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Abstract

In this thesis we develop a novel, implicitly typed �{calculus for objects, by viewing
these as extendible case{functions rather than as extendible records.

This novel view, allows to unify the concepts of function, object and process into
one concept, that of a functional entity which is self contained and provided with a
uniform communication protocol. We use this view to give a formal foundation for
both sequential and concurrent object oriented languages. In the later case, we view
objects as case{functions communicating asynchronously over unbounded channels.

Our calculus is a conservative extension of the polymorphic type system of Aiken
and Wimmers, to include case{function extension and lazy data types. Its soundness
is proven with respect to a semantical model based on ideals. Subtyping and case{
function extension play a central role in our modeling of generalization/specialization
and inheritance. To model self and self{class, our calculus includes recursive types.
These are also necessary to model streams and provide the theoretical background
for passing streams themselves as messages. We use higher order streams to express
mobile systems. For the study of mobile systems we additionally devise a network
calculus on the top of the lambda calculus.

The implicitly typed �{calculus is accompanied with a decidable type inference
algorithm, which always delivers the least type of a term (if this exists). An imple-
mentation of this algorithm was written in Common Lisp.
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Chapter 1

Introduction

1.1 The Object Oriented Paradigm

The continuing development of programming languages and software technology al-
lows the construction of increasingly complex systems. In order to master their
complexity, methodologies are elaborated, which guide the analysis, design and im-
plementation phases of these systems [96, 95, 30, 40]. Inevitably, both methodologies
and programming languages are organized around a conceptual model or software
paradigm.

In the last years a great popularity has gained the object oriented (OO) paradigm.
Nowadays there is a great diversity of both OO methods and OO languages. Among
the OO methods, probably the best known are the Object Modeling Technique of
Rumbaugh [86], the Object Oriented Analysis and Design of Booch [13, 14], the Fu-
sion method of Coleman [33], the Object Oriented Analysis and Design of Coad and
Yourdan [32, 31], the Object Oriented Software Engineering of Jackobson [48] and
the Object Oriented Analysis and Design of Martin and Odell [58]. Programming
languages range form untyped [43, 54] to typed [88, 62] from class based [88, 62]
to delegation based [29] from functional [54, 87] to procedural [88, 62] and from
sequential [43, 88, 62, 29, 54, 87] to concurrent [10, 50, 4].

Given this diversity it is naturally to wonder what makes the OO paradigm so
popular. For this purpose it is very useful to consider three di�erent views or aspects
of every reasonable complex system: the static or structural view, the functional or
transformational view and the dynamic or temporal view.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Views of a Software System

The functional Model

The functional model concentrates on the data transformation aspect of a system,
completely ignoring structural and temporal considerations. It captures what a
system does without regarding when.

Systems are regarded as functions and complexity is managed by decomposing func-
tions in sub-functions each performing a well de�ned task. This can be characterized
by the following equation:

Functional Decomposition = Functions
+ Sub-Functions
+ Functional Interfaces

The above decomposition and the well behaving of the whole system is guaranteed
by the following principle for managing complexity:

De�nition 1.1 Functional abstraction

The principle that any operation that achieves a well de�ned e�ect can be
treated by its users as a single entity, despite the fact that the operations may
actually be achieved by some sequence of lower level operations. 2

In other words a function is completely characterized by its input/output behavior.
This is also called referential transparency, and beside assuring a simple semantics,
it allows the application of powerful veri�cation techniques.

However, functional decomposition is guided by the transformation done on data
and not by the objects which actually occur in the task to be modeled. This has
two immediate consequences:

� The data structuring aspect, which normally is determined by the objects
occuring in the system, is in this model very poor.

� The model itself, is extremely volatile to future changes, since later versions
of a system may consider more or fewer characteristics of these objects.

Further, by ignoring the time sensitive behavior of the modeled objects, the dynamic
aspect of the system is lost.
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The Information Model

The information model represents the static (or structural or data) aspect of a
system. Modeling the world by data, helps to capture the problem domain content.
In this model, a system is decomposed by �nding objects in the real world, and
describing them with attributes. These objects are then classi�ed according to
the similarity of their attributes and relationships to other objects. Briey, this
decomposition process is given by the following equation:

Information Modeling = Objects
+ Attributes
+ Relationships

Among the relationships between object classes, an important role plays the con-
tainment or part-of relation and the generalization/specialization or is-a relation.

Structural decomposition is very general. As a principle for managing complexity,
it is employed in most human activities.

De�nition 1.2 Pervading methods of organization [16]

In apprehending the real world, people constantly employ three methods of
organization, which pervade all of their thinking:

� The di�erentiation of experience into particular objects and their at-
tributes { e.g. when they distinguish between a tree and its size or spatial
relations to other objects.

� The distinction between whole objects and their component parts { e.g.
when they contrast a tree with its component branches.

� The formation of and the distinction between di�erent classes of objects
{ e.g. when they form the class of all stones and distinguish between
them.

2

De�nition 1.3 Association [39]

An association is a union or connection of ideas. 2

By capturing the problem domain content, structural decomposition is very stable
to future changes. This is the reason why it plays a central role in all of the OO
methodologies. However, this modeling is incomplete, because it ignores the func-
tional and the temporal aspects of a system. It only describes which are the entities
involved in a system but not what are they doing and when.
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The Dynamic Model

Temporal aspects of a system are more di�cult to understand. This understanding
is signi�cantly simpli�ed by �rst identifying the static structure of the system i.e. the
objects and their interrelations. Then, one can examine the changes to the objects
and their relationships over the time.

Those aspects of a system that are concerned with time and changes build the
dynamic model. Changing over time is closely related with the functional aspects.
Together they form the behavior of objects. Characterizing objects according to
their behavior is also a very general principle of managing complexity.

De�nition 1.4 Behavioral Classi�cation [16]

Objects can be classi�ed

� On the basis of immediate causation,

� On the similarity of evolutionary history (change over the time),

� On the similarity of function.

2

Objects interact by exchanging messages. Receiving a message is for an object
an event determining a precise reaction and change of state (i.e. of attributes and
relations). As with behavioral classi�cation, communication with messages is a very
common human activity. For example a message is de�ned in [39] as follows.

De�nition 1.5 Message

A message is any communication written or oral sent between humans. 2

Summarizing, the dynamic view describes the sequencing of operations based on
events and states, de�ning the context of these events without regard for what
the operations really do. It describes when without regard of what and which. Its
understanding is however intimately related with the other views. The corresponding
equation for the dynamic view can be given as follows.

Dynamic Model = Change Over Time
+ Communication with Messages
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1.1.2 The Object Oriented Methods

The successful application and acceptance of a method is determined by the scope,
number and relative emphasis it places on the various modeling components.

For example, the Structured-Analysis/Structured-Design method supports like the
OO methods all three modeling components. However, by putting the main empha-
sis on the functional aspect, it leads to models which are di�cult to comprehend by
the customers and extremely volatile to future changes.

On the other hand, the OO methods put the main emphasis on the structural as-
pect. A system is decomposed by identifying the objects in the real world. However,
the static view of objects is augmented with functional and dynamic aspects. An
object does not only contain attributes (i.e. a state) but also services (i.e. func-
tions). By encapsulating attributes and functions together, the functional view is
not anymore applied to the whole system, but localized in particular objects. This
new augmented view of objects allows the application of two further principles of
managing complexity:

De�nition 1.6 Data Abstraction

The principle of de�ning a data type in terms of the operations that apply to
objects of the type, with the constraint that the values of such objects can be
modi�ed and observed only by the use of the operations. 2

De�nition 1.7 Encapsulation (Information Hiding)

Encapsulation is the process of hiding all of the details of an object that do
not contribute to its essential characteristics. 2

By adding behavior, objects become dynamic. An object does not call anymore a
procedure from another object, but it sends a message with the requested task. The
receiver object itself \knows" which service has to perform the required task. This
permits to augment the generalization/specialization principle (i.e. the third pervad-
ing method of organization) and derive a new principle of managing complexity1:

De�nition 1.8 Inheritance

A mechanism for expressing similarity among classes simplifying de�ni-
tion of classes similar to one(s) previously de�ned. It portrays generaliza-
tion/specialization making common attributes and services explicit within a
class hierarchy or lattice. 2

1A precise analysis of the relation between inheritance and generalization/specialization is given
in the next chapter.
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The dynamic aspect like the functional one is distributed among objects. These
communicate and synchronize each other with messages.

In summary, the principles for managing complexity used by the OO methodology
are given in the following table.

Principle Purpose

Abstraction
Procedural
Data

De�ne Objects

Encapsulation Implement Abstraction

Classi�cation
Structural
Behavioral

De�ne and Compare Classes of Objects

Association De�ne Interrelations
Communication with Messages De�ne Interactions

All these principles are implied by the following equation of the OO approach:

Object Oriented = Classes and objects
+ Inheritance
+ Communication with messages

In contrast to Structured-Analysis/Structured-Design the OO{methodology o�ers a
uniform framework for the analysis, design and implementation of a system. The
design and implementation phases extend the analysis model with new objects and
with design/implementation details. Further, by encapsulating attributes and func-
tions in objects it also assures a good stability to future modi�cations.

1.2 Current Work in Formal Foundations

1.2.1 The Sequential World

Despite of the terminology of message passing most existing object oriented lan-
guages are sequential in nature [43, 88, 62, 29, 54, 87]. Their formal foundation was
the focus of intensive research activity.

In 1984 Cardelli suggested that basic concepts of OO programming could be under-
stood type-theoretically, using the following rough correspondence [22, 23]:
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Object Oriented Languages Typed Lambda-Calculus

class record type
object record
subclass subtype
method function
method call function call

This correspondence was extended or slightly modi�ed during the intervening years
[18], [26, 25, 24], [35, 21], [69, 72], [47], [80], [81], [91, 93]. Some of these extensions
and modi�cations are given in the following Table.

Object Oriented Languages Typed Lambda-Calculus

class parameterized record de�nition
class interface recursive record type
attribute bound variable
object modi�cation functional record update
method inheritance cascaded record construction
self record recursion variable
selfType type recursion variable

New type theoretical approaches were also developed for example in [1, 72, 79, 77].

1.2.2 The Concurrent World

Concurrent OO languages are by far less represented as their sequential counterparts.
Among them, probably best known are the Actor languages [3, 4], POOL [9, 10, 11],
�o�� [50, 51], Abacus [75, 74] and Maude [60].

There is also less consensus for their formal foundation. This is in particular a con-
sequence of the various synchronization mechanisms which can be used to explain
message passing. For example POOL, �o�� and Abacus use synchronous commu-
nication while Actor languages use asynchronous communication.

1.3 Claims and Outline of the Thesis

The purpose of this thesis is to give a formal foundation for the principal concepts
of the OO paradigm like objects, classes, message passing, inheritance and polymor-
phism in a concurrent, asynchronous setting. By interpreting objects as functions
communicating asynchronously over unbounded channels we extend the results from
the sequential world to the concurrent one. Our major claims are that:
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� Objects, functions and processes can be uni�ed by using an appropriate type
system and communication model.

� This model gives a better description of the objects' behavior by unifying their
functional and the dynamic aspects.

� This model can be e�ectively used in conjunction with OO methods and leads
to a better understanding and design of software systems.

These claims are materialized in our thesis as follows.

In Chapter 2 we critically review the de�nitions of objects, classes, inheritance, poly-
morphism and associations as given in some of the best known OO methods and OO
programming languages, and extract our own informal de�nitions. This is necessary,
because the great diversity of OO methods and OO programming languages, often
not accompanied by a clear formal foundation, causes some confusion about the OO
terminology. The same names often denote slightly di�erent things in di�erent OO
dialects.

In Chapter 3 we develop the syntax and the semantics of the typed lambda calculus
which forms the basis of our object model. The syntax is given as a type system
i.e. as a system of rules which simultaneously de�nes the well formed terms and
their associated types.

Starting with Cardelli, most typed lambda calculi for objects identify objects with
records, classes with parameterized record de�nitions and class interfaces with record
types. Generic classes are polymorphic class de�nitions and inheritance is a cascaded
record construction in presence of subtyping. Given a record term, the reconstruc-
tion of its associated type, is not a trivial task in a type discipline which includes
parametric polymorphism and subtyping. To make this problem decidable, most
type systems for records require explicit type information for the variables inside
the terms [18, 26, 25, 24, 35, 21, 69]. Such systems are therefore known as explicitly
typed. However, since polymorphic languages involve quite a bit of type informa-
tion, the process of declaring the type of variables is usually very tedious. This
is the motivation of more restricted languages which make this declaration process
optional. Type systems for such languages are known as implicitly typed. They all
have a decidable type inference algorithm. The most important example of such a
language was obtained by encoding record inclusion with parametric polymorphism
[81, 91, 93]. This encoding is however very rough, because the depth of inclusion is
limited to the depth of quanti�cation i.e. to one.

In contrast to the record approach, we model objects in a new way, as case functions.
This modeling has the advantage that it can be easily extended to describe objects
working on message histories. In our model classes are parameterized case{function
de�nitions and class interfaces are particular function types. Moreover, inheritance
is a cascaded case{function construction in presence of subtyping and generic classes
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are polymorphic class de�nitions.

Our typed lambda calculus is de�ned by an implicitly typed system. It includes
union, intersection and conditional types beside the more usual function and con-
structor types. As in the record approach, it also includes recursive type de�nitions,
subtyping and parametric polymorphism. A very important characteristic of our
calculus is its decidability. In Section 3.2.7 we give a type inference algorithm which
infers the least type of a term if this is well formed; otherwise the term is rejected.

The semantics of our language is given in a Curry{style. This means, the interpre-
tation of a term e is some element of an untyped model U given by a semantical
function [[�]] which is de�ned by induction on the structure of terms. Typing is a
matter of predication; a typing statement involving a term e is an assertion about
[[e]]. According to this point of view, types are predicates (i.e. sets) and subtyping is
inclusion.

In Chapter 4 we use the lambda calculus to de�ne our object model. This model
is purely functional and asynchronous. It is therefore most closely related to Actor
languages. However, in contrast to Actor languages, we use a typed formalism.
Moreover, the set of messages that are sent but not yet received i.e. the message
histories are explicitly modeled by in�nite lists of messages, also known as streams
[17]. The processes are continuous case{functions operating in a sequential manner
on streams. The main advantage of this approach is that it e�ectively uni�es the
concepts of object and process into one concept, that of a functional entity which
is self contained and provided with a uni�ed communication protocol. Based on
this model we give a precise de�nition for objects, communication with messages,
classes, inheritance and parameterization.

Since the major interest for using objects, is to construct systems where each object
contributes to the overall behavior by interacting with one another, Chapter 5 is
devoted to the study of object con�gurations. These con�gurations are classi�ed
by methodological criteria in aggregation systems and mobile systems. The �rst
ones are hierarchical systems which can be treated as a whole. The second ones
are systems in which the communication partners can change on the basis of com-
putation and interaction. We start by discussing aggregation networks. We give
some typical examples and investigate their properties. We then analyze mobile
systems. We discuss their properties and show how mobility can be achieved with
higher order streams. This is an important result, since it is usually believed that
stream processing function con�gurations are static. Finally for the study of the
logical properties necessary to express mobility, we devise a network calculus. This
calculus does not view a system as a function, but as a collection of equations with
designated input/output channels.

In Chapter 6 we present a system which implements the type inference algorithm
from Chapter 3. We give some typical examples together with their types as inferred
by the system.
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Finally in Chapter 7 we summarize the main results of the thesis and describe addi-
tional areas for further study. For each of these areas we outline some preliminary
ideas.



Chapter 2

Basic Principles

From the pioneering work in CLU [56] and Smalltalk until the recent explosion of OO
programming languages, the OO concepts evolved and diversi�ed. OO languages
range today from untyped to typed, from sequential to parallel from class based to
delegation based etc. As a consequence, the same names denote slightly di�erent
things in di�erent dialects. This was also ampli�ed by the lack of a clear formal
foundation. In this section we de�ne the OO concepts which we model later by
comparing de�nitions from several well known OO literature sources. Since our
framework is functional we will have a preference for functional dialects.

In subsection 2.1 we de�ne the objects i.e. the basic building blocks for OO systems.
In order to understand and manipulate them, objects are classi�ed according to
their similarities. Object classes are de�ned in subsection 2.2. Classi�cation was
also heavily used outside the OO community in the theory of (abstract) data types.
In subsection 2.3 we point out the di�erence between the abstraction/encapsulation
mechanisms used by abstract data types and classes. In particular we show that
classes are not abstract data types (ADTs) implementations as it is usually be-
lieved in the OO community. To simplify the comparison we use a functional,
non{concurrent dialect. Since the comparison is rather technical it can be skipped
at a �rst lecture. In section 2.4 we emphasize the di�erence between generaliza-
tion/specialization and inheritance. Generalization hierarchies allow to de�ne poly-
morphic methods i.e. methods which occur with the same name but with di�erent
bodies at di�erent levels of the hierarchy. This kind of polymorphism is known as
subtype polymorphism. Another form of polymorphism is the parametric polymor-
phism. It allows to de�ne generic classes as for example generic lists. Parametric
polymorphism is discussed in section 2.5. Finally, in section 2.6 we discuss associa-
tions. They allow to describe statically the potential object con�gurations.

11
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2.1 Objects and Messages

In every OO methodology a system is conceived, by analogy with the real life,
as a collection of interacting objects. The objects are abstractions of their real
life counterparts. They exhibit only those properties which are meaningful for the
system. Let us look to the object de�nitions given in some of the most popular OO
sources:

[86] An object is a concept, abstraction or thing with crisp boundaries and meaning
for the problem at hand. All objects have identity and are distinguishable.

[13] An object has state, behavior and identity; the structure and behavior of
similar objects are de�ned in their common class; the terms instance and
object are interchangeable.

[9] An object is an integrated unit of data and procedures acting on these data.
The data in the objects is stored in variables not accessible to other objects:
they are strictly private.

The �rst de�nition is deliberately very general and thought for the analysis phase of
systems, while the other ones are more closely related to the design and implemen-
tation phases. However, all agree that objects are uniquely identi�ed, have some
internal data and exhibit a particular behavior. More precisely, we de�ne objects as
follows:

De�nition 2.1 Objects

An object is a clearly delimited software entity which has:

� a state i.e. it contains some private data,

� a behavior i.e. it can execute certain procedures,

� a unique identity .

2

The private data is stored in variables local to the object also known as instance
variables or attributes. Methods and programming languages di�er with respect to
the nature of the private data.

In pure OO languages like Smalltalk [43], POOL [9] or Actor Systems [4], variables
contain only references to other objects (i.e. object identi�ers). Only these are
manipulated by objects. As a consequence all data values, even booleans or integers,
have to be modeled as objects. The addition 2+3 written as 2!add(3) is performed
by sending to the object referenced by 2 the message add with the reference 3 as
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parameter. As a result of the addition the object returns the reference 7 of the
object behaving as the integer 71.

Hybrid OO languages like C++ [88], Objective-C [37] or Ei�el [62] have the standard
data types like integers, characters or booleans built in. Their elements are values
and they are distinguished from (object) references.

Finally, in OO methods like [86], it is suggested that attributes should contain only
data values. References should be treated as elements of the (directed or undirected)
relations which occur between classes of objects. They are not subordinated anymore
to objects but get instead a separate status.

The procedures inside an object are known as the object methods. Only these are
accessible to the outside world. A graphical representation of objects is given in
Figure 2.1.

varn

methm

...
var1

...
meth1

Figure 2.1: Object structure

A particular method is activated by sending the object a message. Again, citing
from the literature:

[9] The only way objects can interact is by sending messages to each other. Such
a message is in fact a request from the sender for the receiver to execute a
procedure. Such procedures, which are executed in response to messages are
called methods. The receiver decides whether and when it executes such a
method and in some cases2 it even depends on the receiver which method is
executed.

[37] An object is requested to perform one of its operations by sending it a mes-
sage telling the object what to do. The receiver responds to the message by
executing this operation and returning control to the caller.

1In a pure functional OO language 2 and 3 are the objects themselves instead of references.
Hence add would return the object 7.

2When using inheritance.
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[94] Computation or information processing is represented as a sequence of message
passing among objects.

-
�Sender Receiver

parameters

result

?

"
"
"" -

v1 var1

v2

v3

varn

methm

meth1

meth1

v1 := v2!meth1(v3) Answer (meth1)

Figure 2.2: Communication between objects

We can conclude that:

De�nition 2.2 Communication and messages

Objects can interact by exchanging messages according to a precisely deter-
mined message interface. A message consists of a method name and actual
parameters to be passed the method. The receiver alone determines when and
which method to execute in response to a message. The method can return a
result which is passed back to the sender. 2

Hence, interaction among objects respects the abstraction/encapsulation principles.
The objects alone are responsible to maintain their local data in a consistent state.
A graphical representation of communication inspired from [9] is given in Figure
2.2. The object pointed by v2 receives the message meth1(v3). This is written as
v2!meth1(v3). In response to the message this object activates the corresponding
method. The result is returned to the caller which updates v1.

Objects have a dynamic nature. Citing again:
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[61] Object is a run time notion; every object is an instance of a certain class,
created at execution time and made of a number of �elds.

[9] Objects are entities of dynamic nature. At any point in the execution of
a program a new object can be created, so that an arbitrary large number
of objects can come into existence. Objects are never destroyed explicitly.
However, they can be removed by garbage collection if it is certain that this
will not inuence the correct execution of the program.

We can conclude that objects do not explicitly occur in a program. More precisely:

De�nition 2.3 Dynamic nature of objects

Objects are semantic entities which occur only in the meaning of a program.
They are dynamically created and destroyed by executing i.e. by interpreting
the program. 2

2.2 Classes

As we already pointed out objects are semantic entities. On the syntactic level, the
corresponding notion is that of a class. Citing from the literature:

[32] A class is a description of one or more objects with a uniform set of attributes
and services, including a description of how to create new objects in the class.

[86] An (object) class describes a group of objects with similar properties (at-
tributes), common behavior (operations), common relationship to other ob-
jects and common semantics.

[9] In order to describe systems with many objects, the objects are grouped in
classes. All elements (the instances) of a class have the same name and types
for their variables (although each object has its own set of variables) and they
all execute the same code for their methods. In this way, a class can serve as
blueprint for the creation of its instances.

[61] A class is an ADT implementation3, not the ADT itself. It is a language
construct combining the module and type aspect. Classes are a purely static
description of a set of possible objects { the instances of a class. At run time
we have only objects, in the program we see classes.

[35] A class is a parameterized object de�nition. Di�erent instantiations of the
parameters permit the creation of di�erent objects.

3As we will show in the next section this is not true.
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Excepting the last one, all the above de�nitions exhibit a dual understanding and
use of a class: as a type and as a function (or module).

As a type it is used for classi�cation purposes. In this case:

� A class describes the properties (or attributes) and the behavior (or methods)
of its own objects.

Hence a class can be understood as a predicate selecting from all objects with the
same interface those behaving as stated in the class de�nition.

As a function it is used as a generator. In this case:

� A class is used to create new objects, behaving as stated in the class de�nition.

The class de�nition however, is actually encoded in the object creation function.
Trivially this function generates all objects behaving as described in the class de�-
nition. Hence we can state that:

De�nition 2.4 Class

A class is a parameterized object de�nition. Di�erent instantiations of the
parameters permit the creation of di�erent objects. In other words a class is
the de�nition of an object creation function. 2

In most OO programming languages part of the de�nition is implicit in the speci�ca-
tion of the attributes and of the methods. Hence when a user de�nes his own object
creation function he only describes how to assign initial values to the attributes.

