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Abstract. We introduce the concept of Runtime Verification with State
Estimation and show how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a program
when monitoring overhead is reduced by sampling. In such situations,
there may be gaps in the observed program executions, thus making ac-
curate estimation challenging. To deal with the effects of sampling on
runtime verification, we view event sequences as observation sequences
of a Hidden Markov Model (HMM), use an HMM model of the monitored
program to “fill in” sampling-induced gaps in observation sequences, and
extend the classic forward algorithm for HMM state estimation (deter-
mine the probability of a state sequence, given an observation sequence)
to compute the probability that the property is satisfied by an execution
of the program. To validate our approach, we present a case study based
on the mission software for a Mars rover. The results of our case study
demonstrate high prediction accuracy for the probabilities computed by
our algorithm. They also show that our technique is much more accurate
than simply evaluating the temporal property on the given observation
sequences, ignoring the gaps.

1 Introduction

Runtime verification (RV) is the problem of, given a program P , execution trace
τ of P , and temporal logic formula φ, decide whether τ satisfies φ. To perform
RV, one typically transforms φ into a monitor (a possibly parametrized finite
state machine) Mφ and instruments P so that it emits events of interest to
Mφ. This allows Mφ to process these events and determine whether the event
sequence satisfies φ.

RV does not come for free. The overhead associated with RV is a measure of
how much longer a program takes to execute due to runtime monitoring. If the
original program executes in time R, and the instrumented program executes in
time R+M with monitoring, we say that the monitoring overhead is M

R .
Recently, a number of techniques have been developed to mitigate the over-

head due to RV [12, 9, 1, 13, 5]. Common to these approaches is the use of event
sampling to reduce RV overhead. Sampling means that some events are not pro-
cessed at all, or are processed in a limited (and thus less expensive) manner than
other events. A natural question is: how does sampling affect the results of RV?



This issue has been largely ignored in prior work: the monitor simply reports the
result of processing the observed events without indicating how sampling might
have affected the results.

For example, let φ be the formula 2(a ⇒ 3c) (invariably, a is eventually
followed by a c) and let τ be the trace a b c a b c a b c. Clearly τ satisfies φ. Suppose
now that τ is an incomplete trace of an execution with implicit gaps due to
sampling. Although we cannot decisively say whether the execution satisfies φ
(for example, there could be an unobserved a event after the last c event), we
would like to compute a confidence measure that the execution satisfies φ.

In this paper, we introduce the concept of runtime verification with state
estimation (RVSE), and show how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a program when
monitoring overhead is reduced by sampling. In such situations, there may be
gaps in observed program executions, making accurate estimation challenging.

The main idea behind our approach is to use a statistical model of the mon-
itored system to “fill in” sampling-induced gaps in event sequences, and then
calculate the probability that the property is satisfied. In particular, we appeal
to the theory of Hidden Markov Models [16]. An HMM is a Markov model in
which the system being modeled is assumed to be a Markov process with unob-
served (hidden) states. In a regular Markov model, states are directly visible to
the observer, and therefore state transition probabilities are the only required
parameters. In an HMM, states cannot be observed; rather, each state has a
probability distribution for the possible observations (formally called observa-
tion symbols). The classic state estimation problem for HMMs is to compute the
most likely sequence of states that generated a given observation sequence.

The main contributions of this paper are:

– We use HMMs to formalize the RVSE problem as follows. Given an HMM
system model H, temporal property φ, and observation sequence O (an ex-
ecution trace that may have gaps due to sampling), compute Pr(φ | O,H),
i.e., the probability that the system’s behavior satisfies φ, given O and H.
Note that we use Hidden Markov Models, meaning that the states of the
system are hidden from the observer. This is because we intend to perform
machine learning to learn the HMM from traces that contain only observable
actions of the system, not detailed internal states of the system.

