unlike other model checkers,1 MC2 also delivers quantitative information about
the model-checking problem. Should the random sampling performed by MC2

not reveal an accepting lasso in B = BS ×B¬ϕ, MC2 returns true and reports
that the probability of finding an accepting lasso through further sampling,
under the assumption that pZ ≥ ε, is less than δ.

– MC2 is very efficient in both time and space. Its time complexity is O(MD)
and its space complexity is O(D), where D is B’s recurrence diameter. More-
over, the number of samples M = ln(δ)/ ln(1 − ε) taken by MC2 is optimal.

– Although we present MC2 in the context of the classical LTL model-checking
problem, the algorithm works with little modification on systems specified
using stochastic modeling formalisms such as discrete-time Markov chains.

– We have implemented MC2 in the context of the jMocha model checker
for Reactive Modules [2]. Our experimental results demonstrate that MC2 is
fast, memory-efficient, and scales extremely well. It consistently outperforms
jMocha’s LTL enumerative model checker, which uses a form of partial-order
reduction.

The rest of the paper develops along the following lines. Section 2 considers
the requisite probability theory of geometric random variables and hypothesis
1 We are referring here strictly to model checkers in the classical sense, i.e., those for

nondeterministic/concurrent systems and temporal logics such as LTL, CTL, and the
mu-calculus. Model checkers for probabilistic systems and logics, a topic discussed
in Section 7, also produce quantitative results.

2

testing. Section 3 presents MC2, our Monte Carlo model-checking algorithm. Sec-
tion 4 describes our jMocha implementation of MC2. Section 5 summarizes our
experimental results. Section 6 considers alternative random-sampling strategies
to the one currently used by MC2. Section 7 discusses related work. Section 8 con-
tains our conclusions and directions for future work. Appendix A of [10] provides
an overview of automata-theoretic LTL model checking.

2 Random Sampling and Hypothesis Testing

As we will show in Section 3, to each instance S |= ϕ of the LTL model-checking
problem, one may associate a Bernoulli random variable Z that takes value 1
with probability pZ and value 0 with probability qZ = 1− pZ . Intuitively, pZ is
the probability that an arbitrary run of S is a counter-example to ϕ. Since pZ

is hard to compute, one can use Monte Carlo techniques to derive a one-sided
error randomized algorithm for LTL model checking.

Given a Bernoulli random variable Z, define the geometric random variable
X with parameter pZ whose value is the number of independent trials required
until success, i.e., until Z = 1. The probability mass function of X is p(N) =
Pr[X = N] = qN−1

Z pZ and the cumulative distribution function (CDF) of X is

F (N) = Pr[X ≤ N] =
∑
n≤N

p(n) = 1− qNZ

Requiring that F (N) = 1− δ for confidence ratio δ yields:

N = ln(δ)/ ln(1− pZ)

which provides the number of attempts N needed to achieve success (find a
counter-example) with probability 1− δ.

In our case, pZ is in general unknown. However, given an error margin ε and
assuming that pZ ≥ ε we obtain that

M = ln(δ)/ ln(1− ε) ≥ N = ln(δ)/ ln(1 − pZ)

and therefore that Pr[X ≤M] ≥ Pr[X ≤ N] = 1− δ. Summarizing:
pZ ≥ ε ⇒ Pr[X ≤M] ≥ 1− δ where M = ln(δ)/ ln(1− ε) (1)

Inequation 1 gives us the minimal number of attempts M needed to achieve
success with confidence ratio δ, under the assumption that pZ ≥ ε.

The standard way of discharging such an assumption is to use statistical hy-
pothesis testing (see e.g. [21]). To understand how this technique works, consider
the following example.

Example 1 (Fair versus biased coin). Suppose there are two coins in a hat. One
is fair and the other is biased towards tails. The task is to randomly select one
of them and determine which one it is. To do this, one can proceed as follows:
(i) Define the null hypothesis H0 as “the fair coin was selected”; (ii) Perform N

3

H0 is true H0 is false

Reject H0 Type-I error (probability α) Correct to reject H0

Fail to reject H0 Correct to fail to reject H0 Type-II error (probability β)

trials noting each time whether a heads or tails occurred; (iii) If the number of
heads is “low”, reject H0. Else, fail to reject H0. Two types of errors can occur
in this scenario as shown in the following table:
A type-I error occurs when H0 is rejected even though it is true and a type-II
error occurs when H0 is not rejected even though it is false. A type-I error can
be thought of as a false positive in the setting of abstract interpretation, while a
type-II error can be viewed as a false negative. The probability of a type-I error
is denoted by α and that of a type-II error by β; common practice is to find
appropriate bounds for each of these error probabilities.