Although in some languages (like Smalltalk for example) classes are allowed to be
dynamically created we will consider them to be static.

If we view a class as a function it is natural to ask what is the type of the class.
Usually this type is exactly the syntactic interface of the objects in this class. Distin-
guishing between classes and their types Cook, Hill and Canning put an end to the
long lasting confusion between inheritance and subtyping in [35]. A more detailed
presentation is given in section 2.4.

Most OO methodologies support a graphical notation for classes which is actually
nothing more than the type (or syntactic interface) of the objects in this class. For
example [86] suggest for classes the notation from Figure 2.3.
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attribute-name-1 : data-type-1 = default-value-1

operation-name-1 (argument-list-1) : result-type-1

attribute-name-2 : data-type-2 = default-value-2

operation-name-2 (argument-list-2) : result-type-2
...

...

Class-Name

Figure 2.3: OMT Notation for Classes

A class is represented as a box which may have as many as three regions. The
regions contain from top to bottom: the class name, a list of attributes and a list
of operations. Each attribute may be followed by optional details such as type and
default value. Each operation name may be followed by optional details such as
argument list and result type. Attributes and operations may not be shown; it
depends on the level of detail.

A class diagram corresponds to an in�nite set of instance (i.e object) diagrams.
Instance diagrams are useful for documenting test cases (especially scenarios) and
discussing examples. Figure 2.4 shows a class (left) and two possible instance dia-
grams it describes.

name : string

age : integer

Person (Person) (Person)

Joe Smith

24

Mary Sharp

52

Figure 2.4: The Class Person and Two Instances

2.3 Classes and Abstract Data Types

One may argue, the above de�nitions are nothing but a formulation of well known
concepts in new words: classes are actually abstract data types, objects are abstract
data type values and message sending is procedure call. So, what is the di�erence
between abstract data types and classes? In this section we try to answer this
question.

Both abstract data types and classes have a type aspect i.e. they both can be
understood as a set of objects with uniform behavior. However, abstract data types
and classes observe this behavior di�erently. Abstract data types regard objects
as values. Hence, uniform behavior means they have the same set of applicable
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operations. Classes regard objects as procedures4. Hence, uniform behavior means
they respond in the same way to the same input values. Both views allow data
abstraction by creating objects with abstract constructors and observing them with
abstract observers. However, the observers are in the �rst case functions while in
the second case messages.

Strongly related to abstraction is the concept of encapsulation. The relation be-
tween abstraction and encapsulation is similar to the relation between speci�cation
and implementation. A speci�cation can be regarded as an incomplete program de-
scription. It de�nes only the \externally observable" behavior of objects and it is
this behavior on which other objects are expected to rely on. An implementation
on the other hand, can be regarded as a complete program speci�cation. However,
by encapsulating or hiding the additional details, other objects are forced to use
only the properties given by the abstract speci�cation. As a consequence, imple-
mentations can be changed without a�ecting the correctness of the other modules.
Because of the strong connection between abstraction and encapsulation, abstract
data types and classes use, as expected, di�erent encapsulation principles. In the
�rst case, encapsulation is achieved by hiding the concrete representation of the
data values. In the second case, encapsulation is achieved by using a functional (or
procedural) interface (i.e. by �{abstraction).

In the following subsections we compare the abstraction/encapsulation principles
of classes and abstract data types by means of an example: the speci�cation and
implementation of lists5. For the simplicity of exposition we ignore object identities
and take a purely functional view of objects. For speci�cations we use a �rst order
logic of higher order functions with a relatively powerful type system.

2.3.1 The List Example

The abstract constructors for integer lists are nil, which is the empty list, and cons,
which takes a list and an integer and delivers a new list with the integer in front of
the list. The observers are null which is true for empty lists and false for cons lists,
head which returns the head of the list and tail which returns the rest of the list.
Postponing for the moment what observers really are, an abstract speci�cation for
lists can be given as a matrix with constructors on one axis and observers on the
other one. Each cell of the matrix de�nes the behavior of a constructor/observer
pair, as shown in Figure 2.5.

4We will therefore use sometimes the phrase Procedural Data Types (PDT) instead of classes.
5This example is inspired from [34].
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c
c
c
cc

const

obs

true

nil

false

x

l

head

tail

null

?

?

cons l x

Figure 2.5: Abstract speci�cation matrix

2.3.2 The ADT Variant

In this case the observers are functions. Their de�nition corresponds to the parti-
tioning of the matrix into horizontal slices as shown in Figure 2.6.

c
c
c
cc

tail

head

const

obs

true

nil

false

x

l

null

?

?

cons l x

Figure 2.6: Decomposition into observers

The equivalent axiomatic speci�cation is given below. It consists of two parts: a
signature listing the names and types of the available operations and a set of axioms
describing the behavior of the operations. The signature and the axioms are also
called the syntactic and the semantic interface respectively.

ListADT = 9t. f

nil : t;
cons : t! Int! t;
head : t! Int;
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tail : t! t;

null : t!Bool;
eq : t! t!Bool;

axioms 8 x : Int, l : t in
head(nil) = ?;
head(cons l x) = x;

tail(nil) = ?;
tail(cons l x) = l;

null(nil) = true;
null(cons l x) = false;

eq(nil)(l) = null(l);
eq(cons l x)(l') = :null(l') ^ x == hd(l') ^ eq(l)(tail(l'));

g

The existential quanti�er is written in algebraic speci�cation languages (e.g. OBJ)
inside brackets as sort t. An implementation for ListADT is considered in this case
to be an algebra i.e. a set together with operations on this set.

The existential quanti�cation over types allows to construct and manipulate algebras
syntactically. If the above speci�cation is abbreviated as 9t:f�(t); Ax(t)g, then
its signature is the existentially quanti�ed record type 9t:f�(t)g. To simplify the
notation we will write it as 9t:�(t). The elements of this type must contain a
representation type � for t and a record of representation functions A : �(�). In other
words they are pairsA =< �;A >. Since from �(�) it is usually impossible to recover
�(t) (� may already occur in �(t)) these pairs are written as < t = �; A : �(t) >.

The formulas-as-types analogy [70] immediately provides us the necessary typing
rules for introducing/eliminating syntactic algebras. They are the introduction/elim-
ination rules of an existential quanti�er6:

(9i) � � A[�=t] : �[�=t]

� � < t = �; A : � > : 9t:�(t)

(9e) � � A : 9t:� �; x : � � N : �
� � open A as < t; x > in N : �

(
t not free in � or �(y)
where y 6= x is free in N

6An expression of the form � � t : �(t) with � = fx1 : �1; : : : ; xn : �ng is called a typing

assertion. It intuitively says that if variables x1; : : : ; xn have types �1; : : : ; �n then t is a well
formed term of type �. � is a type assignment or type context with no xi occuring twice. See
Section 3.2 or [46, 70] for more details.



2.3. CLASSES AND ABSTRACT DATA TYPES 21

The axiomatic semantics of these rules is given by the following law:

open < t = �; A : �(t) > as < s; x : �(s) > in N = N [�=s][A=x]

N can be any expression of the language. The variables s and x are bound to
the scope of N . As a consequence, terms built with open are unique modulo � -
equivalence. This use of s as a bound variable makes it \abstract" and di�erent
from every other type7. The side conditions in rule (9e) play a central role on the
observability (or abstractness) of the elements of � . First, no free identi�er y : � is
allowed in N if t occurs free in �. As a consequence the elements of the abstract
type t can be accessed only by the explicitly declared operations x. Second, t is
not allowed to occur free in the type of N . This prevents values of the abstract
data type to be visible outside the scope of the declaration. Let us denote the
subset of � reachable with A by ��. Then each algebra A =< �;A : �(�) > is an
implementation of ListADT only if it additionally satis�es Ax(��)

8.

As an example, suppose the type List was declared as follows:

data List = Nil j Cell(Integer, List)

Then it is easy to prove that the algebra A given below is an implementation of
ListADT.

A = <
t = List,

nil = Nil;
cons l x = Cell(x,l);

head(l) = case l of
Nil ) ?
Cell(x,l) ) x;

tail(l) = case l of
Nil ) ?
Cell(x,l) ) l;

null(l) = case l of
Nil ) true
Cell(x,l) ) false;

eq(l)(m) = case l of
Nil ) null(m)

7The open expression is written in [73] as abstype t with x : �(t) is A in N .
8Sometimes it is also necessary to replace in Ax(��) the equality symbol on � with a congruence

eq on � . Then A has to satisfy Ax(��)[eq= =].
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Cell(x,l') ) case m of
Nil ) false
Cell(y,m') ) x==y ^ eq(l')(m')

>

The representation type List is given by the data type de�nition as a labeled union
with cases Nil and Cell. This automatically introduces a case functional which is
used in the de�nition of the observers head, tail, null and equal. The function ? is
de�ned to not terminate. The abstract constructors nil and cons are taken to be
the same as Nil and Cell. Since each use of A has to be of the form open A as <
t; x : �(t) > in N , the list representation is hidden. This has the following
bene�cial consequence: it can be changed in the future without a�ecting N . Hence,
encapsulation is achieved in this case by type abstraction.

In algebraic formalisms using initial semantics [41] the open functional corresponds
to a parameterized speci�cation. In that case N is also an algebraic speci�cation
and the actual parameters are initial algebras. As expected, they must contain the
necessary operations and satisfy the formal parameter axioms9.

A restricted form of ADTs is given by type classes [90, 76, 45, 44]. In this case, all
algebras from a type class must have a di�erent representation type. This allows,
for each context, the automatic inference of the right algebra. As a consequence no
explicit open operation is necessary. Moreover, N does not need to be a speci�ca-
tion.

Since axioms cannot be checked automatically, programming languages use only
the signature of an interface. In most of them, similarly to algebraic speci�cations,
signatures do not live in the same universe as the other types. A typical example is
ML where the open functional is known as a functor in order to distinguish it from
\normal" functions. However, in [73] Mitchell and Plotkin develop the language
SOL in which existential types live in the same universe as the other types. As
a consequence, algebras may be passed as arguments to functions or returned as
results. A similar approach is taken by Cardelli and Wegner in [26].

2.3.3 The CLASS Variant

In this case the observers are messages and the objects are procedures containing
a separate branch for each possible observation10. One can also view objects as
procedures with multiple entry points11. These are modeled in typed functional
languages by records with functional �elds. Their de�nition corresponds to the

9To allow di�erent instantiations, formal parameters are loosely interpreted.
10This view will prove to be particularly useful when considering concurrent OO programs.
11Both views were already suggested in [97].
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vertical slices obtained by decomposing the speci�cation matrix into constructors as
shown in Figure 2.7,

c
c
c
cc

tail

head

const

obs

true

nil

l

x

falsenull

?

?

cons l x

Figure 2.7: Decomposition into constructors

In this case each constructor is converted into a template or class and the arguments
of the constructors become the local state or instance variables of the functional
objects.

Let us now examine the axiomatic speci�cation.

ListPDT = f
data ListPdt = �t. f

cons : Int! t;
head : Int;
tail : t;
null : Bool;
eq : t!Bool;

g;
Nil : ListPdt;
Cell : Int�ListPdt!ListPdt;
Cell hidden
axioms 8 x : Int, l : ListPdt in

Nil.head = ?;
Nil.tail = ?;
Nil.cons(x) = Cell(x,Nil);
Nil.null = true;
Nil.eq(l) = l.null;

Cell(x,l).head = x;
Cell(x,l).tail = l;
Cell(x,l).cons(y) = Cell(y,Cell(x,l));
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Cell(x,l).null = false;
Cell(x,l).eq(l') = :l'.null ^ x == l'.head ^ l.eq(l'.tail);

g

As with the speci�cation ListADT, the signature is obtained by erasing the axioms.
However, the signature of ListPDT does not classify algebras but object creation
functions for the list objects. The recursive type ListPdt of list objects closely re-
sembles the signature of ListADT. If f : t! �(t) occurs in the signature of ListADT
then f : �(t) occurs in ListPdt. With one exception. The constant nil : t occur-
ring in ListADT does not occur in ListPdt. Instead, it is made an object creation
constant Nil : ListPdt. But there is another important di�erence. The binding op-
erator for t. In the �rst case it is an existential quanti�er . As a consequence,
ListADT classi�es algebras owning a concrete representation type for list elements.
The open functional hides this representation. In the second case the binding oper-
ator is the recursion operator . As a consequence, ListPdt does not classify algebras
but recursive records. These records are the list elements. Although their internal
representation is hidden with a functional interface, lists are not anymore abstract
objects but multi-procedures. This is the key di�erence between abstract data types
and classes. The encapsulation principle is di�erent. In the �rst case each function
inside the abstracted algebra knows the representation of all of its arguments. In the
second case, only the representation of the �rst argument is known. For the other
arguments it is only known that they have a corresponding syntactic interface.

It is easy to check that the following function Nil is an implementation of the above
speci�cation.

Nil = �x �self.f
null = true
head = ?
tail = ?
cons = �y. Cell(y,self)
eq = �m. m.null g

where f

Cell(x,l) = �x �self.f
null = false
head = x
tail = l
cons = �y. Cell(y,self)
eq = �m. : m.null ^ (x == m.head) ^ (l.eq(m.tail)) gg

Nil is the only visible class constructor. As a consequence, list objects are created,
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inspected or modi�ed by sending it messages. Encapsulation is achieved by �{
abstraction.

Note that the de�nition of Cell uses two levels of recursion. The �rst one is due to the
recursive use of self and it is also known as object recursion. The second one is due
to the recursive use of Cell and it is known as class recursion12. An adequate theory
of procedural data abstraction (for short PDT) for a non{concurrent, functional
setting is given by closures [80].

2.3.4 Comparison

In the table 2.1 we summarize the most important aspects of both formalisms. We
assume that Xi does not contain the abstracted type t and that Yi is arbitrary.
We also abbreviate fxi j i 2 Ig by xi. This table clearly reveals that abstract
data types are di�erent form classes. However, it is natural to wonder if they are
isomorphical. In that case we could use only one formalism and automatically
translate the implementations into the other formalism if necessary.

Let us �rst give a translation function pdtadt: ListPDT!ListADT mapping each
record Nil satisfying ListPDT into an algebra A satisfying ListADT.

pdtadt(Nil) = < t = ListPdt,
nil = Nil;
cons = �l : ListPdt. �x : Int. l.cons(x);
head = �l : ListPdt. l.head;
tail = �l : ListPdt. l.tail;
null = �l : ListPdt. l.null;
eq = �l : ListPdt. �m : ListPdt. l.eq(m);

>

This is indeed an implementation of ListADT if the above functions satisfy the
ListADT axioms on all elements reachable with nil, cons and tail. But this is the
same as to require that Nil satis�es the ListPDT axioms. Hence A implements
ListADT.

In general, given an object creation function satisfying a class speci�cation we can
automatically generate an algebra satisfying the associated abstract data type spec-
i�cation. Two di�erent object creation functions are mapped in two di�erent alge-
bras. So, only loosely speaking, each object creation function is an implementation
of an abstract data type speci�cation.

The other way around, let us de�ne adtpdt: ListADT!ListPDT as follows:

12We will use a related technique for our concurrent framework in Section 4.2. In that case
object recursion is eliminated by the use of streams.



26 CHAPTER 2. BASIC PRINCIPLES

ADT PDT

speci�cation 9t: < �(t); Ax(t) > < ci : Xi ! T; Ax(T ) >
where where

�(t) = oi : t! Yi;
ci : Xi ! t;

�0(t) = oi : Yi;
T = �t:�0(t)

implementation algebra function tuple
A =< �;A : �(�) > ci : Xi ! T

abstraction type abstraction procedural abstraction

encapsulation hidden representation hidden state and
of elements function representation

open A as < x; t > in N ci : Xi ! T

objects abstract elements multiprocedures
e : t m : T

creation abstract constructors object creation functions
ci : Xi ! t ci : Xi ! T

observation abstract observers messages
oi : t! Yi m:oi : Y

0
i

protection level algebra object

security ok dangereous if
m : T can be constructed

without using ci

Table 2.1: Comparison between ADTs and PDTs
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adtpdt(A) = open A as
<t,
nilA : t;
consA: t! Int! t;
headA : t! Int;
tailA : t! t;
nullA : t!Bool;
eqA : t! t!Bool;

>
in Nil where f

Nil = abs(nilA);
abs(l) = f cons = abs � consA(l);

head = headA(l);
tail = abs(tailA(l));
null = nullA(l);
eq = eqA(l) � rep g;

rep(r) = if r.null then nilA else consA(rep(r.tail)) (r.head)
g

In order to de�ne adtpdt we need two auxiliary functions: abs : ListA!ListPdt
and rep : ListPdt!ListA such that rep � abs = idListA . We can not expect that
abs � rep = idListPdt because ListPdt also contains records which are not valid lists.
Then we de�ne the �elds of the recursive record as in Figure 2.8:

-

?

HH
HH

HH
HHj

6

��
��

��
��

��*
-Int

abs

cons

Bool

rep
eq

consA(l) eqA(l)
ListA ListA

ListPdt ListPdt

Figure 2.8: De�nition of the functional �elds

It is easy to verify that the record Nil satis�es the axioms from ListPDT.

In general, if all functions in the abstract data type signature contain the abstract
sort t only once in an argument position then abs can be de�ned entirely automatic.
If this is not the case (e.g. the function eq) we also need a representation function
rep. This function however, cannot be de�ned automatically. It needs additional
information in order to discriminate the objects on their constructor basis. For lists
we \knew" that the record �eld null discriminates Nil from the other records.

In conclusion, we can automatically translate each object creation function into an
algebra. The other way arround needs however, discrimination information. Even
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if this would be the case, pdtadt(adtpdt(A)) 6= A because their sorts are di�erent.
The most important di�erence between abstract data types and classes is their
encapsulation mechanism. The protection achieved by abstract data types is at type
level while the protection achieved with classes is at object level. Hence, procedural
data abstraction leads to a more �ne grained protection as type abstraction. While
for sequential programs, the advantage of a �ner protection is not so evident, this
proves to be very important in the case of concurrent systems.

2.4 Inheritance and Subtyping

One of the merits of OO methodologies, is their e�ort to reduce the conceptual
gap between di�erent phases of software development, by unifying related concepts
occuring in each of their phases. However, the price for this uni�cation is often a loss
of precision and also a source of confusion. The best example for such a confusion
is inheritance.

From the programmer's (or implementor's) point of view, it is very convenient when
de�ning a new class, to start with all the ingredients (attributes and methods) of
an existing class, and to add some more and/or possibly rede�ne some in order to
get the desired new class. The new class is said to inherit the attributes and the
methods from the old one. This can be repeated several times, and one can even
allow a class to inherit from more than one class { multiple inheritance. In this
way a complete inheritance hierarchy arises. By sharing code among classes in this
way, the total amount of code in the system can be signi�cantly reduced and its
maintenance simpli�ed.

From the analyst's point of view, an important role in managing complexity play
the so called \pervading methods of organization (or classi�cation)". Among them,
is also \the formation and distinction between classes of objects". Identifying com-
monalities between classes with respect to their observable structure and behavior,
allows the construction of complete generalization/specialization hierarchies. Amore
specialized class (a subclass) is also said to inherit the properties of its superclass.

In most OO methodologies, these two points of view are uni�ed. For example:

[14] Inheritance is a relationship among classes, wherein one class shares the struc-
ture or behavior de�ned in one (single inheritance) or more (multiple inher-
itance) other classes. Inheritance de�nes an is{a hierarchy among classes in
which a subclass inherits from one or more generalized super{classes; a sub-
class typically specializes its superclass by augmenting or rede�ning existing
structure and behavior.

[86] Inheritance is an OO mechanism that permits classes to share attributes and
operations based on a relationship, usually generalization.
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[33] Inheritance is a relationship between classes where the inheriting class has all
the properties of the inherited class and may have some more. Specialization
is a relationship between a class and the superclass from which it inherits all
the attributes and relationships.

However, generalization/specialization and incremental de�nition are related, but
quite di�erent concepts. In some cases they may be even contradictory. Both
concepts are very useful and should be present in every OO method, but they reect
completely di�erent concerns.

2.4.1 Generalization and Specialization

Generalization/specialization, or the is{a relationship, is concerned with the exter-
nally observable behavior of objects i.e. with what the objects are expected to do
and not with how they do it. If objects from a more specialized class have all the
observable properties (or behavior) of the objects in a more general class and possi-
bly some more, we can safely use these objects in a context requiring objects from
the more general class. The externally observable behavior of objects in a class is
given by their class interface. The class is said to implement this interface and the
interface is a property of the class.

value differentiates between subclasses

Discriminator is an attribute whose 

...

More Subclasses Exist

Multiple Inheritance

discriminator

Subclasses have overlapping membership

Superclass

Subclass-1 Subclass-2

Superclass

Subclass-1 Subclass-2

Superclass

Subclass-1 Subclass-2
... ...

Superclass-1 Superclass-2

Subclass

Figure 2.9: OMT notation for generalization/specialization
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In its simplest form, an interface is a type. In this case, generalization/specialization
is subtyping.

De�nition 2.5 Subtyping

A type � is a subtype of a type � written as � � � if any expression of type �
is allowed in every context requiring an expression of type � . 2

sucction pressure

discharge pressure

name

manufacturer

Centrifugal Pump

nr. of blades

axis of rotation

surface area

tube diameter

Heat exchanger

volume

pressure

Tank

name = P101

succt pres = 1.1 atm

disch pres = 3.3 atm

dia matl = Teflon

manuf = Simplex

surf area = 300 m 2

(Diaphragm pump) (Heat exchanger) (Tank)

manuf = Brown

tube diam = 2 cm

name = E302 name = T111

manuf = Simplex

volume = 400 000 l

pressure = 3 atm

Pump

Equipment

...

...Diaphragm pump

diaphragm material

Figure 2.10: A multilevel inheritance hierarchy with instances

In a more sophisticated system (e.g. axiomatic speci�cation languages) the type is
only the syntactic part of the interface. In this case the properties of the components
listed in the syntactic interface can be stated more precisely by a set of axioms. They
form the semantic interface. Hence, an interface is a pair (�; �). A speci�cation
(�;  ) is a specialization of (�; �) if both � � � and  ) � hold. A class A : � is an
implementation of the interface (�; �) if A satis�es the axioms in �.
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Each OO methodology provides a graphical notation for constructing generaliza-
tion/specialization hierarchies. For example, the OMT notation is given in Figure
2.9.

Using this notation, one can describe for example the class hierarchy and the asso-
ciated instances for di�erent kinds of equipments as in Figure 2.10.

2.4.2 Inheritance

Inheritance is concerned with the internal structure of objects, their attributes and
the code they execute for their methods. In other words, inheritance is concerned
with how the objects do what they do. Objects in a class which inherits methods
from another class have the same code for the inherited methods as the objects from
the superclass. This is the reason why Mitchell de�nes inheritance in [68] as follows:

[68] Inheritance is a mechanism for implementing objects of one class by reusing
the implementation of another.

In a more general perspective, inheritance can be understood as a general mechanism
for incremental code modi�cation. Since objects and classes are recursive or self
referencing (the pseudo variables self and self class are used for this purpose in
e.g. Smalltalk) we can formulate the following de�nition:

De�nition 2.6 Inheritance

Inheritance is a mechanism for incremental extension of recursive structures.
2

This de�nition can be instantiated on the object, class and type level. Since recursion
on the object level also implies recursion on the class level which in turn implies
recursion on the type level, inheritance on the object level implies inheritance on
the class level which in turn implies inheritance on the type level.