– The forward algorithm [16] is a classic recursive algorithm for computing
the probability that, given an observation sequence O, an HMM ended in a
particular state. This problem is the so-called filtering version of the state
estimation problem for HMMs. We present an extension of the forward al-
gorithm for the RVSE problem that computes a similar probability, but in
this case for the paired execution of an HMM system model and a monitor
automaton for the temporal property φ. We first present a version of the
algorithm that does not consider gaps; in this case, the states of the monitor
are completely determined by O, because the monitor is deterministic.

– We then present an algorithm that handles gaps. We use a special symbol
to mark gaps, i.e., points in the observation sequence where unobserved



events might have occurred. Gap symbols may be inserted in the trace by
the instrumentation when it temporarily disables monitoring; or, if gaps may
occur everywhere, a gap symbol can be inserted at every point in the trace.
When the algorithm processes a gap, no observation is available, so the state
of the monitor automaton is updated probabilistically based on the current
state estimation for the HMM and the observation probability distribution
for the HMM. Since the length of a gap (i.e., the number of unobserved
events) might be unknown, we allow the gap length to be characterized by
a probability distribution.

– We evaluate our RVSE methodology using a case study based on human op-
erators in a ground station issuing commands to a Mars rover [3]. Sampling
of execution traces is simulated using SMCO-style overhead control [13].
Our evaluation demonstrates high prediction accuracy for the probabilities
computed by our algorithm. It also shows that our technique is much more
accurate than simply evaluating the temporal property on the given obser-
vation sequences, ignoring the gaps.

2 Related Work

To the best of our knowledge, Runtime Verification with State Estimation has
not been studied before, and our HMM-based technique to support the cal-
culation of the conditional probability that a system satisfies a temporal logic
formula given a sampled event trace (observation sequence) is new. In this sec-
tion, we discuss related work on runtime verification of statistical properties and
on probabilistic model checking.

Sammapun et al. [17] consider runtime verification of probabilistic properties
of the form: given a condition A, does the probability that an outcome B occurs
fall within a given range? Their technique determines statistically, and with an
adequate level of confidence, whether a system satisfies a probabilistic property.
Wang et al. [18] apply a similar statistical RV technique, in conjunction with
Monte Carlo simulation, to analog and mixed signal designs. In contrast, we
perform runtime verification of traditional non-probabilistic properties, but in
the presence of sampling.

Finkbeiner et al. [10] extend LTL to perform statistical experiments over run-
time traces, but they do not consider sampling. For example, their methodology
can be used to determine the percentage of positions in a trace at which the trace
satisfies a temporal property. This is a different statistic than the conditional
probabilities we compute.

LarvaStat [7] is another system for collecting statistical information about
runtime executions. It does so using statistic aggregators, which are defined in
terms of an initial statistic valuation (e.g., initializing a counter) and an update
rule (e.g., incrementing the counter upon the occurrence of an event).

Probabilistic model checking [14, 2] can be used to compute the probability
that a Markov model, such as a Discrete-Time or Continuous-Time Markov
Chain, satisfies a probabilistic temporal logic formula. Zhang et al. [19] extend



probabilistic model checking to HMMs, so that the probability that an HMM
produces a given sequence of observations can be computed. In contrast, we use
HMMs to probabilistically fill in gaps in sampled event traces, enabling us to
estimate the probability that a (non-probabilistic) temporal property is satisfied
by a trace that contains gaps due to sampling.

3 Case Study: A Mars Rover Scenario

We illustrate and evaluate our approach on a software model of a planetary rover
mission. The model is written in the Scala programming language,4 allowing
for fast prototyping. Its architecture, depicted in Figure 1, is representative,
in general terms, of actual rover missions, such as the current Mars Science
Laboratory5 (MSL) mission. The rover scenario we consider consists of a rover
operating on the surface of Mars, controlled by commands from ground -based
human operators. The rover consists of a collection of instruments (e.g., cam-
era, drill, temperature sensor) performing specialized tasks. For this case study,
the rover hosts two generic instruments A and B. Furthermore, every event of
importance occurring on the rover is recorded in a log, which is maintained on
ground. A ground-based logger module receives and stores such events.

ground 

rover 

instrument A instrument B 

logger 

Command(instrument, name, time)  
  where instrument = A or B  

Command(A, name, time) Command(B, name, time) 

Command(instrument, name, time)  
Dispatch(A, name, time)  

Success(A, name, time)  

Fail(A, name, time)  
or 

Dispatch(B, name, time)  

Success(B, name, time)  

Fail(B, name, time)  
or 

Fig. 1. Mission architecture.