In our case, H0 is the assumption that pZ ≥ ε. Rewriting inequation 1 with
respect to H0 we obtain:

Pr[X ≤M |H0] ≥ 1− δ (2)

We now perform M trials. If no counterexample is found, i.e. if X > M , we
reject H0. This may introduce a type-I error: H0 may be true even though we
did not find a counter-example. However, the probability of making this error
is bounded by δ; this is shown in inequation 3 which is obtained by taking the
complement of X ≤M in inequation 2:

Pr[X > M |H0] < δ (3)

Because we seek to attain a one-sided error decision procedure, we do not con-
sider type-II errors in our application of hypothesis testing: as soon as we find a
counter-example, we stop sampling and decide (with probability 1) that S |= ϕ is
false. To estimate the error probability and obtain a corresponding bound on the
probability β of a type-II error,2 we would need to continue sampling no matter
how early on in the sampling process the first counter-example is encountered.

Such an approach is put forth by us in [11] where we show how to compute
an (ε, δ)-approximation p̃Z of pZ ; i.e., p̃Z is such that:

Pr[pZ(1− ε) ≤ p̃Z ≤ pZ(1 + ε)] ≥ 1− δ
As shown in [11], this can be done in a number of samples that is optimal to
within a constant factor by appealing to the optimal approximation algorithm
(OAA) of [8].

The approach taken here, in contrast, appeals to basic probability theory of
Bernoulli and geometric random variables to derive a decision procedure for the
LTL model-checking problem. The number of samples taken by MC2 is therefore
2 A type-II error arises in our setting when pZ < ε even though we find a counter-

example within M samples, thereby leading us to believe incorrectly that pZ ≥ ε.
Given that pZ represents the probability that an arbitrary run of S is a counter-
example to ϕ, one could say that we were “fortunate” to find a counter-example in
this many samples.

4

usually an order of magnitude smaller than that required by OAA. This is to be
expected as the theory underlying OAA is based on the more general Chernoff
bounds, which are applicable to any random variable encoding a Poisson trial.

MC2 returns false at the first sample corresponding to an accepting lasso; i.e.,
it’s tolerance level for errors is one. Relaxing this condition would allow MC2 to
continue sampling until an upper bound U on the number of counter-examples
sampled is reached. Such an approach is related to the statistical quality control
process used in manufacturing, where a batch of N items is rejected when more
than U of them are found to be defective out of M randomly and sequentially
chosen samples. This process is known in the literature as a single acceptance
plan with curtailed sampling [9]. The computation of M is considerably more
involved in this case, as it depends on the cumulative distribution function of a
random variable with a negative binomial distribution.

3 Monte Carlo Model-Checking Algorithm

In this section, we present our randomized, automata-theoretic approach to
model checking based on the DDFS algorithm given in Appendix A of [10] and the
theory of geometric random variables and hypothesis testing presented in Sec-
tion 2. The samples we are interested in are the reachable cycles (or “lassos”) of
a Büchi automaton B.3 Should B be the product automaton BS ×B¬ϕ defined
in Appendix A of [10], then a lasso containing a final state of B inside the cycle
(an “accepting lasso”) can be interpreted as a counter-example to S |= ϕ. A
lasso of B is sampled via a random walk through B’s transition graph, starting
from a randomly selected initial state of B.

Definition 1 (Lasso sample space). A finite run σ = s0x0 . . . snxnsn+1 of a
Büchi automaton B = (Σ,Q,Q0, ∆, F), is called a lasso if s0 . . . sn are pairwise
distinct and sn+1 = si for some 0 ≤ i ≤ n. Moreover, σ is said to be an accepting
lasso if some sj ∈ F , i ≤ j ≤ n; otherwise it is a non-accepting lasso. The lasso
sample space L of B is the set of all lassos of B, while La and Ln are the sets
of all accepting and non-accepting lassos of B, respectively.

To define a probability space over L we show how to compute the probability of
a lasso.

Definition 2 (Run probability). The probability Pr[σ] of a finite run σ =
s0x0 . . . sn−1xn−1sn of a Büchi automaton B is defined inductively as follows:
Pr[s0] = k−1 if |Q0| = k and Pr[s0x0 . . . sn−1xn−1sn] = Pr[s0x0 . . . sn−1] ·
π[sn−1xn−1sn] where π[s x t] = m−1 if (s, x, t) ∈ ∆ and |∆(s)| = m.