2.4.3 Inheritance versus Subtyping

The separation between generalization/specialization and inheritance is analogous
to the separation between an interface and its implementations. There are cases in
which we want inheritance without specialization or specialization without inheri-
tance. For example, in implementing a class queue it may be convenient to inherit
the code from the class array. However we do not want Queue to be a subtype of
Array because we do not want that all operations applicable to arrays to be appli-
cable to queues too. Moreover, adding a new method or overriding an old one, may
violate some invariant of the superclass and therefore destroy the subtype relation.
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inheritance subtyping

a construction a property
internal view external view
reuses class code relates class interfaces

Table 2.2: Inheritance versus subtyping

The other way around, suppose we specialize the type Queue to LQueue by adding
a new method measuring the length of a queue. Then it is possible to have a class
implementing Queue and a class implementing LQueue which are not at all related
by inheritance.

The �rst who distinguished between subtyping and inheritance were Cook, Hill and
Canning in [35]. This distinction is also done in some recent OO methods. For
example Martin/Odell de�ne generalization/specialization as:

� the result (or act) of distinguishing an object type as being more general or
inclusive then other,

and class inheritance as:

� an implementation of generalization which permits all the features of an OOPL
class to be physically available to, or reusable by, its subclasses { as though
they were the features of the subclass.

The table 2.2 summarizes the above discussion.

2.5 Parametric classes

A feature which considerably improves the exibility of typed OO languages is the
possibility to de�ne parameterized or generic classes.

[13] A generic class is a class that serves as a template for other classes, in which the
template may be parameterized by other classes, objects and/or operations.
A generic class must be instantiated (its parameters �lled in) before objects
can be created. Generic classes are typically used as container classes. The
terms generic class and parameterized class are interchangeable.

[86] A parameterized class is a template for creating real classes that may di�er
in well-de�ned ways as speci�ed by parameters at the time of creation. The
parameters are other data types or classes, but may include other attributes,
such as the size of a collection (also called generic classes).
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A typical generic class is the list class which can be instantiated as a list of points or
a list of integers. The generic methods ft, rt and cons on the list implicitly depend
on the type of the element. Local variables within the method have generic type
that depends on the instance. An example of a parameterized class list is given in
section 4.4. Parameterized classes are available in Ei�el and C++.

2.6 Associations

In the previous sections we analyzed objects in isolation. However, the major interest
for using objects is the construction of systems where each object contributes to the
overall behavior by interacting with one another.

For the static description of potential object con�gurations OO analysis uses links
and associations. Both concepts are borrowed from information modeling [30].

De�nition 2.7 Link

A link is a physical or conceptual connection between objects. Mathematically,
a link is a tuple of objects. 2

De�nition 2.8 Association

An association describes a group of links with common structure and com-
mon semantics. All the links in an association connect objects from the same
classes. Mathematically an association is a relation among collections of ob-
jects. A link is an instance of an association. 2

An association describes a set of potential links in the same way a class describes a
set of potential objects. Graphically, links and associations are represented e.g. in
OMT by a (possibly named) line between objects and classes respectively, as shown
in Figures 2.11 and 2.12.

City

name name

Country Has-Capital

Figure 2.11: Associations { class diagram
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Has-Capital

Has-Capital

(Country)

(Country) (City)

(City)

Canada Ottawa

France Paris

Figure 2.12: Associations { instance diagram

Associations are inherently bidirectional (i.e. symmetric). However, as in the case
of relations they can be traversed (or read) either in the forward or in the backward
direction. A particular direction or end of an association may be identi�ed with a
role name. Each role on a binary association identi�es a set of objects associated
with an object at the other end as shown in Figure 2.13.

employee

Works-for

employer
CompanyPerson

Figure 2.13: An association with roles

Similarly to relations, associations can be binary, ternary or higher order. However,
the vast majority are binary. The later ones are usually annotated with multiplic-
ity information which constraints the number of related objects. More precisely,
multiplicity speci�es how many objects of one class may relate to a single object of
an associated class. Di�erent forms of multiplicity information are shown in Figure
2.14.

(zero or one)
Optional 

1+ 1-2,4

Exactly one

(zero or more)
Many 

One or more Numerically
specified

Class

Class Class

ClassClass

Figure 2.14: Multiplicity information
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2.6.1 Aggregation

A very important form of association is the part-of association. This kind of as-
sociation encourages a hierarchical top down design. A system is decomposed in a
design step into subsystems (the \parts" of the system) which themselves can be
further decomposed until they are simple enough to be directly coded. Such systems
are known in the OO methodology as aggregates. Citing from [86]:

De�nition 2.9 Aggregates

An aggregate is semantically an extended object that is treated as a unit
in many operations, although physically it is made of several lesser objects.
Aggregation is a special form of transitive and antisymmetric association where
a group of component objects form a single semantic entity. Operations on an
aggregate often propagate to the components. 2

Because of their importance, in most OO methodologies, part-of associations are
marked with a special symbol which distinguishes them from other associations.
In [86] they are marked with a diamond. For example, a microcomputer can be
described as an aggregation as shown in Figure 2.15.

1+

1+

Microcomputer

Monitor System Box Mouse Keyboard

Chassis CPU RAM Fan

Figure 2.15: A microcomputer as aggregate

An important characteristic of aggregates is that the role of each constituent is
�xed within the whole system. Constituents cannot later leave the original system
(i.e. the aggregate) and \associate" to build another system. They are private to
the original system. For example in Figure 2.16 a company is represented as an
aggregation of its divisions which are in turn aggregations of their departments.
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Works-For

Company Division Department

Person

Figure 2.16: Aggregation and association

However, a company is not an aggregation of its employees since company and
person are objects with equal status. Employees may work for a company or leave
the company. We say that the relation between the company and the employees
may vary dynamically. This issue is discussed thoroughly in the next subsection.

The microcomputer example has shown a two level aggregation. According to [86],
aggregation can be �xed, variable or recursive.

� A �xed aggregate has a �xed structure. The number and types of subparts are
prede�ned. A �xed aggregate is shown in Figure 2.17.

Lamp

Base Cover Switch Wiring Socket

Figure 2.17: A �xed aggregate

� A variable aggregate has a �nite number of levels, but the number of parts
may vary. The microcomputer is a two level aggregate with a variable number
of monitors, mouses, RAMs and Fans.

� A recursive aggregate contains directly or indirectly an instance of the same
kind of aggregate; the number of potential levels is unlimited. Figure 2.18
shows a computer program which is an aggregation of blocks with optionally
recursive compound statements.
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Program

Block

Compound Simple

Statement Statement

Figure 2.18: A recursive aggregate

Aggregation is not the same thing as generalization. Aggregation relates instances.
Two distinct objects are involved; one of them is part of another. Generalization
relates classes and is a way of structuring the description of a single object. With
generalization an object is simultaneously an instance of the superclass and an in-
stance of the subclass.

2.6.2 Dynamic Associations

The aggregates presented in the previous section impose a hierarchical view of sys-
tems. Each component has a precisely stated position in the hierarchy which can
not be changed anymore. Although this is adequate in many cases, and in principle
each system can be designed in this way, a \at structure" seems to be preferable
for systems which we call mobile (or democratic). In such systems, the role of com-
ponents may change as the system evolves. They may associate at a given point of
time to build a system and leave this system to build another one later on.

De�nition 2.10 Mobile Systems

Systems in which every object can change its communication partners on the
basis of computation and interaction are designated as mobile. 2

The �rst systems exhibiting mobility were the Actor systems [3]. However, the
lack of a clear mathematical foundation limited their inuence until recently when
plenty of mobile systems appeared in the literature. Among them is the �-Calculus
which not only adds mobility but also simpli�es CCS [66, 67, 65], the Chemical Ab-
stract Machine [12] which consecrated the multi-set laws and the Rewriting Logic of
Meseguer [59] which is based on parallel rewriting modulo associative-commutative
laws.
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Chapter 3

The �{Calculus for Objects

When giving a formal foundation for objects, a very important concern is to devise
an appropriate type system. The main reasons for introducing a type system are:

� the detection of erroneous expressions at compile time (e.g. the use of a natural
number as if it where a function),

� the enhancement of program e�ciency by using compile time information,

� the support for data abstraction and modularity.

The type of an object can be understood as a property or theorem about that
object. This property says that it never delivers an answer of the form message not
understood, as do objects in an untyped language like Smalltalk or Object Scheme.
We are therefore concerned in this chapter with the de�nition of a typed language
for objects.

The object model which we present in the next chapter, views objects roughly as
case{functions with a hidden state, where each branch of the function corresponds to
a method of the object. This contrasts to the usual modeling of objects in the typed
�{calculus where objects are interpreted as records. In section 3.1 we compare these
two models and show why the �rst one is more appropriate for our purpose. We
also intuitively introduce a type system for this model by highlighting the problems
which occur in a naive typing with variants. The next two sections describe in
detail the corresponding typed �{calculus. In section 3.2 we present its syntax and
in section 3.3 we present its semantics.

3.1 Design Decisions

The comparison between the record and the case models uses a small but typical
OO{programming example: Cartesian points. Let us �rst introduce this example

39
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as it would be written in a typed OO language which distinguishes inheritance from
subtyping as e.g. [36].

3.1.1 The Cartesian Points Example

A Cartesian point is an object with two attributes (or instance variables), the coor-
dinates xc and yc and with four methods, x (), y (), mv (dx; dy) and eq (p). The �rst
two return the coordinates values, the third one increments them with dx and dy
respectively and the fourth one tests if the current point is equal with the point p.

The interface of the Cartesian points class is de�ned as follows:

interface Point

x () returns Real;
y () returns Real;
mv (Real, Real) returns Point;
eq (Point) returns Bool;

It is a description of the messages understood by the Cartesian point objects where
each message is given with the parameters and the result types. As we will discuss
later, the interfaces are used to ensure that message sending never generates a run
time error.

class cart point (xc : Real, yc : Real)

implements Point;

method x () returns Real
return xc;

method y () returns Real
return yc;

method mv (dx : Real, dy : Real) returns Point
return new myclass (self .x () + dx, self .y () + dy);

method eq (p : Point) returns Bool
return self .x () == p.x () ^ self .y () == p.y ();

The class is a pattern that can be used to create objects with common structure.
It describes what attributes the objects (or instances) will have, the code for each
method and how to create objects. The messages understood by the objects in
a class are listed in the class interface. They can be regarded themselves as the
interfaces for abstract operations. The methods are particular implementations of
these operations. This is the reason why the class cart point point is declared to be
an implementation of the interface Point.
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The de�nition of the class cart point reveals a common characteristics of objects:
they are recursive. First, recursion is necessary to allow methods to refer each
other. For example the method eq refers both x () and y ()1. Like in Smalltalk,
we used the pseudo variable self to refer to the object itself. When the methods
eq or mv are invoked, self is bound to the receiver of the message. This level of
recursion is known as object recursion. Beside self , Smalltalk also uses the construct
self class to create an object of the same class as self (we used instead myclass).
This is actually another level of recursion (or self reference) which is known as class
recursion. A graphical illustration is given in �gure 3.1

class

xc

yc

Variables

-

-

-

. -

-

�

-

new

Messages

x

y

eq

mv

object

class

self

mv method

myclass

Constructor

Figure 3.1: Recursive structure of objects

The recursion in the class de�nition is also reected in the interface de�nition.
The interfaces of both mv and eq use Point recursively. The separation between
classes and interfaces allows multiple implementations respecting the same message
protocol. Safety is guaranteed by compile time checking which uses the declaration
of instance variables and formal parameters in the form v : < interface > in class
< class >. For example:

p : Point in class cart point

3.1.2 The Record versus The Case Semantical Model

In order to give the objects a denotational semantics and in particular to correctly
type inheritance, these are often regarded as closures i.e. as functions (or data struc-
tures containing functions) with some local bindings to values or storage locations

1In this respect the example is not very convincing since instead of x () and y () one could have
used xc and yc. However, in general this is not the case.
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[80]. In this modeling the instance variables are simply the � or let bound vari-
ables. For the explanation of message passing there are two possible alternatives,
as already suggested by Zilles in [97]. In the �rst case, each method is a separate
entry point of a multi{procedure. The method name is used to select the appropri-
ate entry point. In the second case, each method is a separate branch of a single
procedure. The method name is used to select the appropriate branch. Although
very similar, these two di�erent approaches lead to di�erent (data) structures. In
the �rst case objects become records with functional �elds as �rst pointed out by
Cardelli in [22, 23]. The method name corresponds to a record �eld so it is applied
as �eld selection to the object. In the second case the objects become case functions
as pointed out by Adams and Rees in [2]. The method name corresponds to a case
selection so it is passed to the object which chooses the appropriate branch. Let us
examine these approaches on the Cartesian point example. To simplify notation we
do not explicitly write the type annotations.

The record variant is as follows:

P = �myclass:�(xc; yc):�self

f x = xc,
y = yc,
mv = �(dx; dy): �x myclass(self:x+ dx; self:y + dy),
eq = �p: (self:x == p:x) ^ (self:y == p:y) g

cart-point = �x P ��class de�nition
o = �x cart point (a,b) ��object creation
(o.mv)(dx; dy) ��message passing

P can be regarded as the de�nition of the class cart point. The class itself is obtained
by binding myclass to this de�nition. The self reference role of myclass is made
explicit as a �xed point variable. A Cartesian point object is obtained by instanti-
ating xc and yc with actual coordinates and by binding self to the object. Again,
as with myclass the self reference role of self is made explicit. Objects are passed
only the method arguments. The method name is used to select the appropriate
method.

The object{as{record modeling was extensively analyzed in the literature including
type checking systems [23, 26, 25, 21], type inference systems [81, 91, 93, 49] and
semantical models [23, 19, 20, 15]. The above double recursion scheme for the
modeling of objects �rst appeared in [35].

The alternative object{as{case{function variant is as follows:

P = �myclass:�(xc; yc):�self:�m:

case m of
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x ) xc
y ) yc
mv (dx; dy) ) �x myclass(self(x) + dx; self(y) + dy)
eq (p) ) (self(x) == p(x)) ^ (self(y) == p(y))

cart point = �x P ��class de�nition
o = �x cart point (a,b) ��object creation
o mv(dx; dx) ��message passing

The treatment of instance variables and of recursion is similar to the record variant.
However, in this case the whole message (including the method name) is passed
to the object. This selects the appropriate branch with the message arguments
substituted for the pattern variables. The object{as{case{function modeling was
persuaded in Scheme. More precisely, since Scheme is an untyped language, Scheme{
objects are actually conditional{functions instead of case{functions. For example, a
Scheme modeling of the Cartesian points, similar to the one discussed in [2] but in
our syntax and without side e�ects like !set, would be:

P = �myclass:�(xc; yc):�self:�m:

cond

m == x ) �():xc
m == y ) �():yc
m == mv ) �(dx; dy): Y myclass(self(x) + dx; self(y) + dy)
m == eq ) �p:(self(x) == p(x)) ^ (self(y) == p(y))
true ) error

Y is the untyped version of the �xed point operator.

Both the above record and function models make a signi�cant simpli�cation which
does not correspond to the OO programming intuition. Asking a point about its
x or y coordinate destroys that point. We actually expect the point to return its
coordinate and subsequently be able to answer to other messages. As a consequence
an object should be a function mapping histories of input messages onto histories of
answers. Beside being closer to our intuition this modeling will also allow to move
from the sequential to the parallel world.

Note that considering an object as a record of functions working on message histo-
ries is not of very much use because �eld selection would also destroy the object.
However, the object as case{function model can be easily extended to histories by
replacing the single message m by a history of messages s and modifying each branch
to consume the �rst message and to recursively call the object on the rest of the
history. More details are given in section 4.2. This is the �rst important design
decision we take:
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Objects are case{functions extended to message histories.

3.1.3 Problems Encountered in a Naive Typing

Although the object{as{case{function modeling is more appropriate for our concur-
rent setting, an adequate typing proves to be a non trivial task in this case. First,
let us show the problems encountered in a naive typing with variants.

Suppose we have points only with a coordinate xc and a color col which we loosely
de�ne as follows:

XC = �myclass:�(xc; col):�self :�m

case m of

x ) xc
c ) col

XC = �x XC

A point p with the coordinate 0 and the color red is obtained as �x(XC(0, red)). A
tentative typing for p could be the following one:

p : [x, c]! [x : Real, c : Color]

where [l1 : �1; : : : ;ln : �n] is a variant or a labeled sum. The variant type [x, c] is
an abbreviation for [x : (), c : ()] where () is the unit type which contains only one
member, the nullary constructor (). To correctly reect this typing we have to
modify the above de�nition of XC as follows:

XC 0 = �myclass:�(xc; col):�self :�m

case m of

x ) [x = xc]
c ) [c = col]

A �rst negative consequence of this typing is that we are forced to explicitly la-
bel the answers. This is naturally an inconvenience compared with the object{
as{record approach. However, there is a much more serious problem: the typing
[x, c]! [x : Real, c : Color] is not accurate enough. Although, our objects always
deliver the coordinate when asked for the coordinate and the color when asked for
the color, the above type also contains functions which deliver the coordinate when
asked for the color or the color when asked for the coordinate. In order to see why
this matters, suppose we extend the above de�nition by adding the coordinate yc.
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XCY 0 = �myclass:�(xc; col; yc):�self:�m

case m of

x ) [x = xc]
c ) [c = col]
y ) [y = yc]

Then an object q generated by this class de�nition has the type:

q : [x, c, y]! [x : Real, c : Color, y : Real]

This object behaves exactly as the object p for the messages [x], [c] and additionally
delivers [y = yc] in response to the message [y]. Hence, we would expect to be able
to use q in every context in which p is allowed. However, nothing prevents a func-
tion with the same type as q to deliver [y = yc] as the answer to the messages [c] or
[x]. This could generate a run time error. As a consequence, the type of q is not a
subtype of the type of p. More formally, the sub{typing rule for functional types is:

(�!)
�0 � � � � � 0

� ! � � �0 ! � 0

It says that we are allowed to increase the domain of the input values or to de-
crease the domain of output values. Although [x, c] � [x, c, y] it is not the case that
[x : real, c : Color, y : Real] � [x : Real, c : Color] as the above rule requires, but the
other way around. As a consequence

[x, c, y]! [x : Real, c : Color, y : Real] 6� [x, c]! [x : Real, c : Color]

which implies that the extension q of p is not allowed in the contexts in which p
is. Since, as we show later, inheritance is nothing but a general mechanism for such
function extensions, this also implies that we cannot correctly type inheritance. In
conclusion, neither records nor variants are adequate for our functional modeling of
objects. However, we can use related ideas when searching for a more appropriate
type system.

3.1.4 An Adequate Type System

Our �rst criticism of variants was the obligation of output labeling. This forced us
to replace the de�nition XC of colored points by XC 0. However XC is a well typed
term in a type discipline allowing union types [84, 6]. In this case, the output type of
XC is the union Real [ Color2. Variants and their subtyping relation are also easily

2Typically Real will be disjoint from Color.
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recovered as follows. Each element constructor is considered to determine a unique
sort constructor which has the same name and arity. Moreover, it is distinct from any
other sort constructor, including the function space constructor. For example x is
the only member of the sort x and mv(dx,dy) is an element of the sort mv(Real,Real).
Then [x, c] is given by x [ c and [x :Real, c : Color] is given by x(Real) [ c(Color).
Adding the axioms � � � [ � and � � � [ � (where � is understood as inclusion)
we also get the previous subtype relations:

x [ c � x [ c [ y
x(Real) [ c(Color) � x(Real) [ c(Color) [ y(Real)

In the presence of unions we can consider that:

p : x [ c!Real [ Color

Although it is also the case that

x [ c [ y!Real [ Color � x [ c!Real [ Color

unions are in general not enough to solve the second problem. For example, if we
�rst considered points only with a x and a y coordinate and subsequently added a
color, we would have obtained that:

x [ y [ c !Real [ Color 6� x [ y !Real

In order to solve this problem, let us �rst discuss a very desirable property of modern
strongly typed languages (e.g. ML), namely parametric polymorphism. For example,
the function:

cons : 8�. ��List �!List �

is said to be polymorphic. Given a universe U of types which is closed under sort
constructors (e.g.�,!, List) the polymorphic type of cons can be understood as the
in�nite intersection \�2U(��List �!List �)3. As a consequence, cons can be used
in any context requiring a function of type ��List �!List � , for an arbitrary � .
Cardelli and Wegner [26] re�ned this form of polymorphism in the presence of sub-
typing by restricting the range of � to subtypes of a given bound{type �. This type
of polymorphism is known as bounded polymorphism. Parametric polymorphism can
be recovered from bounded polymorphism by taking � to be the whole universe. For
example,

3In a type discipline which does not contain intersections one usually speaks about the in�nite
product ��2U (��List �!List �).
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cons : 8� � Point. ��List � !List �

restricts � to be a subtype of Point. Parametric polymorphism allows the de�nition
of parametric object classes and its bounded form was essential to correctly type
inheritance in [26]. We therefore also include bounded polymorphism in our type
system.

As already implied by the de�nition of polymorphic types, we also include intersec-
tion types [84, 78]. However, unions and intersections are used in a very restricted
way, allowing decidable type inference (more details are given in the next sections).

Finally we also include conditional types [82, 6]. A conditional type is written as
�1 ? �2. It is void if �2 is void; otherwise it equals �1

4.

Combining the above types we can accurately express the connection between the
input and the output of a case expression. For example:

p : 8� � x [ c: �! (Real?� \ x) [ (Color?� \ c)

Similarly, if q is a point de�ned by XCY which is obtained by forgetting about the
variants in the output of XCY 0 we have:

q : 8� � x [ c [ y: �! (Real?� \ x) [ (Color?� \ c) [ (Real?� \ y)

Now we can use the subtyping rule for polymorphic types:

(� 8) S ` � 01 � �1 S; � � � 01 ` �2 � � 02
S ` (8� � �1:�2) � (8� � � 01:�

0
2)

where S is a set of subsort assumptions. Analogous to function types, polymorphic
types are anti{monotonic in the \�rst argument" (�1 and � 01) and monotonic in
the \second one" (�2 and � 02). As for variants, anti{monotony is satis�ed since
x [ c � x [ c [ y. Moreover, in this case, if � � x [ c, then the type of p equals
the type of q when instantiated to � because Real?� \ y = ;. Hence, by using (� 8)
we obtain as desired that:

8� � x [ c [ y:�! (Real?� \ x) [ (Color?� \ c) [ (Real?� \ y) �
8� � x [ c: �! (Real?� \ x) [ (Color?� \ c)

Summarizing:

In order to correctly type objects we use a polymorphic type discipline which is
based on union, intersection and conditional types.

4The void type contains only one element ?, which denotes nontermination.
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In the above discussion we did not consider the methods mv and eq. In order to
correctly type the points in their presence, we also need recursive types. Instead of
introducing them explicitly, we use a more general form of bounded quanti�cation:
8�i:� where S, where �i abbreviates the set f�i j 1 � i � ng. The quanti�ed
variables must satisfy the set of mutually recursive constraints S. For example, we
obtain the following type for points p as de�ned by P:

8�:�! (Real?� \ x) [ (Color?� \ c) [ (Bool?� \ eq(t)) [ (t?� \mv(Real,Real))
where
� � x [ c [mv(Real,Real) [ eq(t)
t = �! (Real?� \ x) [ (Color?� \ c) [ (Bool?� \ eq(t)) [ (t?� \mv(Real,Real))

This justi�es the next design decision:

The type discipline for objects has to support recursive types.
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3.2 The Syntax

3.2.1 Notational Conventions

Usually a language is �rst described by a context free grammar. The terms generated
by this grammar are called rough terms because among them there are also erroneous
ones. The set of well formed terms i.e. the set of terms respecting the typing
discipline are then �ltered out by using a context sensitive syntax. We give this
syntax by using a formalism based on logic. Speci�cally, we de�ne expressions and
their types simultaneously using axioms and inference rules. An inference rule has
the form:

� � e1 : �1 : : : � � en : �n
� � e : �

It allows us to derive the conclusion � � e : � if all the assumptions � � ei : �i are
true. The expressions � � e : � with � = fx1 : �1; : : : ; xn : �ng are called typing
assertions. They intuitively say that if variables x1; : : : ; xn have types �1; : : : ; �n
then e is a well formed term of type �. � is a type assignment or type context with
no xi occurring twice. We will write �; x : � for � [ fx : �g. In doing so we assume
that x does not appear in �. An axiom is an inference rule with no assumptions.

