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Abstract

In this paper, we introduce Cycle-Linear Hybrid Automata (CLHA), a novel model of ex-

citable cells that efficiently and accurately captures action-potential morphology and other typi-

cal excitable-cell characteristics such as refractoriness and restitution. Hybrid automata combine

discrete transition graphs with continuous dynamics, and emerge in a natural way during the

(piecewise) approximation process of any nonlinear system. CLHA are a new form of Hybrid

automata that exhibit linear behavior on a per-cycle basis but whose overall behavior is ap-

propriately nonlinear. To motivate the need for this modelling formalism, we first show how

to recast two recently proposed models of excitable cells as hybrid automata: the piecewise-

linear model of Biktashev and the nonlinear model of Fenton-Karma. Both of these models

were designed to efficiently approximate excitable-cell behavior. We then show that our CLHA

model closely mimics the behavior of several classical highly nonlinear models of excitable cells,

thereby retaining the simplicity of Biktashev’s model without sacrificing the expressiveness of

Fenton-Karma. CLHA are not restricted to excitable cells; they can be used to model a wide

class of dynamic systems that exhibits some level of periodicity plus adaptation.

1 Introduction

Hybrid automata [17] are an increasingly popular modelling formalism for systems that exhibit

both continuous and discrete behavior. Intuitively, a hybrid automaton is an extended finite-

state automaton, the states of which encode the various phases of continuous dynamics a system

may undergo, and the transitions of which are used to express the switching logic between these
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dynamics. Hybrid automata are well suited as a computational model for continuous-discrete

systems as they (i) possess an intuitive graphical representation; (ii) can be used in a natural way

to achieve a piecewise, possibly linear, approximation of any nonlinear system; and (iii) facilitate

formal analysis due to their automata-theoretic nature.

Traditionally, hybrid automata have been used to model embedded systems, including auto-

mated highway systems [28, 9], air traffic management [19, 21], embedded automotive controllers [4],

robotics [2] and real-time circuits. [22]. More recently, they are being used to formally model molec-

ular, intra-cellular, and inter-cellular biological processes [15]. Many biological systems are “hybrid”

in nature: biochemical concentrations may vary continuously, yet discrete transitions between dis-

tinct states are also possible.

Excitable cells are a good example of biologically inspired hybrid systems: transmembrane ion

fluxes and voltages may vary continuously but the transition from the resting state to the excited

state is generally considered an all-or-nothing discrete response. Furthermore, networks of genes,

molecules and cells tend to exhibit properties such as concurrency and communication, for which

automata-based formalisms are well developed [24].

Currently, the preferred modelling approach for biological systems uses large sets of coupled

nonlinear differential equations, and analysis is reduced to simulation via numerical techniques.

In contrast, models based on hybrid automata provide piecewise, typically linear, approximations,

which lead to conceptually simpler models and the possibility for large-scale simulation and formal

analysis.

In this paper, we introduce cycle-linear hybrid automata (CLHA), a novel model for ex-

citable cells that efficiently and accurately captures both action-potential morphology and typical

excitable-cell characteristics such as refractoriness and restitution. The motivation behind the

CLHA model is the observation that, during an action potential, an excitable cell cycles through

four basic modes of operation—resting, stimulated, early repolarization, final repolarization—and

the dynamics of each mode is essentially linear and time-invariant (LTI). To capture frequency-

dependent properties such as restitution, the CLHA model is equipped with a one-cycle memory

of the cell’s voltage and the per-mode parameters of the current cycle’s LTI system of differential

equations are updated according to this voltage. Consequently, the model’s behavior is linear in

any one cycle but appropriately nonlinear overall.

To motivate the need for CLHA, we first show how to recast two recently proposed models

of excitable cells as hybrid automata: the piecewise-linear model of Biktashev [6] and the nonlin-

ear model of Fenton-Karma [13]. Both of these models were designed to efficiently approximate

excitable-cell behavior. We then show that our CLHA model closely mimics the behavior, in terms
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of action-potential morphology and frequency-dependent restitution, of several classical highly non-

linear models of excitable cells: Hodgkin-Huxley [18], dynamic Luo-Rudy [20], and neonatal rat [11].

One may thus conclude that CLHA, as a formal model of excitable cells, retain the simplicity of

Biktashev’s model without sacrificing the expressiveness of Fenton-Karma. CLHA are not restricted

to excitable cells; they can be advantageously used to model any dynamical system that exhibits

some level of periodicity plus adaptation.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3

defines hybrid automata. Section 4 provides the requisite biological background for excitable cells.