Note that the above definition explores uniformly outgoing transitions. An al-
ternative definition might explore uniformly successor states.

Example 2 (Probability of lassos). Consider the Büchi automaton B of Figure 1.
It contains four lassos, 11, 1244, 1231 and 12344, having probabilities 1/2, 1/4,
1/8 and 1/8, respectively. Lasso 1231 is accepting.
3 We assume without loss of generality that every state of a Büchi automaton B has

at least one outgoing transition, even if this transition is a self-loop.

5

2 3 41

Fig. 1. Example lasso probability space.

Proposition 1 (Lasso probability space). Given a Büchi automaton B, the
pair (P(L),Pr) defines a discrete probability space.

The proof of this proposition considers the infinite tree T corresponding to the
infinite unfolding of∆. T ′ is the (finite) tree obtained by making a cut in T at the
first repetition of a state along any path in T . It is easy to show by induction on
the height of T ′ that the sum of the probabilities of the runs (lassos) associated
with the leaves of T ′ is 1.

Definition 3 (Lasso Bernoulli variable). The random variable Z associated
with the probability space (P(L),Pr) of a Büchi automaton B is defined as fol-
lows: pZ = Pr[Z = 1] =

∑
λa∈La

Pr[λa] and qZ = Pr[Z = 0] =
∑

λn∈Ln
Pr[λn].

Example 3 (Lassos Bernoulli variable). For the Büchi automaton B of Figure 1,
the lassos Bernoulli variable has associated probabilities pZ = 1/8 and qZ = 7/8.

Having defined Z, we now present our Monte Carlo decision procedure, which we
call MC2, for the LTL model-checking problem. Its pseudo-code is as follows, where
rInit(B)=random(S0), rNext(B,s)=t′, (s, α′, t′) = random({τ∈∆ | ∃α, t. τ=(s, α, t)})

and acc(s,B)=(s ∈ F). The main routine consists of three statements, the first
of which uses inequation 1 of Section 2 to determine the value for M , given
parameters ε and δ. The second statement is a for-loop that successively samples
up toM lassos by calling the random lasso (RL) routine. If an accepting lasso l is
found, MC2 decides false and returns l as a counter-example. If no accepting lasso
is found within M trials, MC2 decides true, and reports that with probability less
than δ, pZ is greater than ε.

The RL routine generates a random lasso by using the randomized init (rInit)
and randomized next (rNext) routines. To determine if the generated lasso is

MC2 algorithm
input: B = (Σ, Q, Q0, ∆, F); 0 < ε < 1; 0 < δ < 1.
output: Either (false, accepting lasso l) or (true, "Pr[X > M |H0] < δ")

(1) M := ln δ / ln(1 − ε);
(2) for (i := 1; i≤ M; i++) if (RL(B)==(1,l)) return (false,l);

(3) return (true,"Pr[X > M |H0] < δ");

RL algorithm
input: Büchi automaton B;

output: Samples a RL l. Returns (1,l) if accepting; (0,Null) otherwise

(1) s := rInit(B); i := 0; f := 0;

(2) while (s �∈ HashTbl) {
(3) HashTbl(s) := ++i;

(4) if (acc(s,B)) f := i;

(5) s := rNext(B,s); }
(6) if (HashTbl(s)≤ f) return (1,lasso(HashTbl)) else return (0,Null);

6

accepting, it stores the index i of each encountered state s in HashTbl and records
the index of the most recently encountered accepting state in f. Upon detecting
a cycle, i.e., the state s := rNext(B,s) is in HashTbl, it checks if HashTbl(s)≤ f;
the cycle is an accepting cycle if and only if this is the case. The function lasso()

extracts a lasso from the states stored in HashTbl.
As with DDFS, one can avoid the explicit construction of B, by generating

random states rInit(B) and rNext(B,s) on demand and performing the test for
acceptance acc(B,s) symbolically. In the next section we present such a succinct
representation and show how to efficiently generate random initial and successor
states.

Theorem 1 (MC2 correctness). Given a Büchi automaton B and parameters
ε and δ, if MC2 returns false, then L(B)
= ∅. Otherwise, Pr[X > M |H0] < δ
where M = ln(δ)/ ln(1− ε) and H0 ≡ pZ ≥ ε.
Proof. If RL finds an accepting lasso then L(B)
= ∅ by definition. Otherwise,
each call to RL can be shown to be an independent Bernoulli trial and the result
follows from inequation 3 of Section 2.

MC2 is very efficient in both time and space. The recurrence diameter of a Büchi
automaton B is the longest loop-free path in B starting from an initial state.