Remark 3.1

Alternatively, a typing assertion � � e : � can be considered as the least three
place relation � closed under the inference rules. We use these two de�nitions
interchangeably. 2

The function dom(�) denotes the set of variables de�ned by �. The range of � is
the collection of right{hand sides of bindings in �. �(x) denotes the type of x in �,
if it has one. The set of free variables of a term e is written as FV(e). We say that a
term is closed with respect to the context � if FV(e) � dom(�). A typing assertion
� � e : � is closed if e is closed with respect to �. The set of free type variables of a
type � is written as FTV(�). The set FTV(�) of the free type variables of a context
� is the union of the sets of free type variables of elements of the range of �.

In order to reason about subtyping, we use a second relation ` . In this case the
expression S ` � � � is called a subtyping assertion where the subtyping context
S = f�1 � �1; : : : ; �n � �ng is a set of proper5 subtyping assumptions.

A derivation of a typing or subtyping statement T is a proof tree, valid according
to some collection of inference rules, whose root is T . We write d :: T to indicate
that d is a derivation of T .

5Proper sets of constraints are de�ned in Section 3.2.7.
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In the next sections we present the context free and the context sensitive language
of expressions together with their associated types. This language is based on [6].
However, the following modi�cations were necessary in order to make it appropriate
for our object model.

� Add a new syntactical construct f extend (p) e). This construct allows to
extend a (case{) function with a new branch. As we show in Section 4.3 this
construct is essential for modeling inheritance.

� Adapt the subtyping rules for a lazy semantics. This allows an appropriate
treatment of message histories.

Moreover, in contrast to [6] we make a sharp distinction between the type inference
system which is presented in Sections 3.2.2 through 3.2.6 and the type inference
algorithm which is presented in Section 3.2.7. This considerably improves the clarity
of the exposition. Also for the sake of clarity, we present the language incrementally.
Each new production (or inference rule) extends the language introduced so far.

3.2.2 The Calculus �!�

This language is the core lambda calculus. On the level of expressions it contains
only variables, function abstraction and function application. On the level of types
it contains only type variables and the function space constructor.

De�nition 3.1 Type expressions

The type expressions of �!� are given by the following grammar:

� ::= � j �1 ! �2

2

De�nition 3.2 Expressions

The context free language of terms of �!� is given by the following grammar:

e ::= x j �x:e j e1e2
2

Remark 3.2 Type assignment systems

The absence of any type annotation for the bound variable occuring in the
syntax of the �{abstraction signals a fundamental design choice which we shall
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maintain throughout the thesis: all calculi we consider are type assignment
systems as opposed to explicitly typed systems. These systems are compared
in Section 3.3.1. 2

Omitting type annotations allows the programmer to write programs as concise as
in an untyped language. Moreover, like in ML, it is also easy to extend the system to
allow optional type annotations. However, the absence of type annotations requires
a very careful language design which assures decidability of type inference.

De�nition 3.3 Context

A context is a pair S j A where S is a subtyping context and A is a typing
context. 2

De�nition 3.4 Context sensitive syntax

The context sensitive syntax for �!� is given by the following inference rules:

(var)
S j x : � � x : �

(! i)
S j A; x : �1 � e : �2
S j A � �x:e : �1 ! �2

(! e)�
S j A � e1 : �1 ! �2 S j A � e2 : �1

S j A � e1e2 : �2

(sub)�
S j A � e : �1 S ` �1 � �2

S j A � e : �2 2

The rule (sub)� allows a term of type �1 to be promoted (or coerced) to a type �2
whenever �1 is a subtype of �2. This rule is however not appropriate for a type
inference algorithm where the next step of inference is determined by the term
structure. One can eliminate (sub)� by modifying the rule (! e)� to perform the
necessary coercions as follows:

(! e)
S j A � e1 : �1 S j A � e2 : �2 S ` �1 � �3 ! �4 S ` �2 � �3

S j A � e1 e2 : �4

In our calculus, this rule replaces (! e)� and (sub)�.

In order to complete the de�nition of the context sensitive syntax, we have to de�ne
the subtype relation. Intuitively, a subtyping statement S ` � � � corresponds to
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the assertion that � is a re�nement of � in the sense that every element of � contains
enough information to meaningfully be regarded as an element of � . Actually, in the
semantic model presented later, � � � simply means that � is a subset of � . This
intended semantics for � immediately implies that the subtype relation should be
reexive and transitive i.e. it should be a preorder. In order to obtain the necessary
subtype relation for function spaces, consider that f : � ! � . Regarding a type as
a constraint , � ! � requires that f maps all values satisfying � to values satisfying
� . If �0 is a weaker constraint, then informally, �0 denotes a larger set than �.
Weakening � to �0 has the opposite e�ect on the type � ! � of functions from �
to � because f : �0 ! � requires f to map the larger set �0 to values satisfying � .
Hence �0 ! � is a stronger constraint on f as � ! � . On the other hand, weakening
� to � 0 yields the weaker constraint � ! � 0 since each function satisfying � ! � also
satis�es � ! � 0.

De�nition 3.5 Subtyping

The subtyping relation of �!� is given by the following rules:

(� ref)
S ` � � �

(� tra)
S ` �1 � �2 S ` �2 � �3

S ` �1 � �3

(�!)
S ` � 01 � �1 S ` �2 � �

0

2

S ` �1 ! �2 � �
0

1 ! �
0

2

2

Borrowing terminology from category theory one says that the function space con-
structor is contravariant in the �rst argument (i.e. it changes the direction of the
subtype relation) and covariant in the second argument (i.e. it preserves the direc-
tion of the subtype relation).

Remark 3.3

The subtyping relation for arrow types is both structural and compositional .
It is structural because the ordering on arrow types is completely determined
by their left{ and right{hand sides. It is compositional because the ordering
on arrow types may be computed as a function of the ordering of their left{
and right{hand sides. 2

We say that � is equivalent with � , written as S ` �=� if and only if S ` � � � and
S ` � � �.
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3.2.3 The Calculus �
!;c
�

Beside the function space constructor we also allow arbitrary free data type con-
structors. As we see later, they are very useful in de�ning functions by pattern
matching.

De�nition 3.6 Type expressions

The type expressions of �!;c
� are obtained from �!� by adding the following

production:

� ::= c(�1; : : : ; �n)

2

De�nition 3.7 Expressions

The context free syntax for the terms of �!;c
� is obtained from �!� by adding

the following production:

e ::= c(e1; : : : ; en)

2

De�nition 3.8 Context sensitive syntax

The context sensitive syntax of �!;c
� is obtained from �!� by adding the fol-

lowing inference rule:

(con)
S j A � e1 : �1 : : : S j A � en : �n
S j A � c(e1; : : : ; en) : c(�1; : : : ; �n)

2

Remark 3.4

It is assumed that both element and type constructors occur with a single
arity within a programming context. 2

The rules for the subtype relation basically express that a data type is di�erent from
any other type. This means that each type of the form c(�1; : : : ; �n) is di�erent from
any other type d(� 01; : : : ; �

0
m) and from any function type. Moreover, the subtyping

relation between data types is required to be structural and compositional.
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De�nition 3.9 Subtyping

The subtyping relation of �!;c
� is obtained by adding to �!� the following

inference rules:

(�! c)
S ` �1 ! �2 6� c(� 01; : : : �

0
n)

(� c!)
S ` c(� 01; : : : � 0n) 6� �1 ! �2

(� cd)
S ` c(�1; : : : �n) 6� d(� 01; : : : �

0
m)

f if c 6= d

(� cc)
S ` �1 � � 01 : : : S ` �n � � 0n
S ` c(�1; : : : �n) � c(� 01; : : : �

0
n) 2

Remark 3.5 Covariance

It can be observed from the rule (� cc) that constructors are covariant in all
arguments. This corresponds to our intuition since if �i � � 0i than �

0
i contains

more elements than �i and as a consequence the image c(�
0
1; : : : ; �

0
n) of �

0
1; : : : ; �

0
n

under c contains more elements than c(�1; : : : ; �n). 2

3.2.4 The Calculus �
!;c;[;\;?
�

As we already mentioned in Section 3.1, in the presence of union types and con-
structors we can easily obtain variants. Since variant types are accompanied on the
level of expressions by a case functional , we also expect to be able to de�ne such a
functional. Moreover, by using intersection types and conditional types we can type
it more accurately as variants do. Beside these types we also introduce a least type
0 containing only the value ?, which denotes nontermination, and a greatest type 1
containing the entire semantic domain. More details are given in Section 3.3.

De�nition 3.10 Type expressions

The type expressions of �!;c;[;\;?
� are obtained from �!;c

� by adding the follow-
ing productions:

� ::= �1 [ �2 j �1 \ �2 j �1?�2 j 0 j 1
2

In general when writing types we omit parenthesis and assume, the priority of con-
structors is from lower to upper as follows: !;[; ?;\; c.
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De�nition 3.11 Expressions

The context free language of terms of �!;c;[;\;?
� is obtained from �!;c

� by adding
the following productions:

e ::= case e of p1 ) e1 : : : pn ) en
j e1 extend (p) e)

p ::= x j x as p j c(p1; : : : ; pn)
2

Remark 3.6 Selectors

We do not provide selectors. Instead, functions can be de�ned by pattern
matching. The syntactic category of patterns is given above by p. Patterns
are either variables, data elements or variables restricted by patterns. 2

Remark 3.7 Abbreviations

As a general rule for the syntax, we abbreviate an indexed set of expressions
fei j i 2 Ig with ei and an indexed set of judgments f(Si j Ai � ei : �i) j i 2 Ig
with Si j Ai � ei : �i, if this causes no confusion. For example 8f�i j 1 �
i � ng:� is written as 8�i:� and case e of p1 ) e1; : : : ; pn ) en is written as
case e of pi ) ei. 2

In the type expressions given below we use two additional types. The complement
type :� , which is the largest type such that � \ :� = 0, and the hat type � , which
is the smallest monotype such that � [:� = 1 and for all substitutions �, �(�) � � .
If a pattern p has type � then � intuitively denotes the set of all values that can
match the pattern p. We did not provide these types in the type expressions' syntax
because they can be written in terms of the others. More about their motivation
will be said later.

De�nition 3.12 Context sensitive syntax

The Context sensitive syntax of �!;c;[;\;?
� is obtained from �!;c

� by adding the
following inference rules:

(cas)

S j A � e : �
S j A;Api � pi : �

0
i ; ei : �i

S ` � � [ni=1�
0
i

S j A � case e of pi ) ei : [ni=1�i?� \ �i0

(ext)

S j A � f : � 00

S j A;Ap � p : � 0; e : �
S ` � 00 � �1 ! �2
S ` �3 � � 0 [ (�1 \ :� 0)

S j A � f extend (p) e) : �3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0)
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(asp)
S j A � x : �1; p : �2
S j A � x as p : �1 \ �2

2

Remark 3.8 Patterns

Patterns are required to be linear (i.e. each variable occurs exactly once). In
the rule (cas) they are also required to be pairwise disjoint. 2

In the rules (cas) and (ext) Ap is the sort assignment for the free variables occuring
in the pattern p. The rule (cas) is a generalization of the analogous rule for sums
or variants because on the one side, pi may be an arbitrary nested pattern and not
only a label like inl or inr and on the other side, the expressions ei are allowed to have
di�erent types. This generality is mainly achieved through the use of conditional
types. The �rst constraint � � [ni=1�

0
i assures both an exhaustive analysis of the

type � and the propagation of the type information about e to the output type
[ni=1�i?� \ �i0. If e has type �k then, because the patterns are required to be pairwise
disjoint, only the intersection �k \ �k 0 is di�erent from 0 and the result is of type �k.

The rule (ext) allows to extend a (case{) function with a new branch p ) e which
overrides any branch p0 ) e0 in f matching an instance of the pattern p. It is very
similar in spirit with the record extension rule [25] but it directly allows to extend
functions instead of their encoding as records. Moreover, f may have an arbitrary
body and not only a case expression. The overriding e�ect can be read from the
type �3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0) where �3 � � 0 [ (�1 \ :� 0) as follows: if the
argument is in � 0 (i.e. it matches p) then �3 \ � 0 6= 0 and the result is in � ; otherwise
the argument is both in the complement :� 0 of � 0 and in �1 i.e. in �1 \ :� 0 and the
result is in �2. The reason for using the disjoint union � 0[(�1\:� 0) instead of � 0[�1
and more details about � and :� are given in Section 3.2.7.

The subtyping relation is de�ned by considering the properties of union, intersection
and conditional types. It is also assumed that data constructors and functions are
lazy i.e. that c(?; : : : ;?) 6=? and that �x: ?6=? respectively.

De�nition 3.13 Subtyping

The subtyping relation of �!;c;[;\;?
� is obtained by adding to �!;c

� the following
inference rules:

(� \r) S ` � � �1 S ` � � �2
S ` � � �1 \ �2

(� \lb)
S ` �1 \ �2 � �i

f i = 1; 2
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(� [l) S ` �1 � � S ` �2 � �
S ` �1 [ �2 � �

(� [gb)
S ` �i � �1 [ �2 f i = 1; 2

(�?1) S ` �1 � �
S ` �1?�2 � �

(�?2) S ` �2 � 0
S ` �1?�2 � �

(� 0l)
S ` 0 � �

(� 0c)
S ` c(�1; : : : ; �n) 6� 0

(� 0!)
S ` �1 ! �2 6� 0

2

3.2.5 The Calculus �
8;!;c;[;\;?
�

The notion of bounded quanti�cation was introduced by Cardelli and Wegner [26]
in the language Fun. This language integrates the Girard{Reynolds parametric
polymorphism [42, 85] with Cardelli's �rst order calculus of subtyping [22, 23]. A
bounded polymorphic type 8� � �: � constrains the type variable � to range only
over subtypes of �. Since we are mainly interested in the existence of a type inference
algorithm, we retain the constraint idea, but use instead of the second order poly-
morphism of Fun, the simpler ML polymorphism [63, 38]. However, we generalize
the constraint � � � to proper sets of constraints.

De�nition 3.14 Type expressions

The type expressions of �8;!;c;[;\;?
� are obtained from �!;c;[;\;?

� by adding the
following productions:

� ::= � j 8�i:� where S

2

The type 8�i:� where S is said to be polymorphic.
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Remark 3.9 Shallow polymorphism

The universal quanti�er binds sets of variables f�1; : : : ; �ng. It cannot be
nested in the form 8S:8T:� . Moreover, polymorphic types cannot occur in the
argument positions of the type constructors. This is the reason why, this type
of polymorphism is also called shallow polymorphism. 2

As in [63, 38], to enable the de�nition and use of polymorphic terms, we extend the
term language with the let construct.

De�nition 3.15 Expressions

The context free language of terms of �8;!;c;[;\;?
� is obtained from �!;c;[;\;?

� by
adding the following production:

e ::= let x = e1 in e2

2

The variable x occuring in the let declaration is polymorphic. As a consequence,
di�erent occurrences of x in e2 may have di�erent types. Each of them must be an
instance of the polymorphic one. This polymorphic type is given by a generalization
operation Gen(S;A; �) = 8�i:� where S where �i = FTV(�) � FTV(A). The
instantiation of polymorphic types is given by a modi�ed form of the rule (var).
Finally, typing contexts A are extended to include polymorphic variables.

De�nition 3.16 Context sensitive syntax

The context sensitive syntax of �8;!;c;[;\;?
� is obtained from �!;c;[;\;?

� by adding
the following inference rules6:

(var) x : � 2 A
S[�i=�i] j A � x : � [�i=�i]

f� = 8�i:� where S

(let)
S j A � e1 : �1 S 0 j A; x : � � e2 : �2
S; S 0 j A � let x = e1 in e2 : �2

f� = Gen(S;A; �1)

2

If e is a closed term and S j ; � e : � , then we consider the type inferred for e
to be � = Gen(S; ;; �) and write � e : �. In general, given a typing context A
and a subtyping context S such that S j A � e : � , we write A � e : � where
� = Gen(S;A; �).

6The rule (var) replaces the old (var) rule.
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3.2.6 Recursion

Recursive types are not included in the grammar for type expressions because they
are de�nable using constraints. For example, the type of lists with elements of type
� is the unique solution of the recursive constraint � = cons(�; �) [ nil.
In general the set S from a type 8�:� where S contains both recursive subtyping
constraints and recursive equations. For example, if we de�ne the following function:

pt = �xc:�s:
case s of

cons(x,t) ) cons(xc, pt xc t)

then type of pt 1 is as follows:

8�:�! cons(Int; �)?� \ cons(X; 1)
where

0 � � � cons(X,�)
� = cons(Int,�) ? � \ cons(X,1)

We say that � is free in S and that � is bound in S because if the type cons(Int,�) ? �
\ cons(X,1) is contractive in � then the above equation is guaranteed to have a unique
�xed point which is written as:

��: cons(Int,�) ? � \ cons(X,1)

Intuitively, a type constructor f is contractive if it decreases the di�erence (or dis-
tance) d between types, i.e. it exists an r with 0 < r < 1 such that d(f(�1); f(�2)) �
r d(�1; �2).

De�nition 3.17 Contractive types

Let � be a type expression and � a type variable. The predicate � � � read
as � is contractive in �, is de�ned inductively on the structure of � as follows:

0 � � 1 � �
� � � :� � �
c(�1; : : : ; �n) � � �1 ! �2 � �
� � � , � 6= � �1?�2 � � , �1 � � ^ �2 � �
�1 [ �2 � � , �1 � � ^ �2 � � �1 \ �2 � � , �1 � � ^ �2 � �

2

The set of variables TLV(�) = f� j � 6� �g are called in [5] top level variables. As we
shall see in Section 3.3 every set of inductive constraints fli � �i � ui j 1 � i � ng
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is cascading i.e. TLV(li) \ TLV(ui) � f�1; : : : ; �i�1g. We use this property in the
rules given below. They are induction rules for proving the equality and inequality
for recursive types. The rules are given in the form S j A ` �1 � �2 where A is a set
of subtyping assumptions used in the induction.

Rules for Free Variables

(� vl)
S; l � � � u j A; � � � ` � � �

(� vr)
S; l � � � u j A; � � � ` � � �

(� �vl)
S; l � � � u j A; � � � ` u � �

S; l � � � u j A ` � � �

(� �vr)
S; l � � � u j A; � � � ` � � l

S; l � � � u j A ` � � �

(� �vlr)1
S; l � �j � u j A; �i � �j ` �i � l

S; l � �j � u j A ` �i � �j
fi � j

(� �vlr)2
S; l � �i � u j A; �i � �j ` u � �j

S; l � �i � u j A ` �i � �j
fj � i

In (� �vlr)1 and (� �vlr)2 we used the cascading property of inductive constraints.
If i � j then �i may occur in the lower and respectively upper bounds of �j.

Rules for Bound Variables

(� bl)
S; � = �1 j A; � � �2 ` � � �2

(� br)
S; � = �1 j A; �2 � � ` �2 � �

(� �bl)
S; � = �1 j A; � � �2 ` �1 � �2

S; � = �1 j A ` � � �2
f�1 � �

(� �br)
S; � = �1 j A; �2 � � ` �2 � �1

S; � = �1 j A ` �2 � �
f�1 � �
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(� �blr)
S; � = �1; � = �2 j A; � � � ` �1 � �2

S; � = �1; � = �2 j A ` � � �
f�1 � �; �2 � �

Note the similarity of the rule (� �blr) with the rule given by Cardelli for recursive
types [1]:

(� �)
S; � � � ` �1 � �2
S ` ��:�1 � ��:�2

f�1 � �; �2 � �

3.2.7 The Type Inference Algorithm

Type inference is the general problem of transforming untyped or partially typed
terms into well{typed terms by inferring missing type information. The motivation
for type inference is pragmatic. On the one side it allows to program in a typed
language, where type errors are detected at compile time. On the other side, the
tedious process of declaring the type of every variable is made optional. This is
particularly useful in polymorphic languages since polymorphism involves quite a
bit of type information.

Given an untyped closed term e it is in general possible to infer more than one
type � such that ; � e : � . A type � is more general than another type � 0 if there
is a substitution � such that � 0 = �� . For the ML language Milner proposed the
algorithm W [63] which given a term e and a type assignment A computes a substi-
tution � and a most general type (or principal type) � such that �A � e : � . This
algorithm interleaves the production of equational constraints with their resolution
by uni�cation. For example, using the notation �A `W e : � for W (A; e) = (�; �) as
suggested by Remy in [81], the rule (! e) is given as follows:

(! e)
�A `W e1 : �1 �0�A `W e2 : �2 �0�1

U
= �2 ! �

U�0�A `W e1 e2 : U�
f � new

However, as shown by Wand in [92], the generation and the resolution of the equa-
tional constraints can be separated by splitting the above algorithm in two parts:
the �rst one which generates a set of constraints and the second one which solves
them by uni�cation. For example, writing E j A `W 0

e : � for W 0(A; e) = (E; �) the
generation and accumulation of constraints for (! e) can be given as follows:

(! e)
E1 j A `W 0

e1 : �1 E2 j A `W 0

e2 : �2

E1; E2; �1 = �2 ! � j A `W 0

e1 e2 : �
f � new
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If W 0(A; e) = (E; �) and U is the most general uni�er for E (if this exists) then
(U; U�) is equal with (�; �) as given by W . Thus, the type inference problem can
be totally reduced to a uni�cation problem.

The Constraint Accumulation Algorithm

We use a similar technique where the equational constraints are replaced by sub-
typing constraints. As an immediate consequence, the algorithm W is obtained as
a particular case of ours. The algorithm Z, for accumulating constraints is given
below. Note the similarity with the type inference system.

(var)z
(x : 8�i:� where S) 2 A
S[�i=�i] j A `Z x : � [�i=�i]

f�i new

(! i)z
S j A; x : � `Z e : �
S j A `Z �x:e : �! �

f� new

(! e)z
S1 j A `Z e1 : �1 S2 j A `Z e2 : �2

S1; S2; �1 � �! �; �2 � � j A `Z e1 e2 : �
f�; � new

(let)z
S1 j A `Z e1 : �1 S2 j A; x : � `Z e2 : �2

S1; S2 j A `Z let x = e1 in e2 : �2
f� = Gen(S1; A; �1)

(con)z
S1 j A `Z e1 : �1 : : : Sn j A `Z en : �n

S1; : : : ; Sn j A `Z c(e1; : : : ; en) : c(�1; : : : ; �n)

(cas)z
S j A `Z e : � Si j A;Api `Z pi : � 0i ; ei : �i

S; S1; : : : ; Sn;
� � [ni=1�

0
i

j A `Z case e of pi ) ei : [ni=1�i?� \ �i0

(ext)z
S 00 j A `Z f : � 00 S j A;Ap `Z p : � 0; e : �

S 00;
S;

� 00 � �! �;
 � � 0 [ (� \ :� 0) j A `Z f extend (p) e) :

 ! (�? \ � 0 [ �? \ :� 0)
f�; �;  new

(asp)z
S1 j A `Z x : �1 S2 j A `Z p : �2
S1; S2 j A `Z x as p : �1 \ �2

Theorem 3.1 Termination

The algorithm Z always terminates.
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Proof: Each rule generates subgoals involving terms smaller than the original.
2

De�nition 3.18 Minimal type

A closed term e has a minimal type � i� � e : � and for any �0, if � e : �0

then � � �0. 2

Minimal types are related to but not the same as principal types. In the type systems
presented so far, closed terms have minimal types but may not have principal types
(e.g. because many type expressions denote the same type). A minimal type is the
smallest derivable type in the semantical model.