4 http://www.scala-lang.org
5 http://mars.jpl.nasa.gov/msl



Command(instrument, name, time) commands submitted to rover
Dispatch(instrument, name, time) dispatch of command from rover to instrument
Success(instrument, name, time) success of command on instrument
Fail(instrument, name, time) failure of command on instrument

Fig. 2. Events observed.

We consider four kinds of events, presented in Figure 2 and inspired by the
scenario explained by Barringer et al. [3]. Commands are issued from ground
to the rover and are characterized by three parameters: instrument id (A or
B), command name, and a time stamp indicating at what time the event occurs.
The other three events have similar parameters. Upon receipt of a command, the
rover reports this event to the logger (by sending the command to the logger),
and then sends the command to the relevant instrument. The instrument, upon
receipt of the command, issues a dispatch event to the logger (recording that it
was dispatched to the instrument). The instrument then executes the command.
If the execution is successful, a success is reported to the logger. If execution fails,
a fail status is reported. It is possible that neither a success or a fail occur, and
that the command is simply lost for some reason. An example log collected during
the execution of this system could be: Command(A, START, 1008), Command(B,
RESET, 2303), Success(A, START, 4300), Success(B, RESET, 5430).

One aspect of the desired behavior of the rover system is expressed by the
requirement: Every Command(i, n, t1) event should eventually be followed by a
Success(i, n, t2) event, with no Fail(i, n, t3) event occurring in between.

The above trace satisfies this property. The following trace does not satisfy
the property because the first command fails explicitly and the second command
fails implicitly (neither success nor failure occurs): Command(A, START, 1008),
Command(B, RESET, 2303), Fail(A, START, 4520).

This property can be expressed in LTL as follows, where 2 means “always”,
U means “until”, underscore means “don’t care”, and the subscript “cs” is
mnemonic for “command success”.

φcs = (∀ i : Instrument , n : Name.
2(Command(i, n, )⇒ ¬Fail(i, n, ) U Success(i, n, )))

(1)

The property was formulated and checked with TraceContract [4], a
Scala API for trace analysis, supporting parameterized state machines and tem-
poral logic. In TraceContract, the property is expressed as follows (Scala
keywords are in bold, whereas TraceContract features are underlined):

class Contract extends Monitor[Event] {
require {

case Command(i,n,_) =>

hot {
case Fail(‘i‘, ‘n‘, _) => error



case Success(‘i‘, ‘n‘, _) => ok

}
}

}

4 Background

Hidden Markov Models. A Hidden Markov Model (HMM) [16] is a tuple H =
〈S,A, V,B, π〉 containing a set S of states, a transition probability matrix A, a set
V of observation symbols, an observation probability matrixB (also called “emis-
sion probability matrix” or “output probability matrix”), and an initial state dis-
tribution π. The states and observations are indexed (i.e., numbered), so S and
V can be written as S = {s1, s2, . . . , sNs

} and V = {v1, . . . , vNo
}, where Ns is the

number of states, and No is the number of observation symbols. Let Pr(c1 | c2)
denote the probability that c1 holds, given that c2 holds. The transition probabil-
ity distribution A is anNs×Ns matrix indexed by states in both dimensions, such
that Ai,j = Pr(state is sj at time t+ 1 | state is si at time t). The observation
probability distribution B is an Ns ×No matrix indexed by states and observa-
tions, such that Bi,j = Pr(vj is observed at time t | state is si at time t).