Section 5 shows how to recast existing computational models of excitable cells as HA using the

Heaviside function for discrete control. Section 6 presents our CLHA model while Section 7 shows

how it can be used to efficiently model the action potential and associated frequency-dependent

properties of different excitable cells. Section 8 summarizes this work and discusses future research.

2 Related Work

As discussed in the previous section, hybrid automata (HA) are finding more and more use as a

modelling formalism for molecular, intra-cellular, and inter-cellular biological processes. In [15], an

HA model of a protein-regulatory network is derived by identifying the major modes of operation

and the manner in which the network switches between modes. Each of two interacting proteins

is associated with two modes: active and non-active. In each mode, a linear dynamic function is

used to describe the concentration change of that protein. HA models constructed in this fashion

tend to be of low complexity as well as low precision, but may facilitate large-scale simulation and

analysis.

Alternatively, a system of coupled nonlinear ordinary differential equations (ODEs) describing

processes with disparate time scales can be simplified and transformed into an HA model. This is the

approach taken by Biktashev in [6], where a Heaviside function is substituted for a fast-transitioning

continuous function, along with certain assumptions about variables remaining constant within a

mode [6].

Antoniotti et al. [3] advocate an empirical approach for deriving HA models of biochemical

systems from experimental data. In their approach, each time step is associated with a mode.

If the data set is large, so is the resulting automaton. Simplification techniques based on “state

collapsing” can be used to reduce the number of states, making this method feasible for real

applications.

Once a valid HA model has been developed for a biological system, it can be used to explore the
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system’s parameter space; moreover, formal analysis can be conducted on it. Of particular interest

for dynamical systems are reachability and stability analysis. The former allows one to check

whether the transient behavior of the HA contains undesired modes of operation [1, 16]. The latter

allows one to check if the the HA, in steady state, exhibits unstable (or chaotic) behavior [10, 5].

The information gleaned from these forms of analysis can be exploited to control the system such

that it stays within desired limits.

3 Hybrid Automata

Intuitively, a Hybrid automaton (HA) is an extended finite-state automaton, where each state is

endowed with a continuous dynamics [17]. Formally, an HA A = (X, G, init , inv ,flow , jump, event)

over finite set Σ of events is a 7-tuple where:

� A finite set X of real-valued variables x1, . . ., xn; their dotted form ẋi ∈ Ẋ represents first

derivatives and their primed form x′
i ∈X ′ represents values at the conclusion of discrete steps

(jumps); n is called the dimension of A.

� A finite control graph G = (V,E), where vertices in V are called modes and edges in E are

called switches.

� Vertex-labeling functions init, inv and flow assigned to each mode v ∈V . Initial condition

init(v) and invariant inv(v) are predicates with free variables from X. Flow flow(v) is a

predicate with free variables from X ∪ Ẋ representing a set of ordinary (partial) differential

(in)equations.

� Edge-labeling functions jump and event assigned to each switch e∈E. Jump jump(e) is a

predicate with free variables from X ∪X ′ and is usually divided into a guard and an assign-

ment action. Event event(e), when defined, is an event in Σ.

The HA A spends time in its modes v ∈V , where it updates its variables according to the flow

predicate flow(v). Jumps jump(e) on switches e = (v, w) are in contrast instantaneous. A jump

on e may be taken whenever event event(e) occurs, the jump’s guard jump(e).guard is enabled for

the current valuation of variables X, and the invariant of the destination mode inv(w) is satisfied

after the jump’s action jump(e).action is taken. A jump with no associated event is called internal,

and taken when all other conditions hold. Invariants are used to force a jump, by requiring that

a mode v is left before its invariant inv(v) becomes false.

An HA has a natural graphical representation as a state-transition diagram, with control modes

as the states and control switches as the transitions. Flows and invariants (predicates within curly
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braces) appear within control modes, while jump conditions (in square brackets) and actions appear

near the control switches. Continuous variables are written in lower case (x, v, vx, etc).

As an example, consider HA A of Figure 1, which models a simple thermostat system. Initially

A is in mode ModeOFF with variable x, which represents the current temperature, initialized to 20�.

While A is in this mode, the heater is off and the temperature drops until it falls below 19�. At

this time, A may jump to mode ModeON. The jump is optional until the temperature reaches 18�,

when the jump is enforced. In mode ModeON, the heater is on and the temperature rises until it is

above 21�. From this point on, and definitely at the time where the temperature is 22�, A may

jump back to mode ModeOFF.

4 Excitable Cells

Excitable cells include neurons, cardiac cells, skeletal, and smooth muscle cells. In cardiac cells, on

each heart beat, an electrical control signal is generated by the sinoatrial node, the heart’s internal

pacemaking region. Electrical waves then travel along a prescribed path, exciting cells in the main

chambers of the heart (atria and ventricles) and assuring synchronous contractions. At the cellular

level, the electrical signal is a change in the potential across the cell membrane which is caused by

different ion currents flowing through the cell membrane. This electrical signal for each excitation

event is known as an action potential (AP). Figure 2 shows the AP waveform for a guinea pig

ventricular cell.