Lemma 3.1 Minimal Type

If S j A `Z e : � and S is a solvable set of constraints then � = Gen(S;A; �)
is the minimal type for e.

Proof: The type � has the form 8�i:� where S. By the inspection of the
typing rules any other type �0 such that A � e : �0 is equal to 8�i:� where S 0.
Since S contains the minimal set of subtyping constraints and these are in their
most general form (with fresh type variables) it follows that the set of solutions
Sol(S 0) � Sol(S). But the meaning of a quanti�ed type is the intersection of
the meaning of � in all solutions of the constraints. As a consequence � � �0.

2

The Constraint Solving Algorithm

The above algorithm reduces the type inference problem for a term e to the resolution
of the associated set of subtyping constraints S. The algorithm described in this
section resolves S by attempting to transform it into an equivalent set of constraints
S 0 = fli � �i � ui j 1 � i � ng which is inductive7 and therefore is guaranteed
to have solutions. If the transformation succeeds then the term t is well typed,
otherwise it is not.

Each step of the transformation should replace a constraint c 2 S with the simpler
set of constraints SC given by applying the corresponding subtyping rule backwards.
By the soundness of the rules, S and (S � fcg) [ SC, have the same solutions.
However, the subtyping rules for �8;!;[;\;?

� do not directly constitute an algorithm.
In particular, for a constraint �1?�2 � � one can either apply rule (�?1) or the rule
(�?2) backwards to get the simpler constraints �1 � � and �2 � 0. To take into

7Inductive constraints and sets of inductive constraints are de�ned in in Section 3.3.3
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account both cases we write the rules in the form

� j S; �1?�2 � � ; � j S; �1 � � j S; �2 � 0

where j separates constraint systems and � is a list of constraint systems. Obviously
the union of the solutions for the right{hand side systems is equivalent with the union
of the solutions for the left{hand side systems.

The rule (� tra) cannot e�ectively be applied backwards since this would involve
\guessing" an appropriate value for the intermediate type. Instead of (� ref) and
(� tra) we use the following reformulation:

(� ref)
S ` � � �

(� tra)
S ` �1 � � � �2
S ` �1 � �2

The reexivity axiom is restricted to variables, and the transitivity rule is applied
in the forward direction in a restricted form as shown below.

There are two cases of constraints which cannot be further decomposed by the rules
given so far: �1 \ �2 � � and � � �1 [ �2. For the last constraint one can try to
\simplify" it by using set complement and write � � �1 [ �2 , � \ (1 � �1) � �2.
However, in the semantical interpretation of type expressions given in Section 3.3,
the set 1��1 may not be downward closed and consequently not a type. For example
1� (1! 0) contains every function except the least one �x: ?. This motivates the
following:

De�nition 3.19 Complement

The type expression :� denotes the largest type such that � \ :� = 0. 2

Since :� is not the set complement of � one has to impose restrictions on the
constraints �1 \ �2 � � and � � �1 [ �2 that can be solved. For example it is not the
case that � � �1 [ �2 , � \:�1 � �2. The statement is however true if �1 [:�1 = 1.

De�nition 3.20 Hat type

The hat type � of a type � is the smallest monotype such that � [:� = 1 and
for all substitutions �, �(�) � � 2

The above result about hat types can be used to provide a general way of decom-
posing constraints � � �1 [ �2.
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Lemma 3.2 Unions decomposition

Let � � �1 [ �2 such that �(�1 \ �2) = 0 for all substitutions �. Then:

� � �1 [ �2 , (� \ :�1 � �2) ^ (� \ :�2 � �1)

Proof: The proof is given in [5]. It basically uses the fact that � � � , that
� � �1 [ �2 , � \ :�1 � �2 and that 8�:�(�1 \ �2) = 0 i� �1 \ �2 = 0. 2

For the constraints �1\ �2 � � if the intersection is restricted to the form �1\ �2 � �
then the following equivalence holds:

Lemma 3.3 Intersections decomposition

�1 \ �2 � � , �1 � (�2 \ �) [ :�2
Proof:

�1 \ :(:�2) � � , �1 � :�2 [ �
:�2 [ � , :�2 [ � \ (:�2 [ �2) , :�2 [ � \ �2: 2

The type � is written above as �2 \ � in order to get a disjoint union on the right
which can be further simpli�ed by using the previous lemma. In conclusion, the
following restrictions apply for constraints:

� Unions on the right of constraints must be disjoint,

� Intersections on the left of constraints must have the form �1 \ �2.

The above restrictions are formalized by the following grammar [5]:

l ::= 0 j � j r! l j c(l1; : : : ; ln) j l1 \ l2 j l1 [ l2
r ::= 0 j � j l! r j c(r1; : : : ; rn) j r1 \ r2 j r1 [ r2 where r1 \ r2 = 0

De�nition 3.21 Proper constraints

A system of proper constraints has the form fli � ri j 1 � i � ng. 2

Remark 3.10 Inference rules

The constraint accumulation algorithm generates proper constraints if all the
primitive functions have l{types. This is not very restrictive since functions
tend to have l{types. 2
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The type 1 does not appear in the grammar because it can be de�ned using proper
constraints as � = (0 ! �) [ Sc2C c(�; : : : ; �). Moreover, � and :� can be elim-
inated from type expressions. An algorithm for their simultaneous elimination is
given in Appendix B.3. The constraint simpli�cation rules given below also assume
that the type expressions are in disjunctive normal form. A normalization algorithm
is given in Appendix B.4.

(� 0l) � j S; 0 � r ; � j S

(� cc) � j S; c(l1; : : : ln) � c(r1; : : : rn) ; � j S; l1 � r1; : : : ; ln � rn

(�!) � j S; r1 ! l1 � l2 ! r2 ; � j S; l2 � r1; l1 � r2

(� [l) � j S; l1 [ l2 � r ; � j S; l1 � r; l2 � r

(� \r) � j S; l � r1 \ r2 ; � j S; l � r1; l � r2

(�?12) � j S; l1?l2 � r ; � j S; l1 � r j S; l2 � 0

(� [r) � j S; l � r1 [ r2 ; � j S; l \ :r1 � r2; l \ :r2 � r1

(� ref) � j S; � � � ; � j S

(� \lb) � j S; � \ l � � ; � j S

(� \l) � j S; � \ l � r ; � j S; � � (r \ l) [ :l

The Constraint Simpli�cation Rules

Remark 3.11

The inequalities (�! c); (� c !); (� cd); (� 0c); (� 0 !) are not included
in the above rules. They are used by the algorithm given below to detect
inconsistent systems of constraints. Moreover, the rule (� [gb) is replaced by
(� [r) and the rule (� \lb) is rewritten as above. 2

De�nition 3.22 Inductive constraints

A constraint � � �i or �i � � is inductive i� TLV (�) � f�1; : : : ; �i�1g. 2

Now, the constraint solving algorithm can be presented as follows.
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De�nition 3.23 The constraint solving algorithm

Given a set S of proper constraints, iterate the following steps until all con-
straints are inductive, no additional inductive constraints can be added and
there are no inconsistent systems:

1. For any constraint that is not inductive use the �rst (top down) applicable
constraint simpli�cation rule.

2. For every pair of inductive constraints l � �i and �i � r in a system S
add the transitive constraint l � r to S.

3. Delete any system from � with a constraint

c(� 01; : : : �
0
n) � �1 ! �2; c(�1; : : : �n) � d(� 01; : : : �

0
m); 1 � 0;

�1 ! �2 � c(� 01; : : : �
0
n); c(�1; : : : ; �n) � 0; �1 ! �2 � 0

because it has no solutions.

Finally, for each S 2 � combine lower bounds l1 � �; l2 � � into l1 [ l2 � �
and upper bounds � � r1; � � r2 into � � r1 \ r2. The result is a set of
inductive systems. 2

Theorem 3.2 Proper constraints

Every solvable system of proper constraints fli � ri j 1 � i � ng is equivalent
to a �nite set of inductive systems which is found by the constraint solving
algorithm.

Proof: The algorithm presented above generates less constraint systems and
detects more inconsistencies as the algorithm presented in [5] because our data
constructors are lazy. For example we detect S; c(�1; : : : �n) � d(� 01; : : : �

0
m) as

inconsistent whereas in [5] this is reduced to S; �1 � 0 j : : : j S; �n � 0.
However, all our constraints are also generated in [5]. Since this algorithm
always �nds the equivalent set of inductive systems if this exists, so does ours.

2

As an immediate consequence is the following lemma.

Lemma 3.4 Decidability

It is decidable whether systems of proper constraints have solutions. Further-
more, all solutions can be exhibited. 2
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3.3 The Semantics

3.3.1 Curry Semantics versus Church Semantics

Work in the semantics of typed programming languages and �{calculi may be
roughly divided into two philosophical camps. The �rst one, sometimes called
Curry{style semantics takes the semantics of an expression to be the semantics of the
pure �{term found by erasing any type annotation it may contain. The other one,
sometimes called Church{style semantics views the expressions of a typed �{calculus
as a linear shorthand for fully typed forms in which every phrase and sub{phrase is
annotated with its typing; it is these fully explicit forms, i.e. the typing derivations
of the calculus, to which a semantic interpretation is given. In general, Curry{style
systems correspond to the left{hand side of the following diagram, while Church
presentations correspond to the right hand side.

source expression
���������

HHHHHHHHj

? ?

type erasure type reconstruction

[[A � e : � ]][[e]]

typed model

typing derivationpure �-terms

untyped model

Figure 3.2: Church versus Curry semantics

The two perspectives have also been called the epistemological and the ontological
views of types [55] since one is primarily concerned with knowledge, the other with
being; extrinsic and intrinsic. Both views yield sensible and useful interpretations.

3.3.2 Typed Semantics

In Church{style type systems, commonly referred to as typed �{calculi typing has
behavioral force: it is not a description of semantics but an integral part of semantics.
The interpretation function [[�]] is de�ned by induction on typing derivations, not
on the underlying terms. In cases where typing derivations contain a subsidiary
subtyping derivation, the latter is mapped into a function between semantic domains
{ a derivation whose conclusion is � � � is mapped into a coercion function from
[[�]] to [[� ]].

In order to give a semantics to the implicitly typed language �8;!;c;[;\;?
� we can

proceed in an analogous way as Mitchell and Harper did for Standard ML in [71].
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First, we introduce an explicitly typed variant T�8;!;c;[;\;?
� for �8;!;c;[;\;?

� . The

intention is that any implicitly typed term from �8;!;c;[;\;?
� may be regarded as a

convenient shorthand for an explicitly typed term in T�8;!;c;[;\;?
� . Given a semantics

for the target language, a translation process can be used to study the meaning of
programs in the source language.

The relationship between the untyped and the typed languages can be pictured as
in Figure 3.3. The two vertical arrows � and  are functions mapping derivations
to the typing that appear as their conclusion and the horizontal arrow; represents
the translation process.

-

? ?

typed T�8;!;c;[;\;?
� typings

typed T�8;!;c;[;\;?
� derivations

 

;

�

untyped �8;!;c;[;\;?
� typings

untyped �8;!;c;[;\;?
� derivations

Figure 3.3: The relationship between typed and untyped derivations

Rather than giving separate de�nitions for the untyped calculus, the typed calculus
and the translation between them, it is convenient to de�ne all three using judgments
of the form S j A � e; e0 : � where e is the untyped term and e0 is its corresponding
typed translation8. The rules are given below, where a coercion function c from �
to � is written as c : � � � and interpreted as an evidence of the subtyping relation.
Moreover, S is also extended to contain evidences.

(var)
S j x : � � x; x : �

(! i)
S j A; x : �1 � e; e0 : �2

S j A � �x:e; �x : �1:e
0 : �1 ! �2

(! e)

S j A � e1 ; e01 : �1
S j A � e2 ; e02 : �2

S ` c1 : �1 � �3 ! �4
S ` c2 : �2 � �3

S j A � e1 e2 ; (c1e
0
1) (c2e

0
2) : �4

(con)
S j A � e1 ; e01 : �1 : : : S j A � en ; e0n : �n
S j A � c(e1; : : : ; en); c(e01; : : : ; e

0
n) : c(�1; : : : ; �n)

8A similar approach was used by Jones in [52] for Core ML.
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(cas)

S j A � e; e0 : �
S j A;Api � pi; ei ; p0i : �

0
i ; e

0
i : �i

S ` c : � � [ni=1�
0
i

S j A �
case e of pi ) ei

;

case ce0 of p0i ) e0i

: [ni=1�i?� \ � 0i

(ext)

S j A � f ; f 0 : � 00

S j A;Ap � p; e; p0 : � 0; e0 : �
S ` c1 : � 00 � �1 ! �2
S ` c2 : �3 � � 0 [ �1?:� 0

S j A �
f extend (p) e)

;

(c1f
0 extend (p0 ) e0)) � c2

: �3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0)

(asp)
S j A � x; p; x : �1; p

0 : �2
S j A � x as p; x as p0 : �1 \ �2

(gen)
S j A � e; e0 : �

; j A � e; ��i:e
0 : 8�i:� where S f�i =2 FT (A)

(ins)
S j A � e; e0 : 8�:� where S 0

S; S 0[�i=�i] j A � e; e0�i : � [�i=�i]

(let)
S j A � e1 ; e01 : � S 0 j A; x : � � e2 ; e02 : �

S; S 0 j A � let x = e1 in e2 ; let x = e01 in e02 : �

A starting point for the typed semantics can be the bounded polymorphic language
with intersection types F^ as given by Pierce in [78]. However, we would have to
extend it to also include union types and to generalize the constraints � � � to sets
of proper constraints f�i � �i j 1 � i � ng. Moreover we would have to prove the
coherence of the translation i.e. we would have to prove that any translation e1 and
e2 of a term e given by derivations S j A � e ; e1 : � and S j A � e ; e2 : � are
semantically equivalent. Coherence results for systems with subtyping were given
in [15, 28] and for systems with intersection types were given in [83].

We do not continue the development of this semantics and let it rather as a further
research.

3.3.3 Untyped Semantics

Curry style systems are often called type assignment systems. The interpretation of
a term e is some element m of an untyped model U , given by a semantical function
[[�]] which is de�ned by induction on the structure of terms. Typing is a matter of
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predication: a typing statement involving a term e is an assertion about [[e]].

According to this point of view, the interpretation of a type � is a predicate i.e. a
set of elements for which the assertion expressed by � is true. When � and � are
regarded as sets, the assertion that � � � simply means [[�]] � [[� ]]. Similarly, [[� \ � ]]
= [[�]] \ [[� ]] and [[� [ � ]] = [[�]] [ [[� ]].

A type{checker in this context can be thought as proving theorems about programs
{ theorems that show on the basis of a set of typing rules that are known to be sound
descriptions of the semantics of terms, that the interpretations of terms behave in a
certain way. A type inference procedure is a deterministic procedure for discovering
a principal theorem { a theorem of which all other theorems about the behavior of
the program are corollaries.

The untyped semantics presented below is known as the ideal model [63, 57]. It is
a veritable example of the use of di�erent mathematical constructions on di�erent
levels of the semantics to solve in principle the same problem: �nd a solution of a
recursive equation x = f(x). On the �rst level f is a function. Hence, this level gives
a semantics to recursive functions. On the second level f is a domain constructor.
As we see later, this provides a semantics for self application. Finally, on the third
level f is a type constructor. Consequently, this level gives a meaning to recursive
types.

Level 1 : Recursive Functions

The mathematical machinery used to provide a semantics for recursive functions is
based on complete partial orders and continuous functions. Being standard stu�
in domain theory we do not give their de�nitions here but include them in Ap-
pendix C.1. The basic result about continuous functions over cpo's is the �xed point
theorem.

Theorem 3.3 Fixed points in !{cpo's

Suppose U is an !{cpo and f : U ! U is !{continuous. If x v f(x) for
some x 2 U , then there is a least element y such that y = f(y) and for all z,
x v z ^ z = f(z)) y v z. This element is the limit

F
n2! f

n(x) of the chain
x v f 1(x) v f 2(x) : : :. 2

If the cpo U has a least element ? then ?v f(?) and y = Fn2! f
n(?).

Level 2: Self Application

In the untyped �{calculus, any pure �{expression can be used either as a function
or as an argument . For example, in the expression x(x), x is both a function
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i.e. x 2 U ! U and a value i.e. x 2 U . This implies that U is equal with U ! U
i.e. U is the solution of the recursive cpo equation U = U ! U9.

In this case, ! is a cpo constructor and U is a cpo. The basic cpo constructors are
function space (:! :), product (:� :), sum (:� :) and lifting ((:)?). Their de�nitions
are given in Appendix C.2.

In order to solve a cpo equation we would like to build a chain U1 � U2 � : : : and
use the �xed point theorem to construct the �xed point. Although at �rst sight
very appealing, taking � for v is not satisfactory since the arrow constructor is, as
we already pointed out, not monotonic in the �rst argument. Hence, it cannot be
continuous.

The �x of this problem is to generalize the inclusions Ui � Uj to continuous em-
beddings � : Ui ! Uj (with corresponding projections  : Uj ! Ui) and the chains
(Un)n2! to chains (Un; �n)n2!. In other words, posets are generalized to categories
with objects cpo's and arrows embedding/projection pairs. Accordingly, the sort
constructors become functors, since they do not only map cpo's but also the arrows
between them. The challenge is now to provide for function space, product, sum and
lifting, functors which preserve the direction of arrows (i.e. they \are monotonic")
and preserve colimits (i.e. they \are continuous"). These functors are also given in
Appendix C.2.

De�nition 3.24 Embedding/projection pairs

A continuous function � : U ! V is an embedding if there is a continuous
function  : V ! U such that:

 � � = idU ; � �  v idV

The map  is called a projection and being uniquely determined by � it is also
written �R. 2

The injections in1 and in2 are embeddings with projections out1 and out2. The iden-
tity is both an injection and a projection. Embeddings are preserved by composition
and (�1 � �0)R = �R0 � �R1 .

De�nition 3.25 Basic embedding/projection pairs

If �0 : U0 ! V0 and �1 : U1 ! V1 are embeddings then we have the following

9In practice equality is weakened to isomorphism which is written as U �= U ! U .
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embedding/projection pairs between the constructed cpo's:

�R0 ! �1 : (U0 ! U1)! (V0 ! V1); �0 ! �R1 : (V0 ! V1)! (U0 ! U1)

�0 � �1 : (U0 � U1)! (V0 � V1); �R0 � �R1 : (V0 � V1)! (U0 � U1)

�0 � �1 : (U0 � U1)! (V0 � V1); �R0 � �R1 : (V0 � V1)! (U0 � U1)

(�0)? : (U0)? ! (V0)? (�R0 )? : (V0)? ! (U0)?

2

Before writing the recursive cpo equation for our language let us make some ad-
ditional observations. First, we want to distinguish between ? and �x: ?. Se-
mantically, this can be expressed by using a lifted space (U ! U)? of continuous
functions. Second, we want to distinguish between ? and c(?; : : : ;?) and between
constructors with di�erent names. Semantically this can be achieved by interpreting
constructors with injective functions which map lifted n{ary tuples. We write Un for
an n{ary product and jcj for the arity of the constructor c. The n{ary products and
sums are trivial generalizations of their binary counterparts. Third, we introduce
the value � for wrong typed elements. Now, the cpo isomorphism for �8;!;c;[;\;?

� is:

U �= �c2C(U
jcj)? � (U ! U)? � f�g?

The cpo U is the result of a limiting process.
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U �c2C(U
jcj)? � (U ! U)? � f�g?

Figure 3.4: The colimit construction

De�nition 3.26 Colimit

De�ne cpo's Un and the embeddings �n : Un ! Un+1 as follows:

U0 = ;?; Un+1 = �c2C(U
jcj
n )? � (Un ! Un)? � f�g?

�0 = �x 2 U0: ?; �n+1 = �c2C(�
jcj
n )? � (�Rn ! �n)? � idf�g?
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U is the colimit of the chain <Un; �n> in the category of embeddings i.e. there
is a cone10 � : <Un; �n> ! U such that � � �R is an increasing chain with
tn�0 �n � �Rn = idU . The desired isomorphism � is constructed via a cone

�n : <Un+1; �n+1>! �c2C(U
jcj)? � (U ! U)? � f�g?

of embeddings where

�n = �c2C(�
jcj
n )? � (�Rn ! �n)? � idf�g?

by putting � = t �n � �Rn+1 and its inverse ��1 = t �n+1 � �Rn . The cones �
and � are related by the equations

�n = � � �n+1; �n+1 = ��1 � �n

2

As we already anticipated, terms are interpreted in U .

De�nition 3.27 The semantics of terms

The semantics of terms is given by an interpretation function E : Exp !
Env ! U which is de�ned by induction on the term structure. Env = V ar !
U is the set of environments ranged by �. To save some tedious numbering for
the injections into the sum, let us write d : D for the injection of an element
d into the D component of the sum.

E [[x]]� = �(x)

E [[�:e]]� = up(f) : (U ! U)?

f(d) =

( � if d = �
E [[e]]�[d=x] otherwise

E [[e1e2]]� =
(

down(f)(E [[e2]]�) if E [[e1]]� = f : (U ! U)?
� otherwise

E [[c(e1; : : : ; en)]]� =
(

up(E [[e1]]�; : : : ; E [[en]]�) : (U jcj)? if E [[ei]]� 6= �
� otherwise

10To say that � : <Un; �n> ! U is a cone means that for all n, �n : Un ! U and that
�n = �n+1 � �n.
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E [[case e of ~p) ~e]]� =

8><
>:
E [[ei]]�[~a=~x] if E [[e]]� = E [[pi]]�[~a=~x] ^ ~x = FV (pi)
? if E [[e]]� =?
� otherwise

E [[x as p]]� = E [[p]]�

E [[f extend (p) e)]]� = up(g) : (U ! U)?

g(d) =

8><
>:
E [[e]]�[~a=~x] if d = E [[p]]�[~a=~x] ^ ~x = FV (p)
down(h)(d) if E [[f ]]� = h : (U ! U)?
� otherwise

E [[let x = e1 in e2]]� =

( � if E [[e1]]� = �
E [[e2]]�[E [[e1]]�=x] otherwise

2

Remark 3.12 Data constructors

The uniqueness of ~a = (a1; : : : ; an) in the interpretation of case and extend
is assured by the the injectivity of constructors which implies the injectivity
of patterns. Patterns are injective because they contain only constructors and
variables and the composition of injective functions is an injective function. 2

Level 3: Types

Considering types as predicates over the untyped universe U i.e. as subsets of U
which contain elements with similar structure (e.g. they are all functions or pairs)
leads to the very intuitive interpretation of subtyping as inclusion and of union and
intersection as set theoretical union and intersection. However, as we already pointed
out, recursive type equations cannot be solved by taking inclusion as ordering and
applying the �xed point theorem because of the anti{monotony of ! in its �rst
argument.