An example of an HMM is depicted in the left part of Figure 3. Each state is
labeled with observation probabilities in that state; for example, P(Succ)=.97
in state s3 means B3,Succ = 0.97, i.e., an observation made in state s3 has
probability 0.97 of observing a Success event. Edges are labeled with transition
probabilities; for example, .93 on the edge from s2 to s3 means that A2,3 = 0.93,
i.e., in state s2, the probability that the next transition leads to state s3 is 0.93.

An HMM generates observation sequences according to the following five-
step procedure [16]. (1) Choose the initial state q1 according to the initial state
distribution π. (2) Set t = 1. (3) Choose the tth observation Ot according to the
observation probability distribution in state qt. (4) Choose the next state qt+1

according to the transition probability distribution in state qt. (5) Increment t
and return to step (3), or stop.

The forward algorithm [16] is a classic algorithm for computing the proba-
bility that an HMM ended in a particular state, given an observation sequence
O = 〈O1, O2, . . . , OT 〉. Let Q = 〈q1, q2, . . . , qT 〉 denote the (unknown) state se-
quence that the system passed through, i.e., qt denotes the state of the system
when observation Ot is made. Let αt(i) = Pr(O1, O2, . . . , Ot, qt = si | H), i.e.,
the probability of the first t observations in O and that qt is si, given the model
H. To hide the notational clutter from indexing of V , we access the B matrix
using the traditional notation [16]:

bi(vk) = Bi,k (2)

The forward algorithm for computing α is:

α1(j) = πjbj(O1) for 1 ≤ j ≤ Ns (3)

αt+1(j) =
(∑

i=1..Ns
αt(i)Ai,j

)
bj(Ot+1)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns
(4)
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Fig. 3. Left: an example of an HMM. The initial state distribution is: π(s1) = 1,
π(s2) = 0, and π(s3) = 0. Event names are abbreviated; for example, Cmd abbreviates
Command(i, n, ). Right: Mcs, an example of a DFSM. States with a double border are
accepting states.

In the base case, α1(j) is the joint probability of starting in state sj and emitting
O1. Similarly, the recursive case calculates the joint probability of reaching state
sj and emitting OT . The probability of reaching sj is calculated by summing over
the immediate predecessors si of sj ; the summand αt(i)Ai,j is the joint prob-
ability of reaching si while observing O1 through OT−1 and then transitioning
from si to sj . The cost of computing α using these equations is O(N2

s T ).

Learning an HMM. One can obtain an HMM for a system automatically, by
learning it from complete traces using standard HMM learning algorithms [16].
These algorithms require the user to specify the desired number of states in
the HMM. These algorithms allow (but do not require) the user to provide
information about the structure of the HMM; specifically, that certain entries
in the transition probability matrix and the observation probability matrix are
zero. This information can help the learning algorithm converge more quickly
and find globally (instead of locally) optimal solutions. If the temporal property
or properties to be monitored are known before the HMM is learned, then the
set of observation symbols can be limited to contain only events mentioned in
those properties, and the number of states can be chosen just large enough to
be able to model the relevant aspects of the system’s behavior. Note that we
use Hidden Markov Models, meaning that the states of the system are hidden
from the observer, because we intend to learn H from traces that contain only
observable actions of the system, not detailed internal states of the system.

Deterministic Finite State Machines. Our algorithm assumes that the temporal
property φ to be monitored is expressed as a parametrized deterministic finite
state machine (DFSM). The DFSM could be written directly or obtained by
translation from a language such as LTL or TraceContract. A DFSM is



a tuple M = 〈SM ,minit , V, δ, F 〉, where SM is the set of states, minit in SM
is the initial state, V is the alphabet (also called the set of input symbols),
δ : SM ×V → SM is the transition function, and F is the set of accepting states
(also called “final states”). Note that δ is a total function. A trace O satisfies
the property iff it leaves M in an accepting state.

For example, a DFSM Mcs that expresses the property φcs in Equation 1 is
depicted in the right part of Figure 3. The Dispatch event is not in the alphabet
of the TraceContract property φ and hence normally would be omitted from
the alphabet of the DFSM; we included it in this DFSM for illustrative purposes,
so that the alphabets of the HMM and DFSM would be the same.