For non-pacemaking excitable cells, APs are externally triggered events: a cell fires an action

potential as an all-or-nothing response to a supra-threshold stimulus, and each AP follows the same

sequence of phases and maintains approximately the same magnitude regardless of the applied

stimulus. After an initial step-like increase in the membrane potential, an AP lasts for a couple

of milliseconds to hundreds of milliseconds in most mammals. During an AP, generally no re-

excitation can occur. The early portion of an AP is known as the “absolute refractory period”

due to its non-responsiveness to further stimulation. The later portion is known as the “relative

refractory period”, during which an altered secondary excitation event is possible if the stimulation

strength or duration is raised.

When an excitable cell is subjected to repeated stimuli, two important time periods can be

identified: the action potential duration (APD), the time the cell is in an excited state, and the

diastolic interval (DI), the time between the end of the action potential and the next stimulus.

Figure 2 illustrates the two intervals. The function relating APD to DI with change in stimulation

frequency is called the APD restitution function. As shown in Figure 3, the relationship is
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nonlinear and captures the phenomenon that a longer recovery time is followed by a longer APD.

A physiological explanation of a cell’s restitution is rooted in the ion-channel kinetics as a limiting

factor in the cell’s frequency response.

5 Models of Excitable Cells as Hybrid Automata

During the early stages of the quest for models of excitable cells amenable to analytical investigation,

FitzHugh and Nagumo proposed an approximate model of excitable cells [14], referred to here as the

FHN model. With their model, they showed that a modified version of the Van der Pol oscillator

with two state variables can mimic the essential features of the Hodgkin-Huxley dynamics.

Subsequently, a piecewise-linear version of the FHN model was proposed by McKean [23] which

used a Heaviside function to represent switches between linear regimes or modes. Since then,

the Heaviside function has been used in different simplified renditions of excitable-cell models to

achieve piecewise control.

5.1 From Heaviside Control to Hybrid Automata

Discrete transitions in system behavior, such as those captured by Heaviside functions, are an

integral part of the HA formalism. Let S be a dynamic system defined using the Heaviside function.

Below we present a systematic way to transform S into an equivalent HA. The Heaviside function

H(x) is a discontinuous function defined as follows:

H(x) =





0, x < 0;

1, x ≥ 0.
(1)

Assuming that the state equation of S has the structure of equations (2), it is straightforward

to show that S is equivalent to the HA of Figure 4.

v̇ = f(H(x), y), ~v = (x, ~y) (2)

One can generalize the above translation to any dynamic system whose state equations are de-

fined using Heaviside functions. In the following, we apply this translation to two recently proposed

approximate models for cardiac-tissue excitability: the piecewise-linear model of Biktashev [6] and

the nonlinear model of Fenton and Karma [13].
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5.2 Biktashev’s Model

The increasing complexity of excitable-cell models describing AP morphology with large sets of

state variables and nonlinear differential equations triggered continuous efforts to obtain simplified

descriptions that preserve important properties.

Biktashev made the observation that the widely used FHN model is not sophisticated enough

to capture the propagation failure due to dissipation of the wavefront, a phenomenon seen in

more realistic models [6]. This was attributed to the more phenomenological nature of the FHN

model, which was not directly derived from the original HH model, but rather devised to mimic

its properties. Instead, a formal derivation procedure was proposed based on singular perturbation

theory developed by Tikhonov and Pontryagin. The procedure reduces the size of the differential

equations by taking advantage of the fast-slow nature of the system; i.e. by separating the state

variables into two groups, fast-slow, and by linking the two sets of equations via a perturbation

parameter. The model thus obtained was able to overcome the above-mentioned deficiency of the

original FHN model. Furthermore, its simplicity allowed analytical treatment [6, 26, 7].

Consider Biktashev’s simplified model [6] below, where H is the Heaviside function, E is the

transmembrane voltage, h is the probability density of a sodium-channel gate being open, D is

the (constant) diffusion coefficient, and τ is also constant. Ė and ḣ are the time derivatives of

state variables E and h, and ∇(D∇E) is the second-order directional derivative on the 2-D space,

representing the diffusion factor when modelling the spatial propagation of cell excitations.