The key idea in this case is to use the cpo's Un occuring in the colimit construction
to de�ne a metric that measures the distance (or di�erence) between types. Now,
if the type constructors decrease this distance i.e. they are contractive, then by the
Banach �xed point theorem they have a unique �xed point. The mathematical
machinery for explaining recursion is in this case topological.

In order to formalize notions like \distance" and \same structure" it is convenient
that each element x 2 U is the limit of a chain of �nite elements which approximate
x. The appropriate cpo's having this property are known as bounded complete do-
mains (see Appendix C.3). New �nite elements are created in the limiting process
when proceeding from Ui to Ui+1.
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The intuition about types is formalized by the following de�nition. It says that the
structure of the elements should be preserved when we go down to approximations
or when we go up to limits. Moreover, since ; � (�x:xx)(�x:xx) : 8�:� and the
meaning of (�x:xx)(�x:xx) is ? it follows that ? has every type. As a consequence,
no type can be empty.

De�nition 3.28 Ideals

A subset I of a partial order P is an order ideal i�

1. I 6= ;
2. 8y 2 I:8x 2 P:x v y ) x 2 I

A subset I of a bc{domain U is an ideal if it is an order ideal and it additionally
satis�es:

3. 8(xn)n2!:(8n:xn 2 I)) (tn2!xn 2 I)

The collection of all order ideals is written as Po(P ) and the collection of ideals
as P(U). 2

Ideals are determined by their �nite elements i.e. there is an evident isomorphism
between (P(U);�) and (Po(U

o);�).

De�nition 3.29 Rank, closeness, distance

The rank r(e) of a �nite element e 2 U� is the least n � 0 with e 2 �n(U
�
n)

where r : U� ! N . A witness for two ideals I and J is any element in their
symmetric di�erence (I � J) [ (J � I). The closeness c(I; J) is the least
possible rank of a witness for I and J and 1 if none exists. The distance
d(I; J) = 2�c(I;J) 2

Proposition 3.4 Rank

1. r(u) = 0 i� u =?U

2. Any �nite element u of (U jcj)? other than ? is equal to up (a1; : : : ; ajcj) with
ai �nite and r(ai) < r(u) for all i.

3. Any �nite element u of (U ! U)? other than ? is equal to up (a1 )
b1) t : : : t (an ) bn) with ai and bi �nite and r(ai); r(bi) < r(u) for all i.



3.3. THE SEMANTICS 77

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

..
.
..
.
..
..
.
..
................

.

.

..
.
..
.
..
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
...
.....
...
....
...
.

�n+1

Un+1 = �c2C(U
jcj
n )? � (Un ! Un)? � f�g?

�n = �c2C(�
jcj
n )? � (�Rn ! �n)? � id?

U �c2C(U
jcj)? � (U ! U)? � f�g?

�

Proof: The proof is similar to the proof given in [57] but here we have to
take care of lifting.

1. Immediate from the de�nition of r.

2. To say that u 2 (U jcj)? means that �(u) = up (a1; : : : ; ajcj) 2 (U jcj)?
(ignoring the injection into the sum). Since u is �nite, so are ai for all i. As
u 6=? we can assume that r(u) = n+1 for some n � 0, and hence u = �n+1(d)
for some d 2 Uo

n+1. Then:

up (a1; : : : ; ajcj) = �(u) = �(�n+1(d)) = �n(d) = (�n � : : :� �n)?(d)

and so d = up (a01; : : : ; a
0
jcj) for some a

0
i 2 Uo

n with up (a1; : : : ; ajcj) = (�n� : : :�
�n)? (up (a01; : : : ; a

0
jcj)) = up (�n(a

0
1); : : : ; �n(a

0
jcj)). Therefore ai = �n(a

0
i) and

r(ai) � n for all i.

3. To say that u 2 (U ! U)?, means that �(u) = up(f) 2 (U ! U)?
(ignoring the injection into the sum). Since u is �nite so is f . Consequently it
is represented as the limit of step functions, f = (a1 ) b1) t : : : t (an ) bn)
with ai and bi �nite. As u 6=? we can assume that r(u) = n + 1 for some
n � 0, and hence u = �n+1(g) for some g 2 Uo

n+1. Then:

up (f) = �(u) = �(�n+1(g)) = �n(g) = (�Rn ! �n)?(g)

and so g = up (a01 ) b01) t : : : t (a0n ) b0n) with

up (a1 ) b1) t : : : t (an ) bn) =

(�Rn ! �n)? (up (a01 ) b01) t : : : t (a0n ) b0n)) =

up (�n(a
0
1)) �n(b

0
1)) t : : : t (�n(a

0
n)) �n(b

0
n))

Therefore ai = �n(a
0
i); bi = �n(b

0
i) and r(ai); r(bi) � n < r(u). 2

The analog of chains are in the topological setting the Cauchy sequences and the
analog of cpo's are the complete metric spaces.

De�nition 3.30 Cauchy sequence, complete metric space

A sequence of ideals (In)n�0 is called a Cauchy sequence if

8� > 0:9n:8i; j:(i > n ^ j > n)) d(Ii; Ij) < �

A metric space is complete if every Cauchy sequence converges. 2
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Theorem 3.5 Complete metric space

The metric space <P(U); d> is complete. The limit of (In)n�0 is I where
Io = fb 2 Uo j b is in almost all Ing. 2

For complete metric spaces the analog of continuous functions are the contractive
ones.

De�nition 3.31 Contractive, non{expansive

A uniformly contractive map f : ~X ! Y of metric spaces is one such that
there is a real number 0 � r < 1 such that

8~x; ~y 2 ~X:d(f(~x); f(~y)) � rmaxfd(xi; yi) j 1 � i � ng
and is non{expansive if it holds with r � 1. 2

The analog of the �xed point theorem is the Banach �xed point theorem.

Theorem 3.6 Banach

If X is a nonempty complete metric space and f : X ! X is contractive then
it has a unique �xed point, namely limn�0f

n(x0) where x0 is any point in X.
2

De�nition 3.32 Type constructors

The type constructors
jcj�?, !? and ? and are de�ned as follows:

jcj�? (I1; : : : ; Ijcj) = (
jcj� (I1; : : : ; Ijcj))?

I !? J = ff 2 U ! U j f(I) � Jg?

I ? J =

(
I if J 6= f?g
f?g otherwise

2

Theorem 3.7 Contractive type constructors

The type constructors
jcj�? and !? are contractive on ideals.

Proof: The proof is similar with the one given for � and ! in [57]. Here
we have to take care of lifting. First note that
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d(f(~x); f(~y)) � rmaxfd(xi; yi) j 1 � i � ng i� c(f(~x); f(~y)) � minfd(xi; yi) j
1 � i � ng
if some xi 6= yi. If r < 1 then the strict inequality > must hold.

jcj

�?: Suppose u is a witness of minimum rank for
jcj�? (I1; : : : ; Ijcj) and

jcj�?

(I 01; : : : ; I
0
jcj) with say u 2jcj�? (I1; : : : ; Ijcj). Since u 6=?, by the proposition

about ranks, u = up(a1; : : : ; ajcj) where ai are �nite elements of Ii for all i and

r(u) > maxfr(ai) j 1 � i � jcjg. Since u 62jcj�?(I
0
1; : : : ; I

0
jcj) there must be an i

such that ai 62 I 0i. But this is a witness for Ii and I 0i of rank less then r(u) and

c(
jcj�?(I1; : : : ; Ijcj);

jcj�?(I
0
1; : : : ; I

0
jcj)) = r(u) > r(ai) � c(Ii; I

0
i) �

minfc(Ii; I 0i) j 1 � i � jcjg

!?: Let u be a witness of minimum rank for I !? J and I 0 !? J 0, being
say in the former ideal. Then u 6=? and by the proposition about ranks,
u = up (a1 ) b1) t : : : t (an ) bn) where n > 0 and ai; bi are �nite elements
of U with r(u) > maxfr(ai); r(bi) j 1 � i � ng. Since u 62 I 0 !? J 0 there
must be an x 2 I 0 such that down(u)(x) 62 J 0. Let a = tfai j ai v xg and
b = tfbi j ai v xg = down(u)(x). Then a 2 I 0 as a v x 2 I 0 and b 62 J 0. The
rank r(a) = r(tfai j ai v xg) < r(u) and similarly r(b) < r(u). Now there are
two cases:

a 62 I: Then a is a witness for I and I 0 of rank less then r(u).

a 2 I: Then b = down(u)(a) 2 J because u 2 I !? J and thus b is a witness
for J and J 0 of rank less than r(u).

In both cases we have:

c(I !? J; I
0 !? J

0) = r(u) > minfc(I; I 0); c(J; J 0)g 2

Theorem 3.8 Nonexpansive type constructors

The type constructors [, \ and ? are not contractive but non{expansive,
considered as binary functions over ideals.

Proof: The proof for [ and \ is given in [57]. The proof for ? is given along
the same lines. Noncontractiveness is shown by d(I?1; I 0?1) = d(I; I 0). The
proof that ? is nonexpansive is done by a case analysis.

J = 0; J 0 = 0 : c(I?J; I 0?J 0) = c(0; 0) � minfc(I; I 0); c(0; 0)g
J = 0; J 0 6= 0 : c(I?J; I 0?J 0) = maxfc(0; I 0); c(0; J 0)g � minfc(I; I 0); c(0; J 0)g
J 6= 0; J 0 = 0 : similarly to the previous case

J 6= 0; J 0 6= 0 : c(I?J; I 0?J 0) = c(I; I 0) � minfc(I; I 0); c(J; J 0)g
2
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De�nition 3.33 Semantics of type expressions

For the semantics of type expressions we de�ne the semantic function T :
Texp ! Tenv ! P(U) where Tenv = Tvar ! P(U) is the set of environ-
ments ranged over by �. The de�nition is by structural induction on the type
expression structure.

T [[�]]� = �(�)

T [[�1 ! �2]]� = T [[�1]]� !? T [[�2]]�

T [[c(�1; : : : ; �n)]]� =
jcj�?(T [[�1]]�; : : : ; T [[�n]]�)

T [[�1 [ �2]]� = T [[�1]]� [ T [[�2]]�

T [[�1 \ �2]]� = T [[�1]]� \ T [[�2]]�

T [[�1?�2]]� = T [[�1]]� ? T [[�2]]�

T [[0]]� = f?g

T [[1]]� = U � f�g

T [[8�i:� where S]]� =
T

Ii2P(U)

�[Ii=�i]j=S

T [[� ]]�[Ii=�i]

2

We write � j= S i� for all constrains l � r in S, T [[l]]� � T [[r]]�. In order to complete
the semantics of type expressions we have to characterize S and to show how to �nd
solutions � such that � j= S.

Let us �rst de�ne the syntactic class of recursive equations which are guaranteed to
have unique �xed points in the semantics.

De�nition 3.34 Contractive predicate

Let � be a type expression and � a type variable. The predicate � � � read
as � is contractive in �, is de�ned inductively on the structure of � as follows:

0 � � 1 � �
� � � :� � �
c(�1; : : : ; �n) � � �1 ! �2 � �
� � � , � 6= � �1?�2 � � , �1 � � ^ �2 � �
�1 [ �2 � � , �1 � � ^ �2 � � �1 \ �2 � � , �1 � � ^ �2 � �
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2

Remark 3.13 Hat types

Similarly to 0 and 1, the hat types and their negations are also contractive in
� because they do not contain any type variables. 2

The set of variables TLV(�) = f� j � 6� �g are called in [5] top level variables.

De�nition 3.35 Contractive equations

An equation � = E is contractive if E � �. 2

De�nition 3.36 Cascading equations

A set of equations f�1 = E1; : : : ; �n = Eng is cascading if TLV(Ei) �
f�1; : : : ; �i�1g. 2

Cascading equations allow the elimination of the recursive top level variables �i by
substituting Ei for �i in Ei+1 through En. Now, given an environment �

0 for the other
variables the above results guarantee the existence of a unique extension � = � 0[Ii=�i]
of � 0 such that T [[�i]]� = T [[Ei]]�. Hence, � is a solution for E i.e. � j= E. A particular
class of recursive inclusion constraints, the so called inductive constraints can be
shown equivalent with a set of cascading equations.

De�nition 3.37 Inductive constraints

A constraint � � �i or �i � � is inductive i� TLV(�) � f�1; : : : ; �i�1g. 2

De�nition 3.38 Inductive sets of constraints

Let us denote by tj the smallest type containing Uj � f�g. Then, a system S
of constraints is inductive if the following three conditions hold:

1: S = fli � �i � ui j 1 � i � ng
2: TLV(li) [ TLV(ui) � f�1; : : : ; �i�1g
3: 81 � i0 � n:8j:8�:

81 � i < i0:
T [[li]]� \ tj � �(�i) \ tj � T [[ui]]� \ tj ^
8i0 � i � n:
T [[li]]� \ tj�1 � �(�i) \ tj�1 � T [[ui]]� \ tj�1

9>>>=
>>>;) T [[li0 ]]� \ tj � T [[ui0 ]]� \ tj

2
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The above de�nition makes it possible to build solutions � with a double induc-
tion over (i; j). The indices (i; j) in �i;j say that at induction step j we already
constructed the interpretation f�1 ! I1;j; : : : ; �i ! Ii;jg where Ik;j � Uj are sets
of �nite elements in Uj. For the rest of the variables we have the interpretation
constructed in the previous induction step i.e. f�i+1 ! Ii+1;j�1; : : : ; �n ! In;j�1g
where Ik;j�1 � Uj�1. Now, condition 2. allows at a given induction step j to assign
sets Ii;j successively to �1; : : : ; �n because each �i is constrained only by lower level
variables at the top level. Condition 3. assures the existence of a Ii+1;j satisfy-
ing the constraint T [[li+1]]�i;j � Ii+1;j � T [[ui+1]]�i;j. The induction starts by taking
�n;0 = f�1 ! f?g; : : : ; �n ! f?gg.

Theorem 3.9

Let S = fli � �i � uig be an inductive set of constraints. Then S is equivalent
to the cascading set of equations S 0 = f�i = li [ (�i \ ui)g where �i are fresh
variables.

Proof: The proof is given in [5]. The �rst implication (from inequations to
equations) is immediate by letting �i = �i. The other implication uses the
properties of inductive constraints. 2

Since �i and �i are the only variables occuring in S 0 each environment � 0 = [Ii=�i]
for �i induces a unique solution � such that � j= S 0 which also implies that � j= S.

This completes the semantics because the remaining type expressions 1; � and :�
can be expressed in terms of the other type expressions.

Now we are ready to state the main results linking the syntax with the semantics.

De�nition 3.39

S j=� �1 � �2 means that T [[�1]]� � T [[�2]]� if � j= S,

S j= �1 � �2 means that S j=� �1 � �2 for all � 2 TEnv. 2

Theorem 3.10 Subtyping soundness

If S ` �1 � �2 then S j= �1 � �2.

Proof: By induction on the height of the proof that �1 � �2.

�!:

Given a type environment � we have to prove for the rule (�!) that S j=�

�1 ! �2 � � 01 ! � 02 under the assumptions that S j= � 01 � �1 and S j= �2 � � 02.
If

f 2 T [[�1 ! �2]]� = fg 2 U ! U j g(T [[�1]]�) � T [[�2]]�g?
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then:

down(f)(T [[� 01]]�) � down(f)(T [[�1]]�) � T [[�2]]� � T [[� 02]]�
so f 2 T [[�1 ! �2]]�.

The rules (� tra) and (� ref) are trivially satis�ed by interpreting types as
sets.

� c :

Given a type environment � we have to prove for the rule (� cc) that S j=�

c(�1; : : : ; �n) � c(� 01; : : : ; �
0
n) under the assumptions that S j= �i � � 0i for 1 �

i � jcj. If

a = up (a1; : : : ; ajcj) 2 T [[c(�1; : : : ; �n)]]� =
jcj�?(T [[�1]]�; : : : ; T [[�jcj]]�)

then ai 2 T [[�i]]� � T [[� 0i ]]� so

a 2jcj�?(T [[� 01]]�; : : : ; T [[� 0jcj]]�) = T [[c(� 01; : : : ; � 0n)]]�.
The inequalities (�! c), (� c!) and (� cd) are true because the associated
types are injected in U with di�erent functions: : (U jcj)?; : (U jdj)? and
: (U ! U)? respectively.

� [ \:

The rules (� \r), (� \lb), (� [l) and (� [gb) are trivially satis�ed by
interpreting types as sets.

� 0:

The axiom (� 0l) is trivial since each type contains ?. The proofs of the
axioms (� 0c) and (� 0!) use the fact that each lifted type contains at least
two elements, ? and up (?), and it is therefore di�erent from T [[0]]� = f?g.

� ?:
For (� ?1) note that t1 ? t2 � t1 by the de�nition of ?. Hence if T [[�1]]� is
included in T [[� ]]� so does T [[�1 ? �2]]�. For (� ?2), if T [[�2]]� � f?g then T [[�2]]� =
f?g and therefore by the de�nition of ? we have that T [[�1 ? �2]]� = f?g which
is included in every type. 2

De�nition 3.40

j=�;� (SjA) means that � j= S and E [[x]]� 2 T [[�]]� whenever (x : �) 2 A,
S j A j=�;� e : � means that E [[e]]� 2 T [[� ]]� if j=�;� (SjA),
S j A j= e : � means that S j A j=�;� e : � for all � 2 Env and � 2 TEnv. 2
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Lemma 3.5 Typing soundness

If S j A � e : � then S j A j= e : � .

Proof: The soundness of the rules (! i); (! e) and (let) is proven in [63].
Let us prove the soundness of (ext); (cas) and (con).

(ext) :

For given � and � such that j=�;� (SjA) we have to prove that

S j A j=�;� g extend (p) e) : �3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0)
under the assumptions

S j A;Ap j= p : � 0; e : � S j= � 00 � �1 ! �2
S j A j= g : � 00 S j= �3 � � 0 [ (�1 \ :� 0)
Suppose d 2 T [[�3]]�. Then either d 2 T [[� 0]]� or d 2 T [[�1]]� \ T [[:� 0]]�.
d 2 T [[� 0]]� : Then by the injectivity of constructors there is a unique ~a such
that d = E [[p]]�[~a=~x]. As a consequence S j A;Ap j=�[~a=~x];� p : � 0; e : � and by
the semantical de�nition

f(d) = E [[e]]�[~a=~x] 2 T [[� ]]� = T [[� ]]�?T [[�3]]� \ T [[� 0]]� �
T [[� ]]�?T [[�3]]� \ T [[� 0]]� [ T [[�2]]�?T [[�3]]� \ T [[:� 0]]�

d 2 T [[�1]]� \ T [[:� 0]]� : Then d 2 T [[�1]]� and d 2 T [[:� 0]]�. Hence for h = E [[g]]�
we have that

f(d) = down(h)(d) 2 T [[�2]]� = T [[�2]]�?T [[�3]]� \ T [[:� 0]]� �
T [[� ]]�?T [[�3]]� \ T [[� 0]]� [ T [[�2]]�?T [[�3]]� \ T [[:� 0]]�

Hence

8d 2 T [[�3]]�: f(d) 2 T [[� ]]�?T [[�3]]� \ T [[� 0]]� [ T [[�2]]�?T [[�3]]� \ T [[:� 0]]�
As a consequence

up(f) 2 T [[�3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0)]]�
(cas)

The proof for (cas) is similar with the proof for (ext).

(con)

For given � and � such that j=�;� (SjA) we have to prove that

S j A j=�;� c(e1; : : : ; en) : c(�1; : : : ; �n)

under the assumptions

S j A j= ei : �i for 1 � i � jcj.
From the semantical de�nition of constructors and from these assumptions we
can easily derive the desired result, that

up (E [[e1]]�; : : : ; E [[en]]�) : (U jcj)? 2
jcj�?(T [[�1]]�; : : : ; T [[�jcj]]�) : (U jcj)?
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that is that E [[c(e1; : : : ; en)]]� 2 T [[c(�1; : : : ; �n)]]�. 2

Corollary 3.11

If e is a closed expression and � e : � then E [[e]] 6= �. 2



86 CHAPTER 3. THE �{CALCULUS FOR OBJECTS



Chapter 4

The Functional Object Model

4.1 Introduction

The OO methodology is very appealing because it uses concepts which seem to be
very intuitive and closely related to the \real world". However, these concepts are
often (deliberately) stated very informally and a precise formulation leads to very
di�erent models. A typical example is message passing. According to Coad and
Yourdon [32], pp 149:

� a message connection is a mapping of one object to another object (or occa-
sionally to a class) in which a sender sends a message to a receiver to get some
processing done.

In this de�nition it is left open what happens after the message is sent. Does this
message interrupt the receiver or does the sender wait for the answer?

A precise response to these questions not only separates the sequential and the par-
allel worlds but also distinguishes between di�erent parallel models. Despite of the
terminology message passing, most existing object-oriented languages are sequen-
tial in nature. This can be explained by the fact that they observe the following
restrictions:

1. Execution starts with exactly one object being active,

2. Whenever an object sends a message, it waits until the result is returned,

3. An object is only active when it is executing a method in response to an
incoming message.

Under these conditions at any moment there is exactly one active object, although
control is transferred very often from one object to another. The most sensible ways
to introduce parallelism to OO languages is to relax restrictions 2 or 3.

87
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Relaxing restriction 2, an object is not forced anymore to wait for the result after
sending a message, but is allowed instead to immediately proceed in doing its own
activities. This is called asynchronous communication. In this way, the sender can
execute in parallel with the receiver of the message. This scheme has been adopted
most notably by the family of Actor languages [3, 4].

Relaxing restriction 3, objects have their own activity (also called body) regardless if
they receive a message or not. Execution of the body is started as soon as the object
is created and it takes place in parallel with other objects in the system. Commu-
nication is most naturally achieved in this case by explicitly indicating rendezvous
points where the body can synchronize with another object in order to exchange
a message. This is called synchronous communication and was used most notably
in the POOL family [9] and in the OO languages based on �-Calculus like �o��
[50, 51] and Abacus [75, 74].

The approach presented in this section is purely functional and asynchronous. It
is therefore most closely related to Actor languages. However, in contrast to Actor
languages, we use a typed formalism. Moreover, the set of messages that are sent
but not yet received i.e. the message histories are explicitly modeled by in�nite lists
of messages, also known as streams [17]. The processes are particular continuous
functions (case functions) operating in a sequential manner on streams. The main
advantage of this approach is that it e�ectively uni�es the concepts of object and
process into one concept, that of a functional entity which is self contained and
provided with a uni�ed communication protocol. Processes interact only at clearly
de�ned points: only where messages are sent or answered. Moreover, the possible
ways of interaction are limited: only parameters or results may be sent. The vari-
ables in each object are protected from direct access by other objects. Shared data
can be put in an object on its own and accessed by the available object methods.
Another important aspect is that inside an object everything happens sequentially.
This sequential, deterministic inside is protected from the parallel, nondeterministic
outside world by the message interface. We consider that nondeterminism inside an
object would make the models too di�cult to comprehend and to verify.

The major simpli�cation done in this asynchronous, functional model is to disal-
low explicit manipulation of object identities. Objects themselves or sometimes the
streams they deliver and not their identi�ers are sent as messages. However, by
sending streams instead of identi�ers we achieve most of the power of languages
with explicit identity manipulation in a much more simpler setting. Moreover, it
may be argued that encapsulation, subtyping and inheritance are the essential fea-
tures of object orientation while identity manipulation only distinguishes between
functional and procedural languages where the last ones usually provide constructs
for manipulating pointers (read identi�ers).