5 Algorithm for RVSE

The first subsection defines the problem more formally. The next subsection
presents our algorithm for RVSE. The last subsection describes how we handle
parameterized properties.

5.1 Problem Statement

A problem instance is defined by an observation sequence O, an HMM H, and
a temporal property φ over sequences of actions of the monitored system.

The observation sequence O contains events that are occurrences of actions
performed by the monitored system. In addition, O may contain the symbol
gap(L) denoting a possible gap with an unknown length. The length distribution
L is a probability distribution on the natural numbers: L(`) is the probability
that the gap has length `.

If no information about the location of gaps is available (and hence no gap
events appear in the trace obtained from the runtime monitor), we insert gap(L)
at the beginning of the trace and after every event in the trace, to indicate that
gaps may occur everywhere.

The HMM H = 〈S,A, V,B, π〉 models the monitored system, where S =
{s1, . . . , sNs

} and V = {v1, . . . , vNo
}. Observation symbols of H are observable

actions of the monitored system. H need not be an exact model of the system.
The property φ is represented by a DFSM M = 〈SM ,minit , V, δ, F 〉. For

simplicity, we take the alphabet of M to be the same as the set of observation
symbols of H. It is easy to allow the alphabet of M to be a subset of the
observation symbols of H, by modifying the algorithm so that observations of
symbols outside the alphabet of M leave M in the same state.

The goal is to compute Pr(φ | O,H), i.e., the probability that the system’s
behavior satisfies φ, given observation sequence O and model H.

First, we extend the forward algorithm in Section 4 to keep track of the
state of M . Let mt denote the state of M immediately after observation Ot is
made. Let αt(i,m) = Pr(O1, O2, . . . , Ot, qt = si,mt = m | H), i.e., the joint
probability of the first t observations in O and that qt is si and that mt is m,
given the model H. Let pred(n, v) be the set of predecessors of n with respect



to v, i.e., the set of states m such that M transitions from m to n on input
v. A conditional expression c ? e1 : e2 equals e1 if c is true, and it equals e2 if
c is false. The extended forward algorithm appears below. The main changes
are introduction of a conditional expression in equation (6), reflecting that the
initial state of M is always minit , and introduction of a sum over predecessors
m of n with respect to Ot+1 in equation (7), analogous to the existing sum over
predecessors i of j, so that the sum takes into account all ways of reaching the
configuration in which H is in state si and M is in state m.

pred(n, v) = {m ∈ SM | δ(m, v) = n} (5)

α1(j, n) = (n = δ(minit , O1)) ?πjbj(O1) : 0
for 1 ≤ j ≤ Ns and n ∈M

(6)

αt+1(j, n) =


∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

 bj(Ot+1)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(7)

Now we extend the algorithm to handle gaps. The result appears in Figure 4.
An auxiliary function pi is used to calculate the probability of transitions of
M during gaps. When H is in state si and M is in state m, pi(m,n) is the
probability that the next observation (i.e., the observation in state sj) causes
M to transition to state n. Since we do not know which event occurred, we
sum over the possibilities, weighting each one with the appropriate observation
probability from B.

Another auxiliary function g`, called the gap transition relation, is used to
compute the overall effect of a gap of length `. Specifically, g`(i,m, j, n) is the
probability that, if H is in state si and M is in state m and a gap of length `
occurs, then the H is in state sj and M is in state n after the gap. The definition
of α is modified to contain a weighted sum of calls to g`, with weights L(`). The
definition of gap`+1 uses a recursive call to gap` determine the probabilities of
states reached after a gap of length ` (these intermediate states are represented
by i′ and m′), and then calculates the effect of the (` + 1)th unobserved event
as follows: Ai′,j is the probability that H transitions from state si′ to state sj ,
and pj(m

′, n) is the probability that M transitions to state n.
In the definition of α1, for the case O1 = gap(L), there is a probability L(0)

that no gap occurred, in which case M remains in its initial state minit and
the probability distribution for states of H remains as πj ; furthermore, for each
` > 0, there is a probability L(`) of a gap of length `, whose effect is computed
by a call to g`, and πi is the probability that H is in state si at the beginning
of the gap.