Theorem 2 (MC2 complexity). Let B be a Büchi automaton, D its recurrence
diameter and M = ln(δ)/ ln(1 − ε). Then MC2 runs in time O(MD) and uses
O(D) space. Moreover, M is optimal.

Proof. The length of a lasso is bounded by D; the number of samples taken is
bounded by M . That M is optimal follows from inequation 3, which provides
a tight lower bound on the number of trials needed to achieve success with
confidence ratio δ and lower bound ε on pZ .

It follows from Theorems 1 and 2 that MC2 is a one-sided error, Monte Carlo
decision procedure for the emptiness-checking problem for Büchi automata. For
B = BS ×B¬ϕ, MC2 yields a Monte Carlo decision procedure for the LTL model-
checking problem S |= ϕ requiring O(MD) time and O(D) space. In the worst
case, D is exponential in |S| + |ϕ| and thus MC2’s asymptotic complexity would
match that of DDFS. In practice, however, we can expect MC2 to perform better
than this. For example, for the problem of N dining philosophers, our experi-
mental results of Section 5 indicate that D = O(N · 1.4N).

4 Implementation

We have implemented the DDFS and MC2 algorithms as an extension to jMocha [2],
a model checker for synchronous and asynchronous concurrent systems specified
using reactive modules [3]. An LTL formula ¬ϕ is specified in our extension
of jMocha as a pair consisting of a reactive module monitor and a boolean
formula defining its set of accepting states. By selecting the new enumerative
or randomized LTL verification option, one can check whether S |= ϕ: jMocha

7

takes the composition of the system and formula modules and applies either DDFS
or MC2 on-the-fly to check for accepting lassos.

An example reactive module, for a “fair stick” in the dining philosophers
problem, is shown below. It consists of a collection of typed variables partitioned
into external (input), interface (output), and private. For this example, rqL, rqR,
rlL, rlR, grL, grR, pc, and pr denote left and right request, left and right release,
left and right grant, program counter, and priority, respectively. The priority
variable pr is used to enforce fairness.

type stickType is {free,left,right}
module Stick is

external rqL,rqR,rlL,rlR:event; interface grL,grR:event;

private pc,pr:stickType;

atom STICK

controls pc,pr,grL,grR; reads pc,pr,grL,grR,rqL,rqR,rlL,rlR

awaits rqL,rqR,rlL,rlR

init
[] true -> pc’ := free; pr’ := left;

update
[] pc = free & rqL? & ¬ rqR? -> grL!; pc′:= left; pr′ := right;

[] pc = free & rqL? & rqR? & pr = left -> grL!; pc′:= left; pr′ := right;

[] pc = free & rqL? & rqR? & pr = right -> grR!; pc′:= right; pr′ := left;

[] pc = free & rqR? & ¬ rqL? -> grR!; pc′:= right; pr′ := left;

[] pc = left & rlL? -> pc′ := free;

[] pc = right & rlR? -> pc′ := free;

In jMocha, variables change their values in a sequence of rounds: an initializa-
tion round followed by update rounds. Initialization and updates of controlled
(interface and private) variables are specified by actions defined as a set of
guarded parallel assignments. Controlled variables are partitioned into atoms :
each variable is initialized and updated by exactly one atom.

The initialization round and all update rounds are divided into sub-rounds,
one for the environment and one for each atom A. In an A-sub-round of the
initialization round, all variables controlled by A are initialized simultaneously,
as defined by an initial action. In an A-sub-round of each update round, all
variables controlled by A are updated simultaneously, as defined by an update
action.

In a round, each variable x has two values: the value at the beginning of the
round, written as x and called the read value, and the value at the end of the
round written as x′ and called the updated value. Events are modeled by toggling
boolean variables. For example rqL? def

= rqL′ �= rqL and grL!
def
= grL′ :=¬grL. If a

variable x controlled by an atom A depends on the updated value y′ of a variable
controlled by atom B, then B has to be executed before A. We say that A awaits
B and that y is an awaited variable of A. The await dependency defines a partial
order � among atoms.

Operators on modules include renaming, hiding of output variables, and par-
allel composition. Parallel composition is defined only when the modules update
disjoint sets of variables and have a joint acyclic await dependency. In this case,
the composition takes the union of the private and interface variables, the union

8

of the external variables (minus the interface variables), the union of the atoms,
and the union of the await dependencies.