Ė = ∇(D∇E) + H(E − 1)h (3)

ḣ =
1
τ
(H(−E) − h) (4)

From the point of view of one cell, ∇(D∇E) is the (input) stimulation current Is produced by

neighboring cells. Hence, equation (3) can be rewritten as follows: Ė = Is + H(E − 1)h. Applying

the transformation process for systems employing Heaviside control (see the previous subsection)

yields the HA of Figure 5. This HA has three modes, each with flows described by linear time-

invariant (LTI) differential equations.

The linearity of the flows is clearly an advantage of this model, as it supports efficient simulation

and detailed analysis. However, the simplicity of Biktashev’s model comes at a price: the inability to

faithfully reproduce AP morphology, as discussed in [6, 7]. This is probably due to the treatment

of τ as a constant, when in reality it is a voltage-dependent parameter that can vary over a
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relatively wide range. Recently, this piece-wise linear formulation has been augmented with non-

Tikhonov asymptotic reduction to obtain a more realistic AP morphology. For example, Biktashev

started with the Courtemanche model of the atrial heart cell [8] and applied asymptotic embedding,

considering fast and slow variables, to obtain a reduced system [7, 25]. The resultant model captures

AP morphology well, but is non-linear in each of the modes separated by a Heaviside function.

5.3 The Fenton-Karma Model

In [13], Fenton and Karma proposed a three-variable ionic model as a substitute for the full ionic

LRd-type models, by grouping the various ion currents into three generic ones: fast inward current

Ifi, slow inward current Isi, and slow outward current Iso. The corresponding three-variable model

below contains dynamic functions for the normalized membrane voltage u, inactivation-reactivation

gate v for Ifi, and gate w for Isi (the diffusion term is omitted here):

u̇ = −Jfi(u; v) − Jso(u) − Jsi(u; w) (5)

v̇ = H(uc − u)(1 − v)/τ−
v (u) − H(u − uc)v/τ+

v (6)

ẇ = H(uc − u)(1 − w)/τ−
w − H(u − uc)w/τ+

w (7)

Jfi(u; v) = − v

τd
H(u − uc)(1 − u)(u − uc) (8)

Jso(u) =
u

τo
H(uc − u) +

1
τr

H(u − uc) (9)

Jsi(u; w) = − w

2τsi
(1 + tanh[k(u − usi

c ]) (10)

where Jfi(u; v), Jsi(u; w), and Jso(u) are the normalized versions of Ifi(u; v), Isi(u; w) and Iso(u),

respectively; uc and usi
c are the thresholds for activation of Ifi and Isi; τ+

v , τ−
w , τ+

w , τd, τo, τr, and

τsi are time constants.

τ−
v (u) = H(u − uv)τ−

v1
+ H(uv − u)τ−

v2
(11)

τ−
v (u) is further defined by the Heaviside function (11), where uv is the threshold potential and τ−

v1
,

τ−
v2

are time constants.

The Fenton-Karma model recast as an HA is shown in Figure 6. The HA was derived by taking

into account the definition of the Heaviside functions and the status of an outside stimulus current

Istimulus (omitted in the above equations). The stimulus current is modeled with the aid of two

external events, eon and eoff, signaling the beginning and respectively the end of stimulation.

The Fenton-Karma model has the flexibility to match AP morphology by correct selection of

the parameters, possibly via an optimization procedure. It also has been shown to properly model
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restitution properties of other more complex models or empirically obtained data. However, similar

to Biktashev’s asymptotically reduced models, the resultant simplified system is still nonlinear and

therefore not particularly well suited to analytic treatment.

6 Cycle-Linear Hybrid Automata for Excitable Cells

In the previous section, we saw that any computational model of excitable cells that employs the

Heaviside function for discrete control can be recast as an HA. In particular, Biktashev’s simplified

model [6] corresponds to an LTI-HA: an HA having linear time-invariant (LTI) flows in each mode.

An LTI-HA, such as Biktashev’s, is amenable to efficient numerical (or event-driven [27]) simulation

as well as formal analysis. Biktashev’s simplified model and the corresponding HA are, however,

unable to faithfully capture AP morphology.

Biktashev’s more sophisticated models and the Fenton-Karma model correspond to HA having

nonlinear flows in at least one mode, and faithfully capture AP morphology and restitution prop-

erties. Due to the nonlinearity present in these models, however, HA simulation is less efficient and

powerful analysis techniques developed for linear systems are not directly applicable.

Given this state of affairs, it is natural to ask the following question: Is it possible to develop an

LTI-HA excitable-cell model that is (i) simple enough to be easily understandable and (ii) expressive

enough to capture AP morphology and restitution properties? The intrinsic nonlinearity of the

restitution property suggests, at first glance, that these goals might be at odds with one another.