In the definition of αt+1, for the case Ot+1 = gap(L), there is a probability
L(0) that no gap occurred, in which case the state of the HMM and the DFSM
remain unchanged, so αt+1(j, n) = αt(j, n); furthermore, for each ` > 0, there is



pi(m,n) =
∑

v∈V s.t. δ(m,v)=n

bi(v) (8)

g0(i,m, j, n) = (i = j ∧m = n) ? 1 : 0 (9)

g`+1(i,m, j, n) =
∑

i′∈[1..Ns],m′∈SM

g`(i,m, i
′,m′)Ai′,jpj(m

′, n) (10)

α1(j, n) = (11){
(n = δ(minit , O1)) ?πjbj(O1) : 0 if O1 6= gap(L)
L(0)(n = minit ?πj : 0) +

∑
`>0,i∈[1..Ns]

L(`)πig`(i,minit , j, n) if O1 = gap(L)

for 1 ≤ i ≤ Ns and m ∈M

αt+1(j, n) =




∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

 bj(Ot+1) if Ot+1 6= gap(L)

L(0)αt(j, n) +
∑
`>0

L(`)
∑

i∈[1..Ns]

m∈SM

αt(i,m)g`(i,m, n, j) if Ot+1 = gap(L)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(12)

Fig. 4. Forward algorithm modified to handle gaps.

a probability L(`) of a gap of length `, whose effect is computed by a call to g`,
and αt(i,m) is the probability that H is in state si and M is in state m at the
beginning of the gap.

Although the algorithm involves a potentially infinite sum over `, typically
L(`) is non-zero for only a finite number of values of `, in which case the sum
contains only a finite number of non-zero terms. For example, if the system uses
lightweight instrumentation to count events during gaps, then the position and
length of all gaps are known. In this case, for each gap, L(`) is non-zero only for
the value of ` that equals the number of unobserved events (i.e., the gap length).
If counts of unobserved events are unavailable (because monitoring is completely
disabled during gaps), it is sometimes possible to determine (based on charac-
teristics of the system and how long monitoring was disabled) a threshold such
that L(`) is non-zero only below that threshold. Even if no such threshold exists,
L(`) typically approaches 0 as ` becomes large, so the sum can be approximated
by truncating it after an appropriate number of terms.

5.2 Handling Parameterized Temporal Properties

Our approach supports parameterized temporal properties. Specified events trig-
ger creation of a new instance of the parameterized property, and parameters



of the trigger event are used as parameters of the property. For example, the
property φcs in equation (1), and the corresponding DFSM Mcs in Figure 3,
are parameterized by the instrument i and the name n. The parameters of the
DFSM may be used in the definition of the alphabet of the DFSM; in other
words, the alphabet is also parameterized. For example, the alphabet of Mcs is
{Command(i ,n, ), Dispatch(i ,n, ), Success(i ,n, ), Fail(i ,n, )}.

For a parameterized property, we decompose (or “demultiplex”) a given trace
into a set of subtraces by projecting it onto the alphabet of each instance of the
property. The HMM is learned from these subtraces; thus, the HMM repre-
sents the slice of the system’s overall behavior relevant to a single instance of
the property. When learning the HMM, we abstract from the specific values of
the parameters in each subtrace, because the values are, of course, different in
each subtrace, and we are not attempting to learn the distribution of parameter
values.

When applying our modified forward algorithm for a parameterized property,
we run the algorithm separately for each instance of the property, and use the
corresponding subtrace (i.e., the projection of the trace onto the alphabet of
that property instance) as the observation sequence O.