A feature of our jMocha implementation of MC2 is that, given a Reactive
module M, the next state along a random walk through M , s′ = rNext(s,M), is
generated randomly both for the external variables M.extl and for the controlled
variables M.ctrl. For the former, we randomly generate a state s.extl′ from the
set of all input valuations Q.M.extl. For the latter, we proceed for each atom A

in a linear order �L
M compatible with �M as follows. We first randomly choose

a guarded assignment A.upd(i) with true guard A.upd(i).grd(s), where i is
less than the number |A.upd| of guarded assignments in A. We then randomly
generate a state s.ctrl′ from the set of all states returned by its parallel (nonde-
terministic) assignment A.upd(i).ass(s). If no guarded assignment is enabled,
we keep the current state s.ctrl. The routine rInit is implemented in a similar
way.

5 Experimental Results

We compared the performance of MC2 and DDFS by applying our implementation
of these algorithms in jMocha to the Reactive-Modules specification of two well
known model-checking benchmarks: the dining philosophers problem and the
Needham Schroeder mutual authentication protocol. All reported results were
obtained on a PC equipped with an Athlon 2100+ MHz processor and 1GB
RAM running Linux 2.4.18 (Fedora Core 1).

For dining philosophers, we considered two LTL properties: deadlock freedom
(DF), which is a safety property, and starvation freedom (SF), which is a liveness
property. For a system of n philosophers, their specification is as follows:

DF : G¬ (pc1 = wait& . . . & pcn = wait)
SF : G F (pc1 = eat)

We considered Reactive-Modules specifications of both a symmetric and asym-
metric solution to the problem. In the symmetric case, all philosophers can si-
multaneously pick up their right forks, leading to deadlock. Lockout-freedom is
also violated since no notion of fairness has been incorporated into the solution.
That both properties are violated is intentional, as it allow us to compare the
relative performance of DDFS and MC2 on finding counter-examples.

For the symmetric case, we chose δ = 10−1 and ε = 1.8 · 10−3 which yields
M = 1257. This number of samples proved sufficiently large in that for each
instance of dining philosophers on which we ran our implementation of MC2, a
counter-example was detected. The results for the symmetric unfair case are
given in Table 1. The meaning of the column headings is the following: ph is the
number of philosophers; time is the time to find a counter-ex. in hrs:mins:secs;
entr is the number of entries in the hash table; mxl is the maximum length of a
sample; cxl is the length of the counter-example; N is the no. samples to find a
counter-ex.
As the data demonstrate, DDFS runs out of memory for 20 philosophers, while
MC2 not only scales up to a larger number of philosophers, but also outperforms

9

DDFS MC2

ph time entr time mxl cxl M

4 0.02 31 0.08 10 10 3
8 1.62 511 0.20 25 8 7

12 3:13 8191 0.25 37 11 11
16 >20:0:0 – 0.57 55 8 18
20 – oom 3.16 484 9 20
30 – oom 35.4 1478 11 100
40 – oom 11:06 13486 10 209

DDFS MC2

ph time entr time mxl cxl M

4 0.17 29 0.02 8 8 2
8 0.71 77 0.01 7 7 1

12 1:08 125 0.02 9 9 1
16 7:47:0 173 0.11 18 18 1
20 – oom 0.06 14 14 1
30 – oom 1.12 223 223 1
40 – oom 1.23 218 218 1

Table 1. Deadlock and starvation freedom for symmetric (unfair) version.

DDFS on the smaller numbers. This is especially the case for starvation freedom
where one sample is enough to find a counter-example.

To avoid storing a large number of states in temporary variables, one might
attempt to generate successor states one at a time (which is exactly what
rNext(B,s) of MC2 does). However, the constraint imposed by DDFS to generate all
successor states in sequential order inevitably leads to the additional time and
memory consumption.

DDFS MC2

ph time entr time mxl avl

4 0:01 178 0:20 49 21
6 0:03 1772 0:45 116 42
8 0:58 18244 2:42 365 99

10 16:44 192476 7:20 720 234

12 – oom 21:20 1665 564
16 – oom 3:03:40 7358 3144
20 – oom 19:02:00 34158 14923

DDFS MC2

ph time entr time mxl avl

4 0:01 538 0:20 50 21
6 0:17 9106 0:46 123 42
8 7:56 161764 2:17 276 97

10 – oom 7:37 760 240

12 – oom 21:34 1682 570
16 – oom 2:50:50 6124 2983
20 – oom 22:59:10 44559 17949

Table 2. Deadlock and starvation freedom for fair asymmetric version.