Assume for the moment that we give up requirement (i). In this case, we can partition the

(multidimensional) phase space of the original nonlinear system into a grid of finite elements such

that, for each element, the system is linearly approximated [12]. The resulting finite-element

approximation of the system can be viewed as an HA having a mode with LTI flow for each

element, and a jump from one mode to another whenever the border between the corresponding

elements is crossed. The more elements chosen, the better the approximation but also the larger

the number of modes in the HA.

A typical finite-element approximation of a nonlinear system may comprise millions of elements.

An important practical question is whether is possible to obtain a “reduced” finite-element HA in

which modes (elements) are grouped into a small number of intuitive “generic modes” and the

actual modes are computed (instantiated) on the fly? In the rest of this section, we show that such

a grouping is possible and that it results in what we call cycle-linear hybrid automata (CLHA).
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6.1 CLHA Derivation Method

The method we used to derive the CLHA model for excitable cells focuses on the following three

issues:

Topology The topology of a CLHA refers to the design of its control graph; i.e. the control graph’s

modes and mode transitions.

Flows Let A be a CLHA defined over a set (vector) of state variables X. The dynamics of A is

determined by the dimension of X and, for each mode q of A, the form of q’s flow (system of

ODEs in X).

Adaptability This refers to the mechanism built into the CLHA model that allows it to exhibit

stimulation-frequency adaptability. This feature is essential for the successful modelling of

AP morphology and restitution.

The discussion of our derivation method proceeds as follows. We first consider the issues

of topology and flows, and in the process derive an LTI-HA model A1 that approximates the

AP trajectory of one representative AP cycle of an excitable cell. We then turn our attention

to adaptability. In the process, we derive our final CLHA model A2 which offers an accurate

approximation of the (infinite-trajectory) phase space of the original nonlinear system.

6.1.1 Topology

The choice of modes for both our LTI-HA A1 and CLHA A2 models is inspired by the fact that,

although the AP for different cell types (neuron, cardiac myocyte, etc.) or different species (guinea

pig, neonatal rat, etc.) exhibit different waveforms, when observed over time, one can universally

identify the following phases within a cycle: resting, upstroke, early repolarization, plateau

or later repolarization, and final repolarization. Figure 7(a) shows a typical AP cycle for a

guinea pig ventricular cell. The voltage thresholds VT , VO and VR serve to delineate one phase of

the AP cycle from another.

For the purpose of mode identification, we are also interested in the period of time when an

excitable cell is stimulated and can be further subjected to external stimulation. We shall refer

to this mode as stimulated, and allow the CLHA model to accept input within this mode. This

leads us to the following choice of four modes for our CLHA model in order to cover the complete

AP cycle: stimulated (ST), upstroke (UP), early repolarization and plateau (EP), and

final repolarization and resting (FR). In what follows, we shall typically refer to a mode by

its two-letter abbreviation.
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As illustrated in Figure 7(b), where flows are momentarily ignored, the mode transition relation

for A1 and A2 is generally cyclic in nature, although we allow the cell to return to mode FR from

mode ST when it is under insufficient stimulus.

Due to its topology, A1 and A2 already possesses two common features of excitable cells:

absolute refractoriness and graded response to sub-threshold stimulation Regarding the

former, once a cell is excited, e.g., with a stimulus current, it enters an absolute refractory period,

where the cell is nonresponsive to further excitation. This is reflected in our models by modes UP

and EP, during which no further input is accepted and the cell cannot return to mode UP. Another

excitation is possible only when the cell is in FR, and is captured with by a begin-stimulation event

es that moves the model to mode stimulated.

Graded response to sub-threshold stimulation happens in mode ST, where a cell accumulates

its membrane voltage by accepting an input current. As soon as its voltage exceeds threshold VT ,

the cell moves to mode upstroke. Otherwise, should the end-stimulation event es occur while

v < VT , the cell returns to mode FR. This is ultimately a consequence of the refractory modes:

if the stimulus occurs at a sufficiently high pace, every second stimulation event may be missed,

therefore doubling the cycle period.

6.1.2 Flows

As noted in Secion 4, an AP is caused by different ion currents flowing through the cell membrane.

There are three major types of ion currents involved: fast inward, outward, and slow inward. We

therefore use three state variables X = [vx, vy, vz]T to respectively represent the voltage associated

with these currents. The equation for the overall membrane voltage v is thus:

v = vx − vy + vz (12)

The basic idea behind the flows of LTI-HA A1 is to capture the nonlinear dynamics (morphology)

of a single AP in a piecewise-linear fashion. Since the AP (voltage v) is the only observed variable

and we do not have other constraints on the dynamics of state variables, the flows in each mode

can be described in a purely linear manner as follows:

Ẋ = AX (13)

Ẋ refers to the first derivative of X with respect to time and A is a constant diagonal matrix. We

thus have that the membrane voltage is determined by the independent (as matrix A is diagonal)

contribution of three different types of ion currents. This independency assumption is also seen
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in most mathematical ion-current models, where the ion currents are only interconnected by the

membrane voltage.