When projecting a trace containing gaps onto the alphabet of a property
instance, it is typically unknown whether the unobserved event or events that
occurred during a gap are in that alphabet. This can be reflected by modifying
the length distribution parameter of the gap symbol appropriately before insert-
ing the gap in the subtrace for that property instance. Developing a method to
modify the length distribution appropriately, based on the nearby events in the
trace and the HMM, is future work. Lee et al.’s work on trace slicing [15] might
provide a basis for this.

The above approach does not assume any relationship between the property
parametrization and the sampling strategy. An alternative approach is to adopt
a sampling strategy in which, for each property instance, either all relevant
events are observed, or none of them are. For example, when QVM [1] checks
properties of Java objects, it selects some objects for checking, monitors all events
on those objects, and monitors no events on other objects. With this approach,
the property is checked with 100% confidence for the selected objects, but it is
not checked at all for other objects. This trade-off might be preferable in some
applications but not in others. Also, this property-directed sampling may incur
more overhead than property-independent sampling, because it must ensure that
all events relevant to the selected property instances are observed.

6 Evaluation

6.1 Evaluation Methodology

We used the following methodology to evaluate the accuracy of our approach for
a given system.

1. Produce a set TL of traces by monitoring the system without sampling, and
learn an HMM H from them.



2. Produce another set TE of traces by monitoring the system without sampling,
and use them for evaluation as follows.

3. Produce a sampled version Ǒ of each trace O in TE . If the system is deter-
ministic, Ǒ can be produced by re-running the system on the same input as
for O while using sampling. An alternative approach, applicable regardless
of whether the system is deterministic, is to write a program that reads a
trace, simulates the effect of sampling, and outputs a sampled version of the
trace.

4. For each trace O in TE , apply our algorithm to compute the probability
Pr(φ|Ǒ,H).

5. Compare the probabilities from the previous step to reality, by partitioning
the traces in TE into “bins” (i.e., sets) based on Pr(φ|Ǒ,H), and checking
whether the expected fraction of the traces in each set actually satisfy φ.
Specifically, using B + 1 bins, for b ∈ [0..B], the set of traces placed in bin b
is TE(b) = {O ∈ TE | b/B ≤ Pr(φ|Ǒ,H) < (b+ 1)/B}. Let satact(b) denote
the fraction of traces in bin b that actually satisfy φ. Based on the results
from our algorithm, satact(b) is expected to be approximately satest(b) =
average({Pr(φ|Ǒ,H) | O ∈ TE(b)}) (the subscript “est” is mnemonic for
“estimation”, i.e., “expected based on state estimation”).

6. Quantify the overall inaccuracy as a single number I between 0 and 1, where
0 means perfect accuracy (i.e., no inaccuracy), by summing the differences
between the actual and expected fractions from the previous step for non-
empty bins and normalizing appropriately:

Bne = {b ∈ [0..B] | TE(b) 6= ∅} (13)

I =
1

|Bne|
∑
b∈Bne

|satact(b)− satest(b)|. (14)

7. Put this inaccuracy into perspective by comparing it with the inaccuracy of
the naive approach that ignores the effect of sampling and simply evaluates
the property on sampled traces, ignoring gaps. Specifically, satnaive(b) is
the fraction of traces in TE(b) such that the sampled trace satisfies φ, i.e.,
satnaive(b) = |{O ∈ TE(b) | Ǒ |= φ}|/|TE(b)|, and

Inaive =
1

Bne

∑
b∈Bne

|satact(b)− satnaive(b)|. (15)

If the sampling strategy has a parameter that controls how many events are
observed, then the inaccuracy I can be graphed as a function of that sampling
parameter. For example, SMCO has a parameter ot, the target overhead. We
expect the inaccuracy to approach 0 as the fraction of events that are observed
approaches 1. Similarly, for a particular trace O, Pr(φ|Ǒ,H) can be graphed as a
function of that sampling parameter; if the trace O satisfies φ, this curve should
monotonically increase towards 1 as the fraction of events that are observed
approaches 1.