In the asymmetric case, a notion of fairness has been incorporated into the
specification and, as a result, deadlock and starvation freedom are preserved.
Specifically, the specification uses a form of round-robin scheduling to explicitly
encode weak fairness. As in the symmetric case, we chose δ = 10−1 and ε =
1.8 ·10−3. Our results are given in Table 2, where columns mxl and avl represent
the maximum and average length of a sample, respectively.

The next model-checking benchmark we considered was the Needham-Schroeder
public-key authentication protocol; first published in 1978 [22], this protocol ini-
tiated a large body of work on the design and analysis of cryptographic pro-
tocols. In 1995, Lowe published an attack on the protocol that had apparently
been undiscovered for the previous 17 years [17]. The following year, he showed
how the flaw could be discovered mechanically by model checking [18].

The intent of the Needham-Schroeder protocol is to establish mutual au-
thentication between principals A and B in the presence of an intruder who can
intercept, delay, read, copy, and generate messages, but who does not know the
private keys of the principals. The flaw discovered by Lowe uses an interleaving
of two runs of the protocol.

10

DDFS MC2

mr time entr time mxl cxl M

4 0.38 607 1.68 87 87 103
8 1.24 2527 11.3 208 65 697

16 5.87 13471 10.2 223 61 612
24 18.7 39007 3:06 280 44 12370
32 36.2 85279 2:54 269 63 11012

DDFS MC2

mr time entr time mxl cxl M

40 1:11 158431 1:46 325 117 7818
48 2:03 264607 1:45 232 25 6997
56 3:24 409951 6:54 278 133 28644
64 5:18 600607 7:12 347 32 29982
72 – oom 11:53 336 63 43192

Table 3. Needham-Schroeder protocol.

To illustrate MC2’s ability to find attacks in security protocols like Needham-
Schroeder when traditional model checkers fail due to state explosion, we en-
coded the original (incorrect) Needham-Schroeder protocol as a Reactive-Modules
specification and checked if it is free from intruder attacks. Our results are shown
in Table 3 where column mr represents the maximum nonce range;4 i.e., a value
of n for mr means that a nonce used by the principals can range in value from 0
to n, and also corresponds to the maximum number of runs of the protocol. The
meaning of the other columns are the same as those in Table 1 for the symmetric
(incorrect) version of dining philosophers.

In the case of Needham-Schroeder, counter-examples have a lower probability
of occurrence and DDFS outperforms MC2 when the range of nonces is relatively
small. However, MC2 scales up to a larger number of nonces whereas DDFS runs
out of memory.

6 Alternative Random-Sampling Strategies

To take a random sample, which in our case is a random lasso, MC2 performs a
“uniform” random walk through the product Büchi automaton B = BS ×B¬ϕ.
In order to decide which transition to take next, a fair, k-sided coin is tossed
when a state of B is reached having k outgoing transitions. No attempt is made
to bias the sampling towards accepting lassos, which is the notion of success
for the Bernoulli random variable Z upon which MC2 is based. We are currently
experimenting with alternative sampling strategies that favor accepting lassos.

Multi-lassos The multi-lasso sampling strategy ignores back-edges that do not
lead to an accepting lasso if there are still forward edges to be explored. As
shown below, this may have dramatic consequences.

In the case where the out-degree of B’s states is nearly uniform, the sampling
currently performed by MC2 is biased toward shorter paths. To see this, consider
for simplicity, the case where the out-degree is constant at k > 1. Then, the
probability of a random lasso of length l is (1

k)
l and the shorter the lasso, the

higher its probability. Thus, when S is not a model of ϕ, MC2 is likely to first
sample, and hence identify, a shorter counter-example sequence rather than a
longer one. Given that shorter counter-examples are easier to decode and under-
stand than longer ones, the advantage of this form of biased sampling becomes
apparent.

4 The principals in the Needham-Schroeder protocol use nonces—previously unused
and unpredictable identifiers—to ensure secrecy.

11

On the other hand, one can construct an automaton that is adversarial to the
type of sampling performed by MC2. For example, consider the Büchi automaton
B of Figure 2 consisting of a chain of n+1 states, such that for each state there
is also a transition going back to the initial state. Furthermore, the only final
state of B is the last state of the chain. Then there are n + 1 lassos l0, . . . , ln
in B, only one of which, ln, is accepting. Moreover, according to Definition 2,
the probability assigned to ln is 1/2n, requiring O(2n) samples to be taken to
sample ln with high probability.

20 n-1 n...

Fig. 2. Adversarial Büchi automaton B.