Let A = diag(αx, αy, αz). The flows in modes UP, EP and FR, where no input is accepted,

are given by:

v̇x = αx vx, v̇y = αy vy, v̇z = αz vz (14)

Curve-fitting techniques are used to determine parameters αx, αy, and αz in each mode such

that the output of the LTI system, i.e. the AP v, reproduces up to a prescribed error margin, the

AP of the original system.

By considering a linear dependence on the input in mode ST, we still remain within the LTI-HA

framework, but are now able to capture a (simplified) family of related trajectories:

v̇x = αx vx + βx Is, v̇y = αy vy + βy Is, v̇z = αz vz + βz Is (15)

As in the other modes, αx, αy, αz and βx, βy, βz are the constants to be fitted.

6.1.3 Adaptability

The shape of the AP generated by A1 is fixed by the constant (matrix and scalar) parameters α,

β, VT , VO and VR. Moreover, the APD depends solely on the stimulation frequency, as the time

A1 spends in modes ST, UP, and EP (for fixed amplitude of Is) is constant.

In contrast, the original nonlinear system has a phase space comprising infinitely many trajec-

tories. To obtain an accurate approximation of this space, we construct a cycle-linear hybrid

automaton A2. Before giving a formal definition of the CLHA model, we first show how to derive

A2 from A1 by generalizing A1’s constant parameters α, β, VO and VT to cycle-constant func-

tions α(θ), β(θ), VO(θ) and VT (θ), where θ is a normalized one-cycle memory of the voltage. This

derivation follows from the following observation:

� APs in different cycles share a similar morphology, making it possible to model them using

equations with the same structure.

� According to the restitution property, AP shape is mainly determined by the length of the

previous DI. This indicates that a relatively simple (single-step memory) control will be up

to the task.

CLHA memory. To accurately capture the DI, one may introduce a timer (a variable whose

derivative with respect to time is 1) that is reset when A2 enters mode FR and measured when
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the stimulation event es occurs. To maintain only three state variables, we have chosen, however,

to linearly approximate the DI with the value of the voltage v of A2 at the occurrence of es. We

remember this value by introducing a discrete variable vn (its derivative is zero in all modes) that

is updated on the transition from FR to ST with the (assignment) action v′n = v.

To see why the normalized vn is a linear approximation of the DI, consider the triangles in

Figure 8, where DIm is the maximum value of the DI interval before v becomes zero. The triangle

VR 0 DIm is similar to the triangle N DI DIm and therefore vn/VR = (DIm − DI)/DIm. Let

θ = vn/VR and γ = DI/DIm be the normalized voltage and DI, respectively. Then θ = 1 − γ. In

the following we let θ play the role of the (normalized) DI.

CLHA shape. The DI in one AP-cycle influences the shape of the AP in the next cycle, in

particular, the APD, the stimulation voltage VT , and the overshoot voltage VO. The time A2 spends

in modes ST and UP is relatively small compared to the APD, thereby allowing the influence of

the DI in these modes to be ignored. The time A2 spends in modes EP and FR, however, can be

considerable. We therefore make the parameter matrix α a function of θ. Formally, we introduce

a new parameter matrix α such that:

αx(θ) = αx fx(θ), αy(θ) = αy fy(θ), αz(θ) = αz fz(θ), (16)

The definitions of fx, fy and fz for these two modes and different cell types are given in Table 1.

Note how θ influences the shape of the AP within these two modes. The larger the value of θ, the

steeper and therefore the shorter the AP. Moreover, although θ is a linear approximation of the DI,

the APD depends on θ (and therefore the DI) in a nonlinear way, as θ appears as the exponent of

the analytic solution.

To model the dependency of the threshold voltage VT and overshoot voltage VO on the DI, we

replace constants VT and VO with cycle-constant functions VT (θ) and VO(θ). Putting everything

together, we get the CLHA A2 of Figure 9.

6.2 CLHA definition.

We are now ready to give the formal definition of a CLHA. Given an HA A = (X, G, init , inv ,flow , jump, event),

we say that A is cycle-linear if the following conditions hold:

� The set of variables X is partitioned into a vector x of continuous variables and a vector θ of

discrete variables.

� The control-flow graph G = (V,E) is a cycle. Moreover, vector θ is updated by the jump

from the initial mode.
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� For each mode v ∈V , flow(v) is an LTI-system of the form x = α(θ)x+β(θ)u where u is the

input. If β(θ) = 0 we call v a refractory mode.