This chapter is organized as follows. In Section 4.2 we look for an appropriate
formalism which extends in a natural way the sequential world to the parallel one.
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This allows us to clarify the concepts of class, object and message passing. Section
4.3 is devoted to inheritance and Section 4.4 to parametric classes. For each OO
concept, we review the de�nition given in Chapter 2 and instantiate it for our model.

4.2 Classes, Objects and Messages

The purpose of this section is to give a precise meaning for objects, classes and
message passing. For reference, let us review their informal de�nitions as given in
Sections 2.1 and 2.2.

De�nition Class

A class is a parameterized object de�nition. Di�erent instantiations of the
parameters permit the creation of di�erent objects. In other words, a class is
the de�nition of an object creation function. 2

De�nition Object

An object is a clearly delimited software entity which has:

� a state i.e. it contains some private data,

� a behavior i.e. it can execute certain procedures,

� a unique identity .

2

De�nition Communication and messages

Objects can interact by exchanging messages according to a precisely deter-
mined message interface. A message consists of a method name and actual
parameters to be passed the the method. The receiver alone determines when
and which method to execute in response to a message. The method can
return a result which is passed back to the sender. 2

4.2.1 The Sequential World

The sequential model of Cartesian point objects presented in Section 3.1 identi�es
objects with functions. Their state is given by the �{ and the let{bound variables
and the scoping rules for bound variables assures their privacy. For the representa-
tion of object methods (i.e. object behavior) and message passing we provided two
alternatives. The �rst one is the record variant.
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P = �myclass:�(xc; yc):�self

f x = xc,
y = yc,
mv = �(dx; dy): �x myclass(self:x+ dx; self:y + dy),
eq = �p: (self:x == p:x) ^ (self:y == p:y) g

cart point = �x P ��Class de�nition
o = �x cart point (a,b) ��Object creation
(o.mv)(dx; dx) ��Message passing

In this case methods are functional �elds in a record and messages are not directly
delivered to the objects. The message name is �rst used to select the appropri-
ate �eld (i.e. method) which is then applied to the message arguments. In this
functional view, objects are not distinguished from their identities. The objects
themselves and not their identi�ers are sent among objects. Classes are represented
as parameterized object de�nitions (or object creation functions).

The second alternative is the case variant.

P = �myclass:�(xc; yc):�self:�m:

case m of

x ) xc
y ) yc
mv (dx; dy) ) �x myclass(self(x) + dx; self(y) + dy)
eq (p) ) (self(x) == p(x)) ^ (self(y) == p(y))

cart point = �x P ��Class de�nition
o = �x cart point (a,b) ��Object creation
o mv(dx; dy) ��Message passing

This variant di�ers from the previous one only in the message passing mechanism.
Objects are applied in this case to the whole message and not only to its arguments.
Using an OO terminology, the whole message is passed to the object.

In the next sections we analyze how can we extend these formalisms to obtain objects
working on histories of messages.

4.2.2 Simplifying the Recursion Scheme

The double recursion scheme used in the above examples can be simpli�ed by un-
derstanding self as an abbreviation for a new object identical to the receiver object.



4.2. CLASSES, OBJECTS AND MESSAGES 91

We already used a similar technique when we modeled updating of instance vari-
ables (as done by mv) with the creation of a new object, identical to the receiver one
except for the updated variables. For example, we can rewrite the record variant of
points as follows:

P = �myclass:�(xc; yc):

let self = myclass(xc; yc) in
f x = xc,
y = yc,
mv = �(dx; dy): myclass(self:x+ dx; self:y+ dy),
eq = �p: (self:x == p:x) ^ (self:y == p:y) g

cart point = �x P ��Class de�nition
o = cart point (a,b) ��Object creation

Moreover, since self:x = xc and self:y = yc we can simplify again and write:

P = �myclass:�(xc; yc):

f x = xc,
y = yc,
mv = �(dx; dy): myclass(xc+ dx; yc+ dy),
eq = �p: (xc == p:x) ^ (yc == p:y) g

A similar rewriting is also possible for the case{function variant. We therefore
dispense from now on from the use of self as a recursion variable.

4.2.3 An Appropriate Extension to Message Histories

As we already pointed out, the record variant cannot be reasonably extended on
message histories because �eld selection would destroy the object. Moreover, en-
closing the \instantaneous" record object with a function which decodes the mes-
sages and selects the appropriate record �eld, would also involve a case selection but
also additionally a record �eld selection. Hence, the case variant seems to be more
appropriate for the needed extension.

In this case there are two possible alternatives. The �rst one is the straightforward
extension of the \sequential" case variant. It considers instead of a message m a
stream s of messages. Note that the recursive type of streams with elements of
type � is the solution of the recursive constraint � = � : �1. Such constraints are

1As in Haskell, \:" is the list constructor and ft takes the �rst element of a list. Lists are lazy
i.e. their elements are evaluated only when they are needed. The list ? is the unde�ned list.
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automatically inferred for recursive functions which use patterns only in the form
m : s as the one given below.

Q = �myclass:�(xc; yc):�s

case s of

x : t ) xc : myclass (xc; yc) t
y : t ) yc : myclass (xc; yc) t
mv (dx; dy) : t) p : p t where f

p = myclass (x+ dx; y + dy)g
eq (p) : t ) b : myclass (xc; yc) t where f

b = (xc == ft(p(x : ?)) ^ yc == ft(p(y : ?))) g

scart point = �x Q ��Class de�nition
o = scart point (a,b) ��Object creation
o s ��Message passing

In this case, as in POOL, all messages sent to an object are stored in one queue in
the order in which they arrive. A graphical illustration is given in Figure 4.1.

object

t

s

Figure 4.1: A point object with only one input channel

The second alternative is inspired by the record variant; instead of encoding an
object as a record of stream processing functions it rather encodes it as a function
taking as input a record of streams (the messages) and delivering as a result a
record of output streams (the answers). Since the method names themselves are not
included in the messages, we need a separate stream for each method. Each element
of a stream contains the arguments of the instantaneous invocation of the method.
In the case of nullary methods like x () and y () these elements contain just activation
messages which we denote by (). A graphical illustration is given in Figure 4.2.
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object

y

x y mv eq

x mv eq

Figure 4.2: A point object with separate channels

This modeling of objects allows the parallel processing of the messages which do not
alter the object state (the so called accessors).

Q = �myclass:�(xc; yc):�s

case s of

fx = () : xs, y = () : ys, mv = mvs, eq = p : eqsg )
fx = xc : r.x, y = yc : r.y, mv = r:mv, eq = b : r.eqg where f
r = myclass(xc; yc)fx = xs, y = ys, mv = mvs, eq = eqsg,
b = (xc == ft s.x) ^ (yc == ft s.y),
s = p f x = ():?, y = ():?, mv = ?, eq = ?gg

fx = xs, y = ys, mv = (dx; dy) : mvs, eq = eqsg )
fx = r.x, y = r.y, mv = p : r.mv, eq = r.eqg where f
p = myclass(xc+ dx; yc+ dy)
r = p fx = xs, y = ys, eq =eqs, mv =mvsgg

In contrast to the �rst variant, this object speci�cation is nondeterministic, because
the two record patterns occuring in the case expression are overlapping. Like e.g. in
Ada, each entry (in this case corresponding to a method name) has its own queue
and fairness between di�erent queues is not necessarily guaranteed. In the �rst case
however, nondeterminism and fairness concerns are pushed outside the objects by
letting the environment to store all messages in one queue in the order in which
they arrive. Because we consider nondeterminism inside an object more di�cult to
comprehend and verify, we prefer the �rst variant.

In the Cartesian points example each method was able to compute the result alone.
However, in general a method needs further communication with other objects called
servers. A graphical illustration is given in Figure 4.3.
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...

servers

client

object

Figure 4.3: Object with many servers

In this case, the object has more than one input/output channel but it is case driven
by the client input. In order to simplify things, we use this scheme also for more
than one client as shown in Figure 4.4.

......

servers

prophecy

clients

object

Figure 4.4: Object with many clients and servers

In this case the object is case{driven by the prophecy stream. Prophecy streams
can be avoided by explicitly using nondeterministic merge components which collect
the input from clients as shown in Figure 4.5.

...

...

servers

clients

merge

object

Figure 4.5: Object with nondeterministic merge

The behavior of merge components is usually given by predicates. The extension
of our formalism to predicates and the usefulness of explicit merge components is
considered as an important future work.

Now, we are ready to precisely state the meaning of classes, objects and message
passing.
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De�nition 4.1 Objects

Objects are continuous functions having one input/output pair of streams on
the client interface and possibly more output and input channels on the server
interface.

� The attributes are the �{ and let{bound variables,

� The body of the functions is a case expression with one branch for each
message type,

� Objects are their own identities.

2

Remark 4.1

Although channels usually occur in pairs, it is perfectly legal to have only one
of them. For example, there could be objects which act as terminators (they
eat the messages without delivering anything) or as initiators (they deliver
spontaneously messages without any input). 2

De�nition 4.2 Communication and messages

Objects interact by exchanging messages asynchronously over message
streams. A message is a data element consisting of a method name and ac-
tual parameters to be passed to the method. The receiver alone determines
when and which method to execute in response to a message. The method
can return a result to the sender. 2

De�nition 4.3 Classes

Classes are parameterized object de�nitions i.e. they are object creation func-
tions. 2

4.2.4 Ticks versus Objects

In the previous examples, the objects returned a copy of their modi�ed versions
in response to a mv message. In a more conservative approach one could consider
mv as a \procedure" which updates the state of the object and does not return
anything. In the semantical model, returning nothing actually means returning a
special symbol

p
also known as tick. As a consequence, streams are always de�ned

and the merge anomaly is avoided. We decided to be more informative and return
instead a copy of the object. This made it possible to de�ne for example methods
like eq.
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4.3 Inheritance and Subtyping

Let us �rst review the informal de�nitions of inheritance and subtyping given in
Section 2.4.

De�nition Inheritance

Inheritance is a mechanism for incremental extension of recursive structures.
2

De�nition Subtyping

A type � is a subtype of a type � written as � � � if any expression of type �
is allowed in every context requiring an expression of type � . 2

Note that inheritance makes sense both in a typed or an untyped language, while
subtyping makes sense only in a typed language i.e. in a language where every well
formed term has an associated type. This type can be understood as a property
or theorem about that term. For well formed objects this property says that they
never deliver an answer of the form message not understood as do the objects in
an untyped language like Smalltalk or Object Scheme. Beside this additional secu-
rity, typing information inferred in the compilation process can be used to enhance
program e�ciency. Typing also supports data abstraction and modularity. We
are therefore concerned with the inheritance mechanism in a typed language. The
formal foundation for such a language was presented in Chapter 3.

4.3.1 Inheritance

Suppose we have stream points with only one coordinate xc and with only one
method x. Their de�nition can be written as below.

P = �pt:�xc:�s

case s of

x : t ) xc : pt xc t

P
def
= �x P

The class P of stream point objects is the �xed point of P. Now, we would like to
de�ne a class CP of colored points containing additionally a color attribute which
is delivered in response to the new message c. This can be simply expressed in our
framework as follows.
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CP = �cpt:�xc:�col:

let pt = �x:cpt x col in
P pt xc extend

c : t ) col : cpt xc col t

CP
def
= �x CP

Let us analyze this de�nition in more detail.

The State

The state of colored points contains an additional color attribute. This is simply
modeled by adding a new �{bound variable col.

Recursion

The recursion variable of P is uni�ed with the recursion variable of CP. Only after
this uni�cation is taken the �xed point to obtain the class CP. Note that in P
the recursion variable is already bound. Hence, using P instead of P would not
lead to the desired result since once receiving a message understood by P control
would never be given back to CP. Now it is clear why we de�ned inheritance as a
mechanism for incremental extension of recursive structures. Finally, the let clause
is used to accommodate the di�erence in the attributes of P and CP.

The Function Extension

If we expand P pt xc we obtain the following result.

P pt xc =

case s of

x : t ) xc : cpt xc col t

Hence CP is equivalent with the following de�nition.

CP = �cpt:�xc:�col:

(�s: case s of

x : t ) xc : cpt xc col t
) extend
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c : t ) col : cpt xc col t

The body of CP is in the form f extend p ) e where f is a stream processing
function. It says that the function f is extended with the new branch p ) e
which overrides any existing branch in f which matches an instance of p. Since no
overriding takes place in CP the branch c : t ) col : cpt xc col t simply extends the
de�nition of P. The obtained function has a new attribute and understands a new
message. Moreover, this function is guaranteed to understand only the messages x
and c. Any other message is caught at compile time and signaled as an error. As
a consequence, an object created with CP never fails with the error \message not
understood".

4.3.2 Subtyping

In the previous section we de�ned the class CP by inheriting (i.e. by extending) the
de�nition of the class P. The correctness of the extension was assured by the calculus
given in Chapter 3. A question which naturally arises, is if the objects generated by
CP may also be used everywhere where objects generated by P may be, i.e. if the
type of CP{objects is a subtype of the type of P{objects. This property is \proven"
by the algorithm which infers the corresponding type of these objects. This is the
key di�erence between inheritance and subtyping: the �rst one is a construction
while the second one is a property.

Suppose we de�ne a point p = P 2. The type of p is then as follows:

8:
 ! Int : a ?  \ x : 1
where

a = Int : a ?  \ x : 1
0 �  � x : 

Since the class P is recursive, it is no wonder that this type is also recursive. It says
that p accepts as input a stream of x messages and delivers as output a stream of
integer messages. We write this type shortly as 8:�1 where S1.

Before discussing the type of CP{objects, let us look to a somewhat \simpler" de�-
nition of colored points.

Q = �pt:�xc:�col:�s

case s of

x : t ) xc : pt xc col t
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c : t ) col : pt xc col t

Q
def
= �x Q

A colored point q de�ned by q = Q 0 red has the following type:

8: ! (
Int : b ?  \ x : 1 [
red : a ?  \ c : 1)

where
0 �  � (x [ c) : 
a = Int : b ?  \ x : 1 [ red : a ?  \ c : 1
b = Int : b ?  \ x : 1 [ red : a ?  \ c : 1

This point accepts as input, streams s 2  such that  � (x [ c) : . In other words,
it accepts any mixture of x and c messages including streams of purely x messages
and streams of purely c messages. But if the input stream contains only x messages,
i.e it has the type 0 � x : 0 then 0 \ c : 1 = 0 and the output stream has the type
b = Int : b?0 \ x : 1. Hence, the type of q is a subtype of the type of p. More
formally, if we write the type of q shortly as 8:�2 where S2, then

8:�2 where S2 � 8:�1 where S1

Although we did not provided an explicit rule for polymorphic types, this inequality
can be proven generically by using the same instance variables for both types i.e. by
proving that

S1; S2 j ; ` �2 � �1

This is easily achieved by observing that  \ c : 1 = 0 if  � x :  as required by
S1 and by using the subtyping rules given Section 3.2 (including those for free and
bound variables).

The type inferred for an inherited object r = CP 0 red is more complicated as the
type inferred for q because it additionally contains overriding information.

8�; : ! (
Int : b ? � \ x : 1 ?  \ :c : 1 [
red : a ?  \ c : 1)

where
0 � � � x : 
0 �  � c :  [ � \ :c : 1

a = red : a? \ c : 1 [ Int : b ? � \ x : 1 ?  \ :c : 1
b = red : a? \ c : 1 [ Int : b ? � \ x : 1 ?  \ :c : 1
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However, by using the subtyping rules this type can also be proven as a subtype
of 8:�1 where S1. This means that r may be used in each context in which p is
allowed.

In general an inherited type is not necessarily a subtype. For example if we have also
de�ned the recursive methods corresponding to the messages mv and eq we would
had obtained an inherited type for CP which was not a subtype of P (see [35]).

4.3.3 The Meaning of Super

The treatment of the pseudo{variable super which is used to invoke methods of the
super class is modeled in our framework simply with an additional let variable. For
example, suppose we have points with an equality test as below.

Q = �pt:�(xc; yc):�s

case s of

x : t ) xc : pt (xc; yc) t
y : t ) yc : pt (xc; yc) t
eq (p) : t ) b : pt (xc; yc) t where f

b = (xc == ft(p(x : ?)) ^ yc == ft(p(y : ?))) g
Q

def
= �x Q

Then we can de�ne by inheritance colored points with equality test as follows.

CQ = �cpt:�(xc; yc; col):

let pt = �(x; y):cpt (x; y; col)
super = P(pt)(xc; yc)

in super extend
c : t ) col : cpt (xc; yc; col) t
eq(p):t ) (col == ft(p(c :?))) ^ (ft(super(eq(p) :?)))

CQ
def
= �x CQ

We used here the abbreviation:

f extend p1 ) e1; : : : ; pn ) en

for

((f extend p1 ) e1) : : :) extend pn ) en
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4.3.4 The Sequential World

A very important feature of our approach is that the sequential world can be ex-
pressed in the same formalism, without any additional construct. If P is the de�ni-
tion of points as given in Section 4.2 then we can de�ne colored points as follows.

CP = �cpt:�(xc; yc; col):

let pt = �(x; y):cpt (x; y; col)
super = P(pt)(xc; yc)

in super extend
c ) col
eq(p) ) (col == p(c)) ^ (super(eq(p)))

CP
def
= �x CP

4.4 Parametric Classes

The purpose of this section is to give a precise meaning for parametric classes. Let
�rst review one of the de�nitions given in Section 2.5.

[13] A generic class is a class that serves as a template for other classes, in which the
template may be parameterized by other classes, objects and/or operations.
A generic class must be instantiated (its parameters �lled in) before objects
can be created. Generic classes are typically used for container classes. The
terms generic class and parameterized class are interchangeable.

Parameterization is expressed in our framework by parametric polymorphism. Since
classes are functions, parameterized classes are simply polymorphic functions. Note
that parametric polymorphism is not an exclusive feature of OO languages. In
its most general form, as parameterized abstract data{type, parameterization was
already used in languages like Ada, Obj or ML. In this case the parameters may
be arbitrary abstract data types. If the parameters are restricted to be types,
parameterization is known e.g. in ML as parametric polymorphism. To distinguish
between these two forms of parameterization, parameterized ADTs are called in ML
functors. In comparison with ML, our polymorphism is more powerful, because it
can be combined with recursive subtyping constraints. This makes it even more
powerful as the bounded polymorphism introduced by Cardelli and Wagner in [26]
(see Section 3.1).

Remember that type annotations are in our framework optional and that the type
inferred for terms is as general (i.e. as parametric) as possible. For example, the
type inferred for the class Q de�ned in previous section,
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Q = �pt:�xc:�col:�s

case s of

x : t ) xc : pt xc col t
c : t ) col : pt xc col t

Q
def
= �x Q

is as follows:

8�; �; :�! � !  ! (
� : b ?  \ x : 1 [
� : a ?  \ c : 1)

where
0 �  � (x [ c) : 
a = � : b ?  \ x : 1 [ � : a ?  \ c : 1
b = � : a ?  \ x : 1 [ � : a ?  \ c : 1

The instance variables xc and col have the generic types � and �. These types are
instantiated at object creation. For example an object where xc is an integer and
col is a color can be created as o = Q(0)(red), and has the following type:

8: ! (
Int : b ?  \ x : 1 [
red : a ?  \ c : 1)

where
0 �  � (x [ c) : 
a = Int : b ?  \ x : 1 [ red : a ?  \ c : 1
b = Int : a ?  \ x : 1 [ red : a ?  \ c : 1

Note that there is no restriction for instantiation. We could have used even objects
as actual parameters for Q as in p = Q(o)(o).

List classes are often cited as a typical example for parameterization. So let us give
a list class de�nition in our framework before concluding this section.

L = �lt:�x:�s

case s of

ft : t ) case x of cons(a,b) ) a : lt x t
rt : t ) case x of cons(a,b) ) lt b : lt b t
add(a) : t ) lt cons(a; x) : lt cons(a; x) t

L
def
= �x L
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The bounded variable x stands for a �nite list, with constructors cons and nil. When
creating a new list, one would usually like to initialize it with a given element. In
this case, the creation function has the form L cons(a,nil). The type of a determines
the type of the list elements. One can also imagine a creation function which delivers
an empty list. In this case the creation function has the form L nil and the type of
the list elements is determined by the �rst add message.
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Chapter 5

Object Con�gurations

5.1 Introduction

As we discussed in Section 2.6, objects are not very interesting in isolation. The
major reason for using objects is to construct systems where they contribute to
the overall behavior by interacting with one another. The static structure of such
systems is usually described with links and associations.

De�nition Link

A link is a physical or conceptual connection between objects. 2

De�nition Association

An association describes a group of links with common structure and common
semantics. All the links in an association connect objects from the same
classes. 2

In Chapter 4 we modeled objects with stream processing case{functions. As a con-
sequence, it is very natural to model links with streams (or channels).

De�nition 5.1 Link

A link is a channel (or stream) between two or more objects. 2

Since streams are directed, our links are directed. Undirected links can be described
as a pair of directed ones. Modeling links with channels give links an equal status
to objects. This is very close to Rumbaugh recommendation: do not bury links as
object attributes in the analysis phase. Object attributes (or references) are however

105
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a common practice in OO programming languages. Links versus object attributes
are investigated in Section 5.2.4.

Methodologically, it is very important to classify object con�gurations in aggregation
systems and mobile systems. They have quite di�erent properties and consequently
require quite di�erent correctness proofs with respect to a requirement speci�cation.
Section 5.2 is devoted to aggregation networks. We give some typical examples and
investigate their properties. Section 5.3 analyzes mobile networks. We review their
properties and show how to express mobility with higher order streams. Finally,
in Section 5.4 we give a calculus of mobile networks. This calculus does not view
systems as functions but as collections of equations with designated input/output
channels.

5.2 Aggregation Networks

Aggregation networks are hierarchical systems which can be treated as a whole. In
Section 2.6.1 we de�ned them as below.

De�nition Aggregates

An aggregate is semantically an extended object that is treated as a unit
in many operations, although physically it is made of several lesser objects.
Aggregation is a special form of transitive and antisymmetric association where
a group of component objects form a single semantic entity. Operations on an
aggregate often propagate to the components. 2

We also classi�ed aggregates in �xed, variable and recursive:

� A �xed aggregate has a �xed structure. The number and types of subparts are
prede�ned.

� A variable aggregate has a �nite number of levels, but the number of parts
may vary.

� A recursive aggregate contains directly or indirectly an instance of the same
kind of aggregate; the number of potential levels is unlimited.

In our asynchronous, functional framework aggregates are very naturally modeled
with Khan networks1.

1Their name was given after the French scientist Gilles Kahn who �rst described them formally
in [53].
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De�nition 5.2 Kahn Networks

A Kahn network has the following form:

f(
!
x) =

!
z where

!
y1= g1(

!
x;

!
y )

: : :
!
yn= gn(

!
x;

!
y )

The variables
!
x= (x1; : : : ; xn) represent the input channels and the variables

!
z= (z1; : : : ; zm) represent the output channels of the whole network. Each

network component is described by an equation
!
yi= gi(

!
x;

!
y ). Similarly to

the whole network,
!
yi�

!
y 2 are the output channels and

!
x and

!
y the input

channels of the i-th network component. Since these equations may be mutu-
ally recursive, the behavior of the whole network is given by their least �xed
point. The network performs additionally a hiding operation by allowing only

the channels
!
z�!

y to be visible as output outside the system. The channels
!
y � !

z are local . 2

Let us consider some examples.