6.2 Experiments

We applied the above methodology to the rover case study described in Section
3. The Scala model was executed to generate 200 traces, each containing 200
issued commands. The average length of the traces is 587 events. To facilitate
evaluation of our approach, the model was modified to pseudo-randomly intro-
duce violations of the requirement φcs in Equation 1. Approximately half of the
traces satisfy the requirement. In the other half of the traces, the requirement
is violated by approximately 30% of the commands; among those commands,
approximately half have an explicit Fail event, and the other half do not have
a Success or Fail event. We wrote a program that reads a trace, simulates the
sampling performed by SMCO with a global controller [13], and then outputs the
trace with some events replaced by gap(L0), where L0(0) = 0, L0(1) = 1, and
L0(`) = 0 for ` > 1. Note that gap(L0) represents a definite gap of length 1. The
use of a definite gap reflects that the SMCO controller knows when it disables
and enables monitoring, and that (in an actual implementation) lightweight in-
strumentation would be used to count the number of unobserved events when
monitoring is (mostly) disabled. With the target overhead that we specified, the
SMCO simulator replaced 47% of the events with gaps.

Based on the parameters of the property φcs, each sampled trace was decom-
posed into a separate subtrace for each instrument and command, following the
approach in Section 5.2. When decomposing the trace, we assigned each gap to
the appropriate subtrace by referring to the original (pre-sampling) trace. Al-
though it is generally unrealistic to assume that the monitor can assign gaps to
subtraces with 100% accuracy, this assumption allows us to isolate this source
of inaccuracy and defer consideration of it to future work, in which we plan to
introduce uncertain gaps into subtraces corresponding to nearby events in the
full trace, using the HMM to compute probabilities for the uncertain gaps.

To obtain the HMM H, we manually specified the number of states (six) and
the structure of the HMM, and then learned the transition probability matrix
and observation probability matrix from half of the generated traces. We used
the other half of the generated traces for evaluation.

We measured the inaccuracy of our approach using B = 10, and obtained
I = 0.0205. This level of inaccuracy is quite low, considering the severity of
the sampling: recall that sampling replaced 47% of the events with gaps. In
comparison, the inaccuracy of the naive approach is Inaive = 0.3135; this is
approximately a 15× worse I.

7 Conclusions and Future Work

This paper introduces the new concept of Runtime Verification with State Es-
timation (RVSE) and shows how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a system given a
sampled execution trace. Our approach is based on extending the classic forward
algorithm for HMM state estimation to take into account the paired execution



of an HMM system model and monitor automaton for the temporal formula
under consideration. An initial experimental evaluation of our technique shows
encouraging results.

There are many directions for future work. One short-term direction, men-
tioned in Section 5.2, is to determine the probabilities with which a gap should
be associated with various subtraces when decomposing a trace for runtime veri-
fication of a parametrized property, and to update the length distribution of the
gap appropriately.

With regard to our Mars rover case study, although it is based on actual rover
software, due to ITAR restrictions, the parametrized event traces we used for
evaluation are synthetically produced by a simulator written in Scala. We plan
to conduct additional case studies involving actual traces obtained from publicly
available real-world software. Likely target software systems include the GCC
compiler suite and the Linux kernel, as we have extensive experience with them.

Another direction for further study is RVSE of quantitative properties. For
example, the goal of integer range analysis [9, 13] is to compute the range (upper
and lower bounds) of each integer variable in the program. Performing this kind
of analysis on traces with gaps can lead to inaccuracies in the ranges computed,
due to unobserved updates to integer variables. In this case, we would like to
extend our RVSE algorithm to adjust (improve) the results of the analysis as
well as provide a confidence level in the adjusted results. Similar comments apply
to other quantitative properties, such as runtime analysis of NAPs (non-access
periods) for heap-allocated memory regions [12, 13].

Our broader goal is to use probabilistic models of program behavior, learned
from traces, for multiple purposes, including program understanding [6], program
visualization [8], and anomaly detection [11] (by checking future runs of the
program against the model).
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