� For each mode v ∈V , inv(v) is a (linear) predicate of the form x#γ(θ), where # is one of

{≤,≥, <,>} and γ(θ) is a constant vector.

� For each switch e∈E, jump(e).guard is a predicate that has the same form as an invariant

above.

7 Fitting the CLHA Model to Excitable-Cell Models

In this section, we demonstrate the versatility of the CLHA model by fitting its parameters to

successfully capture the AP morphology and restitution of three popular mathematical models

of excitable cells: Hodgkin-Huxley (HH) [18], dynamic Luo-Rudy (LRd) [20], and neonatal rat

(NNR) [11].

Fitting the flow parameters of the CLHA excitable-cell model to a specific mathematical model

involves the following two-step procedure: (1) Using a single representative AP, fit parameters αi
w,

βi
w, 0 ≤ i ≤ 3, w ∈ {x, y, z}. (2) Then, using APs obtained under different stimulation frequencies,

fix these parameters and fit functions f(θ)i
w, 0 ≤ i ≤ 3, w ∈ {x, y, z}.

A simpler, more ad hoc procedure is used for thresholds VO, VR, VT . Consider, for example,

the LRd model. In this case, only VO, the overshoot voltage, varies significantly from AP to AP:

it reaches a maximum value of 131.1 when θ = 0, and a minimum value of 50.1 when θ = 1.

Choosing VO(θ) to be the function 131.1 − 80.1
√

(θ) ensures that VO attains its proper maximum

and minimum values over the range of APs used during the fitting process.

Curve fitting was accomplished using the unconstrained nonlinear optimization routines from

the MATLAB Optimization Toolbox. Target voltages are derived from numerical simulations of

the HH, LRd, and NNR models, and output values from the CLHA model are compared to these

at each time step. The goal of the optimization function is to minimize the overall error, which we

succeeded in doing with an average error of 1-2mv per time step.

Although the optimization routines we used for curve fitting are completely automatic, the

results they produce depend on the initial values manually supplied to them. It is therefore possible

that a superior initialization strategy could yield a better fit. The functions and parameters we

obtained using our fitting procedure are summarized in Tables 1 and 2.

For a single AP, the comparison of our CLHA model with HH, LRd and NNR is presented in

Fig. 10. In the figure, solid lines represent the values obtained via numerical integration of the

original nonlinear systems, while the dashed lines represent the values obtained via numerical inte-
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HH LRd NNR

VT(θ) 26 44.5 39+9.7742θ

VO(θ) 106.5 131.1-80.1
√

θ 106.4-133.57θ2

VR(θ) 30 30 22+10.1091θ

f0
x(θ) 1 1 1+θ

f0
y (θ) 1 1 1+θ

f0
z (θ) 1 1 1+θ

f3
x(θ) 1 1 1

f3
y (θ) 1 0.29e62.89θ + 0.70e−10.99θ 1+0.5798θ

f3
z (θ) 1 1 1

Table 1: Function definitions for CLHA A2.

HH LRd NNR HH LRd NNR

α0
x -0.1770 -0.0087 -0.0647 α2

x 2.4323 -0.0069 0.3518

α0
y -10.7737 -0.1909 -0.0610 α2

y 3.4556 0.0759 0.0395

α0
z -2.7502 -0.1904 -0.0118 α2

z 2.8111 6.8265 0.0395

α1
x 0.3399 -0.0236 -0.0473 α3

x -1.4569 -0.0332 -0.0087

α1
y 4.5373 -0.0455 -0.0216 α3

y 0.0339 0.0280 0.0236

α1
z 0.0732 -0.0129 -0.0254 α3

z -0.9904 0.0020 0.0087

βx -3.6051 0.7772 0.7404 βz 4.9217 0.2766 0.0592

βy 0.0284 0.0589 0.0869

Table 2: Parameter values for CLHA A2.

gration of the corresponding CLHA automaton. When the cell is paced with different frequencies,

the restitution function of the CLHA model is compared with LRd model in Figure. 11. It can be

seen that we obtain a nonlinear dependence consistent with that observed for the nonlinear models

and with that observed in vitro.

8 Conclusions

We proposed the use of Hybrid Automata (HA) in general, and Cycle-Linear Hybrid Automata

(CLHA) in particular, as a general framework for contemporary ion-channel approximation mod-

els. Representing the complex response of excitable cells with piecewise-linear HA permits fully

analytical solutions in the different phases of the excitation cycle, therefore providing a framework

for analytical analysis regardless of system complexity. Additionally, the piecewise linearization
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of the system and the simplified description increase computational efficiency without abstracting

away essential system features. Moreover, a cycle-linear model of a dynamical system enjoys both

the computational efficiency of a linear model and the descriptive power of a nonlinear one, making

it more amenable to formal analysis (e.g. stability analysis) than its nonlinear counterpart.