Interpreting automaton B of Figure 2 as the state-transition behavior of some
system S, observe that B itself is not probabilistic even if the sampling performed
on it by MC2 is. In fact, it might even be the case that lasso ln corresponds to a
“normal” or likely behavioral pattern of S, making its detection essential. In this
case, the adversarial nature of B is evident. Using a multi-lasso strategy however,
dramatically increases the probability of ln to 1, as the size of the multi-lasso
space of B is 1.

Probabilistic systems In probabilistic model checking (see, for example, [16]),
the state-transition behavior of a system S is prescribed by a probabilistic au-
tomaton such as a discrete-time Markov chain (DTMC). In this case, there is a
natural way to assign a probability to a random walk σ: it is simply the product
of the state-transition probabilities pij for each transition from state i to j along
σ. This implies that MC2 extends with little modification to the case of LTL model
checking over DTMCs. Also, the example of Figure 2 becomes less adversarial
as ln would indeed in a probabilistic model be one of very low probability.

Input partitioning When the probabilities of outgoing transitions are not
known in advance, it seems reasonable to assign a uniform probability to tran-
sitions involving internal nondeterminism. This justifies the use of a sampling
strategy based on uniform random walks for closed systems as discussed above.
For open systems, however, assigning a uniform probability to transitions in-
volving external nondeterminism seems to be less than optimal: in practice, an
attacker might use the same input to trigger a faulty behavior of the system over
and over again. Since the external probabilities are in general unknown, a rea-
sonable sampling strategy for open systems would be to partition (or abstract)
the input into equivalence classes that trigger essentially the same behavior, and
randomly choose a representative of each class when generating successor states.

7 Related Work

The Lurch debugger [14] performs random search on models of concurrent sys-
tems given as AND-OR graphs. Each iteration of the search function finds one

12

global-state path, storing a hash value for each global state it encounters. The
random search is terminated when the percentage of new states to old states
reaches a “saturation point” or a user-defined limit on time or memory is reached.
In [5] randomization is used to decide which visited states should be stored, and
which should be omitted, during LTL model checking, with the goal of reducing
memory requirements.

Probabilistic model checkers cater to stochastic models and logics, including,
but not limited to, those for discrete- and continuous-time Markov chains [16,
4], Probabilistic I/O Automata [28], and Probabilistic Automata [25]. Examples
logics treated by these model checkers include PCTL [12] and CSL [1]. Stochas-
tic modeling formalisms and logics are also considered in [33, 15, 26]; these re-
searchers, like us, advocate an approach to model checking based on random
sampling of execution paths and hypothesis testing. The logics treated by these
approaches, however, are restricted to time-bounded safety properties. Also, the
number of samples taken by our algorithm—arrived at by appealing directly to
the theory of geometric random variables—is optimal and therefore significantly
smaller than the number of samples taken in [15].

Several techniques have been proposed for the automatic verification of safety
and reachability properties of concurrent systems based on the use of random
walks to uniformly sample the system state space [19, 13, 29]. In contrast, MC2

performs random sampling of lassos for general LTL model checking. In [20],
Monte Carlo and abstract interpretation techniques are used to analyze programs
whose inputs are divided into two classes: those that behave according to some
fixed probability distribution and those considered nondeterministic.

8 Conclusions

We have presented MC2, what we believe to be the first randomized, Monte Carlo
decision procedure for classical temporal-logic model checking. Utilizing basic
probability theory of geometric random variables, MC2 performs random sampling
of lassos in the Büchi automaton B = BS×B¬ϕ to yield a one-sided error Monte
Carlo decision procedure for the LTL model-checking problem S |= ϕ. It does
so using an optimal number of samples M . Benchmarks show that MC2 is fast,
memory-efficient, and scales extremely well.

In terms of ongoing and future work, we are implementing the alternative
sampling strategies discussed in Section 6. Also, we are seeking to improve the
time and space efficiency of our jMocha implementation of MC2 by “compiling”
it into a BDD representation. This involves encoding the current state, hash
table, and guarded assignments of each atom in a reactive module as BDDs,
and implementing the next-state computation and the containment (in the hash
table) check as BDD operations.

As an open problem, it would be interesting to extend our techniques to the
model-checking problem for branching-time temporal logics, such as CTL and
the modal mu-calculus. This extension appears to be non-trivial since the idea
of sampling accepting lassos in the product graph will no longer suffice.

13

Acknowledgments: We would like to thank Rajeev Alur, Javier Esparza, Richard
Karp, Michael Luby, and Eugene Stark for helpful discussions. We are also grate-
ful to the anonymous referees for their valuable comments.