We illustrated the cycle-linear approach by modelling the behavior of excitable cells. In doing

so, we succeed in capturing the action-potential morphology and its adaptation to pacing frequency.

The method is, however, generally applicable to systems where some level of periodicity plus adap-

tation is observed. Furthermore, we have shown how to recast two popular approximation models

as HA. The graphical representation is easier to understand while still remaining a fully formal

model.

Future work includes applying formal analysis to our CLHA models of excitable cells in order

to study their fundamental properties, including stability, observability and safety (prevention of

arrhythmia). We also plan to investigate techniques for further improving the efficiency of our

approach. For example, in some modes of a CLHA model, it is possible to analytically solve the

mode’s linear differential equations, thereby eliminating the integration steps that would otherwise

be required.
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10 Figures

Figure. 1: A thermostat system modeled as an HA.

Figure. 2: The AP and its APD and DI time periods.

Figure. 3: APD dependence on DI in LRd model.

Figure. 4: Heaviside function recast as an HA.

Figure. 5: Biktashev’s model in the HA framework.

Figure. 6: HA for the Fenton-Karma 3-variable 3-ion-current model.

Figure. 7: (a) Major AP phases. (b) Structure of CLHA model.

Figure. 8: DI linearization.

Figure. 9: CLHA model of excitable cells.

Figure. 10: AP comparison of CLHA with: (a) HH (b) LRd (c) NNR.

Figure. 11: Restitution comparison with LRd.

20

Page 20 of 23

Systems Biology Review Copy

Systems Biology



Mode ONMode OFF

x = 20 ẋ = −0.1x

{x ≥ 18}
[x < 19]

[x > 21]

ẋ = 5 − 0.1x

{x ≤ 22}

Figure 1: A thermostat system modeled as an HA.
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Figure 2: The AP and its APD and DI time periods.
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Figure 3: APD dependence on DI in LRd model.

Mode 1Mode 0

{x ≥ 0}
v̇ = f(0, y)

{x < 0}

[x ≥ 0]

[x < 0]

v̇ = f(1, y)

Figure 4: Heaviside function recast as an HA.
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{E ≤ 0}

q1

{0 < E < 1}

q2

{E ≥ 1}

[E = 0]

[E = 0]

[E = 1]

[E = 1]

ḣ = 1
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τ (−h)

Ė = Ist Ė = Ist

Figure 5: Biktashev’s model in the HA framework.
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[eoff ]

[u = uv]

[u = uc]

q2:q3:

{0 < u < uv} {uv ≤ u < uc}

Jfi = − v
τd

(1 − u)(u − uc)

q0:

Jfi = 0

Jso = u
τ0

Jsi = − w
2τsi

(1 + tanh(k(u − usi
c )))

q1:

Jfi = 0

Jso = u
τ0

Jsi = − w
2τsi

(1 + tanh(k(u − usi
c )))

{uc ≤ u}
Jsi = − w

2τsi
(1 + tanh(k(u − usi

c )))

Jso = 1
τr

{uc ≤ u}
Jsi = − w

2τsi
(1 + tanh(k(u − usi

c )))

Jso = 1
τr

Jfi = − v
τd

(1 − u)(u − uc)

u̇ = −Jfi − Jso − Jsi + Jstimulus

v̇ = (1 − v)/τ−
v1

ẇ = (1 − w)/τ−
w

u̇ = −Jfi − Jso − Jsi + Jstimulus

v̇ = (1 − v)/τ−
v2

ẇ = (1 − w)/τ−
w

u̇ = −Jfi − Jso − Jsi + Jstimulus

v̇ = (1 − v)/τ+
v

ẇ = (1 − w)/τ+
w

u̇ = −Jfi − Jso − Jsi

v̇ = (1 − v)/τ+
v

ẇ = (1 − w)/τ+
w

[u = uc ∧ eon]

Figure 6: HA for the Fenton-Karma 3-variable 3-ion-current model.
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q1 : Stimulated

q2 : Upstrokeq3 : Plateau & ER

v̇y = α3
yg3(θ)vy v̇y = α2

yvy

v̇y = α0
yg0(θ)vy

q0 : Resting & FR

v̇y = α1
yvy + βyIst

v̇z = α0
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Figure 9: CLHA model of excitable cells.
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Figure 10: AP comparison of CLHA with: (a) HH (b) LRd (c) NNR
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Figure 11: Restitution comparison with LRd.
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