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time
Markov chains, 1996.

2. R. Alur, L. de Alfaro, R. Grosu, T. A. Henzinger, M. Kang, C. M. Kirsch, R. Ma-
jumdar, F. Mang, and B. Y. Wang. jMocha: A model checking tool that exploits
design structure. In Proceedings of the 23rd international conference on Software
engineering, pages 835–836. IEEE Computer Society, 2001.

3. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, July 1999.

4. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. In Proc. of TACAS, 2004.

5. L. Brim, I. Černá, and M. Nečesal. Randomization helps in LTL model checking. In
Proceedings of the Joint International Workshop, PAPM-PROBMIV 2001, pages
105–119. Springer, LNCS 2165, September 2001.

6. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. In Proc. Workshop on Logic of Programs,
LNCS 131, pages 52–71. Springer, 1981.

8. P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo
estimation. SIAM Journal on Computing, 29(5):1484–1496, 2000.

9. A. J. Duncan. Quality Control and Industrial Statistics. Irwin-Dorsley, 1974.
10. R. Grosu and S. A. Smolka. Monte carlo model checking (extended version). In

LNCS 3440 on SpringerLink. Springer-Verlag, 2004.
11. R. Grosu and S. A. Smolka. Quantitative model checking. In First Intl. Symp. on

Leveraging Applications of Formal Methods (Participants Proceedings), 2004. Also
available from http://www.cs.sunysb.edu/∼sas/papers/GS04.pdf.

12. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

13. P. Haslum. Model checking by random walk. In Proc. of 1999 ECSEL Workshop,
1999.

14. M. Heimdahl, J. Gao, D. Owen, and T. Menzies. On the advantages of approximate
vs. complete verification: Bigger models, faster, less memory, usually accurate. In
Proc. of 28th Annual NASA Goddard Software Engineering Workshop (SEW’03),
2003.

15. T Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilis-
tic model checking. In Proc. Fifth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2004), 2004.

16. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic
model checker. In Proceedings of the 12th International Conference on Com-
puter Performance Evaluation, Modelling Techniques and Tools, pages 200–204.
Springer-Verlag, 2002.

17. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, pages 131–133, 1995.

14

18. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceedings of the Second International Workshop on Tools and Algo-
rithms for Construction and Analysis of Systems, pages 147–166. Springer-Verlag,
1996.

19. M. Mihail and C. H. Papadimitriou. On the random walk method for protocol
testing. In 6th International Conference on Computer Aided Verification (CAV),
pages 132–141. Springer, LNCS 818, 1994.

20. D. Monniaux. An abstract monte-carlo method for the analysis of probabilistic
programs. In Proc. 28th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 93–101. ACM Press, 2001.

21. A. M. Mood, F.A. Graybill, and D.C. Boes. Introduction to the Theory of Statistics.
McGraw-Hill Series in Probability and Statistics, 1974.

22. R. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

23. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, Berlin, 1982. Springer-Verlag.

24. H. Rudin. Protocol development success stories: Part 1. In Proc. 12th Int. Symp.
on Protocol Specification, Testing and Verification, pages 149–160. North Holland,
1992.

25. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Proceedings of CONCUR ’94 — Fifth Interna-
tional Conference on Concurrency Theory, pages 481–496. Volume 836 of Lecture
Notes in Computer Science, Springer-Verlag, 1994.

26. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box
probabilistic systems. In 16th International Conference on Computer Aided Veri-
fication (CAV 2004), 2004.

27. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logic. Journal of the ACM, 32:733–749, 1985.

28. E. W. Stark and S. A. Smolka. Compositional analysis of expected delays in
networks of probabilistic I/O automata. In Proc. 13th Annual Symposium on Logic
in Computer Science, pages 466–477, Indianapolis, IN, June 1998. IEEE Computer
Society Press.

29. E. Tronci, G., D. Penna, B. Intrigila, and M. Venturini. A probabilistic approach
to automatic verification of concurrent systems. In Proc. of 8th IEEE Asia-Pacific
Software Engineering Conference (APSEC), 2001.

30. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 332–
344, 1986.

31. C. H. West. Protocol validation by random state exploration. In Proc. Sixth IFIP
WG 6.1 Int. Workshop on Protocol Specification, Testing, and Verification. North
Holland, 1986.

32. C. H. West. Protocol validation in complex systems. In SIGCOMM ’89: Symposium
proceedings on Communications architectures & protocols, pages 303–312. ACM
Press, 1989.

33. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Proc. 14th International Conference on
Computer Aided Verification, 2002.

15