5.2.1 Fixed Aggregates

The Master/Slave Aggregate

A very important example of a �xed aggregate is the master/slave con�guration.

ms(
!
x) =

!
z where

(
!
z ;

!
y ) = m(

!
x;

!
u)

!
u= s(

!
y )

Its class and object diagrams in OMT like notation are given in Figure 5.1.

m

s

ms

x z

u

y

M S

MS

Figure 5.1: The class and object diagrams for master/slave

2We regard here
!
y as a set.
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The master/slave con�guration consists of two components, m the master and s the
slave. All the input of the slave comes via the master and all the output of the slave
goes to the master. Viewing the master as the environment and the slave as the
system, the master/slave con�guration models a very general form of composition.
Every network ms with a subnet s can be understood as a master/slave system where
m denotes the surrounding net, the environment of s.

Note that �xed aggregates may contain loops i.e. they may contain recursive stream

de�nitions. Both
!
u and

!
y are de�ned recursively. This stream recursion should not

be confused with object recursion as present in recursive aggregates. Note also that
the 1-1 association between the master and the slave in the class diagram is modeled
as a pair of channels in the object diagram.

The �xed point of the equations contained by ms is taken simultaneously. Hence,
we could alternatively de�ne ms as follows:

ms(
!
x) =

!
z where

((
!
z ;

!
y );

!
u) = (m(

!
x;

!
u); s(

!
y ))

This de�nition emphasizes more directly the parallel composition of the master and
the slave. The corresponding object diagram, where only the physical position of m
and s is modi�ed is given in Figure 5.2.

s

m

ms
y

u

x z

Figure 5.2: The master/slave con�guration

The Summation Aggregate

A particular instance of the �xed master/slave con�guration is the summation ag-
gregate which is shown in Figure 5.3. It describes the stream processing function
sum which takes as input a stream x of numbers and outputs each time the sum of
the numbers already read. The summation aggregate description is as follows.

sum(x) = z where
(z; y) = (add(x; y); 0 : z)

add(a : as; b : bs) = (a + b) : add(as; bs)
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x z

add

0:

sum
z

y

Figure 5.3: The summation aggregate

5.2.2 Recursive Aggregates

If the slave is taken to be the master/slave con�guration itself, we obtain a recursive
aggregate. A typical instance of such a con�guration is the interactive queue shown
in Figure 5.4.

q(add(a) : x) = z where
((z; y); u) = (qc a (x; u); q(y))

qc a (x; u) = case x of
add(b) : t ) (z; add(b) : y) where (z; y) = qc a (t; u)
fst : t ) (a : z; y) where (z; y) = qc a (t; u)
rst : t ) (u; t)

y

u

x z

qc

q

q

u

x z

qc

q

q

qc

y

q

Q

QC

Figure 5.4: The interactive queue and one of its unfoldings

The interactive queue is capable to store in a queue cell qc only one element. Each
time a new element arrives, the recursive de�nition is unfolded and a new cell qc
is created to store that element. Unfolding is also shown in Figure 5.4. As a
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consequence, although the structure of the queue is prede�ned, the number of cells
can vary dynamically.

5.2.3 The Static Structure of Kahn Networks

Let us analyse in more detail the master/slave con�guration shown in Figure 5.5

s

m

ms
y

u

x z

ms(x) = z where
((z,y), u) = ( (y))m(x,u), s

Figure 5.5: The master/slave con�guration

Function composition, tupling and recursion can be interpreted for networks as
sequential composition, parallel composition and feedback of network components.
More precisely, denoting by [1]3 the type of all streams and by [1]n the n-ary product
[1]� : : :� [1] we can de�ne [17]:

sequential composition

:; : : ([1]n ! [1]k)! ([1]k ! [1]m)! [1]n ! [1]m

(f ; g)(x) = g(f(x))

parallel composition

:k: : ([1]k ! [1]l)! ([1]m ! [1]n)! [1]k+m ! [1]l+n

(fkg)(x; y) = (f(x); g(y))

feedback

� : ([1]n+m ! [1]m)! [1]n ! [1]m

(�f)(x) = �x�y:f(x; y)

Using these forms of composition, the right hand side of the equation in ms repre-
sents the parallel composition of m and s. The channel variables z; y and u together
with the feedback operator � perform the necessary wiring between m and s. Vari-
ables actually allow to multiplicate a channel, to exchange the relative position of
channels, or simply to transmit the values as they are. All these operations have a
corresponding stream processing function [17]:

3Remember that 1 is the whole universe.
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duplication
n
: [1]n ! [1]2n
n
 x = (x; x)

exchange
nm
� : [1]n+m ! [1]m+n

nm
� (x; y) = (y; x)

identity

In : [1]
n ! [1]n

In(x) = x

hiding
yn : [1]n ! [1]0

Hiding (y) is the unique stream processing function which consumes its input without
producing any output.

The above forms of composition used in conjunction with the above stream pro-
cessing functions allow us to describe the wiring of the master slave con�guration
without using variables. The corresponding con�guration is given in Figure 5.6,

where we use a slightly more powerfull exchange operator. This is actually
1 1
� k 1 1
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Figure 5.6: The structure of the master/slave con�guration



112 CHAPTER 5. OBJECT CONFIGURATIONS

The structure of the above �gure is quite general. In fact, each Kahn network can
be understood as consisting of 3 blocks:

� a parallel composition of the network components,

� a wiring component (the feedback map) which keeps track of the channel order
and prepares the output for the feedback operator,

� a hiding component (the output map).

The interconnection of components is essentially determined by the feedback map

which is constant . In this �gure it is
1 1
� k 1 1

� . This is the reason why Kahn networks
have a static structure even if they are recursive, exactly as the aggregates do. Since
the relationships between components are �xed once for all, aggregates do not need
explicit manipulation of object identi�ers. Each object has already the necessary
channels to each of its clients and to each of its servers and no new clients or servers
can appear anymore. Sharing of objects is also statically prede�ned. An object is
shared by all of its clients.

5.2.4 Links versus Object Attributes

In the interactive queue de�nition from Section 5.2.2 we explicitly linked the rest
of the queue to the cell being in front of it. Alternatively, we can understand this
queue as an object attribute. This leads to a somewhat simpler de�nition.

q s = case s of

add(a) : t ) cell a q t

cell a q i = case i of

fst : t ) a : cell a q t
rst : t ) q t : q t
add (b) : t ) cell a (q <<add(b)) t : cell a (q <<add(b)) t where

q <<add(b) = �s: q(add(b) : s)

The case statement allows us to explicitly require that the �rst message a queue can
ever receive is an add message. Each time the queue receives another add message,
its object attribute is updated accordingly. This object replaces the current queue
in response to a rst message.

In conclusion, object attributes allow to reduce the number of private servers which
are explicitly linked to a client. This simpli�es both the interface and the de�nition
of the client.
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5.3 Mobile Networks

5.3.1 Introduction

Aggregates are a very natural way to describe systems with a hierarchical structure.
Such systems occur so often, that they received a special notation in object modeling.
In principle, each system can be conceived as an aggregate.

However, encouraged by the OO paradigm, more and more researchers in the �eld
of concurrent computation got interest in mobile systems.

De�nition Mobile systems

Systems in which every object can change its communication partners on the
basis of computation and interaction are designated as mobile. 2

To give an example of mobility, consider a simpli�ed view of a mobile telephone
system [65]. A Centre is in permanent contact with two Base stations, each in
a di�erent part of the country. A Car with a mobile telephone moves about the
country; it should always be in contact with a Base. If it gets rather far from its
current Base contact, then a hand{over procedure is initiated, and as a result the
Car relinquishes contact with one Base and assumes contact with another. Figure
5.7 shows the possible con�gurations.

Base_2Base_1

Centre

Base_2Base_1

Centre

Figure 5.7: The mobile telephone example

Since the connection between the Car and the Bases is dynamic this network is
mobile.

Probably the best known models which express mobility are the Actor Model of
Hewitt [3, 4], the �{Calculus of Milner, Parrow and Walker [66, 67], the Chemical
Abstract Machine of Berry and Boudol [12], the Rewriting Logic of Meseguer [59]
and the Higher Order CCS of Bent Thomsen [89].

In these models mobility is achieved either by allowing processes to be passed as
values in communication or by allowing references to processes to be communicated.
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5.3.2 Mobility in �{Calculus

The �{Calculus [66, 67] is a way of describing and analyzing systems consisting of
agents which interact among each other and whose con�guration or neighborhood is
continually changing. This calculus both simpli�es CCS [64] by de�ning a structural
congruence on processes and extends it by allowing to pass link references among
processes.

The Syntax

The most primitive entity in �{calculus is a name. Names, in�nitely many, are
x; y; : : : 2 X ; they have no structure. In the basic version of �{calculus there is
only one another kind of entity: a process. Processes P are built from names by the
following syntax.

P ::= N j P k Q j (�)P j !P
N ::= �.P j 0 j M + N
� ::= x(y) j xy

N are processes in normal form. They are either pre�xed processes �.P or sums
M + N of normal processes. A nullary sum is written as 0.

In a summand �.P the pre�x � represents an atomic action, the �rst action per-
formed by �.P. There are two basic forms of pre�xes:

x(y) which stands for reading some name on the channel x and calling it y. The
variable y is bound in the pre�xed process.

xy which stands for writing the name y on the channel named x. It does not bind
y.

In each case x is the subject and y is the object of the action. The subject is positive
for input and negative for output. A name refers to a link or a channel.

The sum M + N represents a process able to take part in one { but only one { of
the left and right alternatives. The choice is not made by the process.

P k Q means that P and Q are concurrently active, so they can act independently {
but can also communicate.

!P means P k !P. It is known as the replication operator or bang .

Finally (�x)P introduces a new name x and restricts its use to P. The variable x is
bound by �.

Processes with complementary pre�xes can communicate with each other. For ex-
ample in the process:
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x y:0 k x(u):u v:0 k x z:0
can occur one of two possible communications: between the �rst and the second
component or between the third and the second component. If the �rst communi-
cation takes place, then the result con�guration is:

0 k y v:0 k x z:0

The Structural Congruence

The intended semantics for the processes de�ned by the above syntax can be better
understood by an anology with a chemical solution [12]. Molecules are normal form
processes in a continous Brownian motion. If they get in contact then they react
(i.e. communicate) with one another provided they have complementary pre�xes
(nested + processes can rotate and expose the pre�x of the next summand). The
hiding operator � can be understood as a membrane which separates di�erent so-
lutions. This membrane is somewhat porous to allow communication between the
encapsulated solution and its environment. The following congruence formalizes this
behaviour.

The structural congruence � is the smallest congruence relation over the set P of
processes such that the following laws hold:

(1) �{equivalence
(1.1) �x.P � �y.P[y/x] fy62fv(P)
(1.2) z(x).P � z(y).P[y/x] fy62fv(P)

(2) (P/�, k, 0) is a symmetric monoid
(2.1) N k (M k P) � (N k M) k P
(2.2) N k 0 � N
(2.3) N k M � M k N

(3) Scoping rules for �
(3.1) �x.0 � 0
(3.2) �x.�y. N = �y.�x. N
(3.3) �x. (N k M) � N k �x. M fx 62 fv(N)

(4) Recursion (Bang operator)
!N � N k !N

(5) (N /�, +, 0) is a symmetric monoid
(5.1) N + (M + P) � (N + M) + P
(5.2) N + 0 � N



116 CHAPTER 5. OBJECT CONFIGURATIONS

(5.3) N + M � M + N

Rules (1) are the usual �{conversion rules for bound variables. Rules (2) model
the Brownian motion of the molecules and rules (5) their rotation. They also al-
low to discard the inactive process 0. Rules (3) model the membrane behavior.
Among them, very important is rule (3.3) because it allows molecules to pass the
membrane and interact with other molecules. As we will see later, reaction (i.e. com-
munication) is allowed only inside the membrane. Finally, the rule (4) models tail
recursion. Combined with link reference passing this is strongly enough to model
general recursion.

The Reduction Rules

Communication in � calculus is given by de�ning a reduction relation ! over pro-
cesses P 2 P. The identi�cation of expressions as required by � considerably
simpli�es the de�nition of this relation. P ! P 0 means that P can be transformed
into P 0 by a single computational step.

(comm)
(: : :+ x(y):P ) k (: : :+ xz:Q) ! P [z=y] kQ

(par) P ! P 0

P kQ ! P 0 kQ

(res) P ! P 0

(�x)P ! (�x)P 0

(struct)
Q � P P ! P 0 P 0 � Q

Q ! Q0

The only axiom is (comm). It shows both how communication occurs between
two atomic normal processes �.P which are complementary and how the other al-
ternatives are discarded. The �rst two inference rules say that reduction can occur
underneath composition and restriction. The third one simply says that structurally
congruent terms have the same reductions.

The Mobile Telephone Example

Passing link refernces among processes allows to express mobility. Let us show this
on the mobile telephone example. We use here the following abbreviations:

x(y1; : : : ; yn) for x(w):w(y1) : : : w(yn)
x y1 : : : yn for (�w) xw:w y1 : : : w yn
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We write x and x when n = 0. Note that w is a private channel between the
communication partners so no other process can interrupt the sequence y1; : : : ; yn.
Beside the above abbreviations we also use recursive, parametric de�nitions in the
form:

K(
!
x)

def
= PK

They can be expressed by using only ! and link passing (see [65]).

Now we are ready to give the example. The process con�guration is shown in Figure
5.8.

Centre

IdleBase_2Base_1

Car(talk_1, switch_1)

talk_1 switch_1 talk_2 switch_2

alert_2give_2alert_1give_1

Figure 5.8: Mobile telephones in � calculus

System
def
= (� tk1; tk2; sw1; sw2; gv1; gv2; al1; al2):

(Centre kBase1 k IdleBase2 kCar(tk1; sw1))

Centre
def
= gv1 tk2 sw2: al2:Centre

0

Centre0
def
= gv2 tk1 sw1: al1:Centre

Base(tk; sw; gv; al)
def
= tk:Base(tk; sw; gv; al)
+ gv (tk0; sw0):sw tk0 sw0: IdleBase (tk; sw; gv; al)

IdleBase(tk; sw; gv; al)
def
= al:Base (tk; sw; gv; al)

Car (tk; sw)
def
= tk:Car (tk; sw)
+ sw (tk0; sw0):Car (tk0; sw0)

Base1 = Base (tk1; sw1; gv1; al1)
Base2 = Base (tk2; sw2; gv2; al2)

IdleBase1 = IdleBase (tk1; sw1; gv1; al1)
IdleBase2 = IdleBase (tk2; sw2; gv2; al2)

The task of the Centre is (according to information which we do not model) to
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switch the communication between the Car and the Bases. If the Car is for example
in contact with Base1 then it sends the channels talk2 and switch2 to the Car and
allerts Base2 of this fact.

A Base can talk repeatedly with the Car. However, at any moment it can receive
along its give channel two new channels which it should communicate to the Car
and then become idle itself.

The Car is parametric upon a talk channel and a switch channel. On talk it can talk
repeatedly; but at any time along switch it may receive two new channels which it
must then start to use. In this way it relinquishes contact with the current Base and
assumes contact with the new one. This dynamic switching makes the con�guration
mobile.

5.3.3 Mobility by Higher Order Streams

In Section 5.2.3 we discussed the inherently static structure of Kahn networks. The
source of their static behavior is the way variables are used in the de�ning equations,
a way which is equivalent to a constant feedback map. This is the reason why it
is commonly accepted that Kahn networks are not adequate to describe mobile
systems.

Fortunately, this is true only for �rst order systems i.e. for systems where messages
themselves are not streams. However, in higher order systems i.e. in systems with
higher order streams the constant feedback map only de�nes an initial con�guration.

Sending streams is closely related to sending channel references as it happens in the
�{calculus. To grasp its subtlety, let us reuse the Cartesian Points.

P = �myclass:�(xc):�s

case s of

x : t ) xc : myclass xc t
mv (dx) : t ) p t : p t where p = myclass (x+ dx)

The interesting point about this point de�nition is that the message returned in
response to a mv request contains the whole history produced after this request.
Regarding the output stream as a sequence of storage locations, this intuitively
corresponds to returning a reference into this sequence. This reference advances
each time a message is sent but is delivered only in response to a mv message.

It is therefore no wonder that with higher order streams we are able to model a wide
class of mobile systems very similarly to �{Calculus. For example, let us formalize
the mobile telephones with higher order streams. The process con�guration is shown
in Figure 5.9.
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Base_2Base_1

Car

Centre

o

ts_2

hist_2give_1 give_2

ts_1

hist_1

Figure 5.9: Mobile telephones with higher order streams

System(p1; p2) = o where
o = Car(ts1)
(ts1; ht1) = Base p1 gv1
(gv1; gv2) = Centre0(ht1; ts2 : ht2)
(ts2; ht2) = Base p2 gv2

Centre (u1 : h1; h2) = (g1; gv (u1) : g2) where (g1; g2) = Centre0 (h1; h2)
Centre0 (h1; u2 : h2) = (gv (u2) : g1; g2) where (g1; g2) = Centre (h1; h2)

Base p (gv(u) : g) = case p of
0 : ps ) (tk : t; h) where(t; h) = Base ps (gv(u) : g)
1 : ps ) (sw (u) : t; t : h) where(t; h) = Base ps g

Car t = case t of
tk : s ) out : Car s
sw (u) : s ) Car u

This formalization is di�erent from the �{Calculus one in the following aspects:

� The nondeterministic choice operator \+" from the Base process is replaced
by an arbitrary prophecy stream p,

� IdleBase and the channels alert and switch were removed because they are
superous in our asynchronous formalism.

As before, the task of the Centre is (according to information which we do not
model) to switch the communication between the Car and the Bases. If the Car
is for example in contact with Base1 then it sends the channel ts2 i.e. the output
produced by Base2 to the Car.
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A Base can talk repeatedly with the Car. However, at any moment it can receive
along its give channel a new channel which it should communicate to the Car. In this
case it also returns to the Centre on the channel hist a message containing ts i.e. its
future output for the Car. The choice between talking or switching is controlled by
the prophecy stream p.

The Car reads the messages from the current ts channel. If it receives a stream
message sw(u) it discards the rest of the stream i.e. it relinquishes contact with the
current base and uses subsequently the stream u i.e. it establishes contact withe the
other base.

5.3.4 Higher Order Streams versus �{Calculus

The purpose of this section is to prove informally that each mobile system expressible
in �{Calculus can also be expressed with higher order Kahn networks. The proof
uses the observation that each mobile system is built in �{Calculus around two basic
pre�xes: input{directed input and input{directed output . They are shown in Figure
5.10.

2i1i ni o1 on2o

sen sensen 21 n

rec

21 nrec rec rec

sen
aa

rec = a(i).i(x).rec’

Input-directed Input

sen = a(o).o m.sen’

Input-directed Output

Figure 5.10: Basic building blocks for mobility in �{calculus

If we give a translation of this basic structures to higher order networks than we are
done, because to each other �{calculus system corresponds a Kahn network given
as the composition of basic translations.

It is important to see that both rec and sen have only one generic input and respec-
tively output channel which is indirected by the data read on the channel a. Neither
rec nor sen know in advance which are their communication partners. If trying to
model this statically, one would have to allocate a separate channel for each possible
partner.
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Input{directed Input

Input{directed input is shown in Figure 5.11.

2i1i ni

sen sensen 21 n

rec
a

rec = a(i).i(x).rec’

Figure 5.11: Input{directed input

It was the essential construct used by the Car process in the mobile telephones ex-
ample.

Car (tk; sw)
def
= tk:Car (tk; sw)
+ sw (tk0; sw0):Car (tk0; sw0)

The translation to Kahn networks is as follows:

rec = a(i):i(x):rec0 ; rec(sw(u) : t) = rec(u)

Similarly to the �{calculus, the process rec from the Kahn network has only one
(generic) input channel. However, over this channel it can receive as a message any
of the other channels i2; : : : ; in. In that case, it discards the rest of the stream and
uses the stream contained in the message. This is equivalent to switching to the
other channel. This switching happens again if the current stream, say ik, contains
a message of the form sw (im).

Input{directed Output

The dual con�guration is the input{directed output as shown in Figure 5.12.
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o1 on2o

21 nrec rec rec

sen
a

sen = a(o).o m.sen’

Figure 5.12: Input{directed output

In this case the sender writes on a channel which is received as a message. It can in
no way predict which is this channel. As in the previous case, the sender has only
one generic output channel. We model this with a Kahn network having also only
one channel. However, in this case the correspondence with the �{calculus is not
so close beacuse it makes no much sense to receive as a message on the channel a
an input channel. It seems to be more appropriate if Sen receives as a message the
actual receiver. In this case it can write to this receiver and optionally return the
receiver continuation. As a consequence, we give the following translation:

sen = a(o):om:sen0 ; sen(fn(r) : t) = (sw(r (m : u)) : u; fn(r << m) : v)
where
(u; v) = sen t

Note that the �rst projection of the output produced by the sender has the same
structure as the input of the receiver in the input{directed input case.

As an example, suppose we want to model a system which is dual to the mobile
telephones. There is a Centre knowing the input channels of the receivers Rec1 and
Rec2. As before, it sends these channel refernces to a sender Sen which is parametric
upon an output channel o. It can repeatedly talk on the channel o or receive a new
output channel on a which it then starts to use. Finally, the receivers Reck consume
the messages sent by Sen.

System
def
= (� a; i1; i2): (Centre k Sen(i1) kRec1 kRec2)

Centre
def
= a i1:Centre

0

Centre0
def
= a i2:Centre

Sen(o)
def
= o talk: Sen(o) + a (o0): Sen(o0)

Reck
def
= ik(m):Reck
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The corresponding con�guration in �{calculus is shown in Figure 5.13.

1

a

2

Centre

Sen

Rec Rec

1 2i i

Figure 5.13: Input{directed output example

In this modeling the Centre contains as \attributes" the channel references i1 and
i2 to the processes Rec1 and Rec2: In the modeling with higher order streams the
processes Rec1 and Rec2: themselves are attributes of the Centre. The corresponding
con�guration with higher order streams is given in Figure 5.14.

o

ca

Sen

Centre

Figure 5.14: Input{directed output example

System(p)
def
= o where

(o; c) = Sen pRec1 a
a = Centre Rec1 Rec2 c

Centre r1 r2 (r : c)
def
= r1 : Centre0 r r2 c

Centre0 r1 r2 (r : c)
def
= r2 : Centre r1 r c

Sen p rec (r : t)
def
= case p of

0 : p0 ) (ms(m) : u; (rec << m) : v) where(u; v) = Sen p0 (rec << m) (r : t)
1 : p0 ) (sw(r u) : u; r : v) where(u; v) = Sen p0 r t

Reck(x : t)
def
=Reck t
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5.4 A Calculus of Mobile Networks

In the previous sections we described an object con�guration as a Kahn network
i.e. as a function having the form:

f(
!
x) =

!
z where

!
y1= g1(

!
x;

!
y )

: : :
!
yn= gn(

!
x;

!
y )

One can alternatively dispense from f and describe a network simply as a set of
equations:

!
y1= g1(

!
x;

!
y )

: : :
!
yn= gn(

!
x;

!
y )

As before
!
y is the output and

!
x is the input of the whole network and for each

network component
!
yi= gi(

!
x;

!
y ),

!
yi is the output and

!
x;

!
y is the input. The hiding

operation performed by f is achieved by introducing an existential quanti�er. To
simplify the syntax we also dispense from the set notation and compose network
components with a parallel composition operator k. Finally, parametric, recursive

networks can be de�ned in the form P (
!
x) = KP .

The motivation for this calculus is to de�ne a platform for comparing the properties
of Kahn networks and calculi expressing mobility (especially the �-calculus). It can
be also understood as an instrument for investigating the logical properties necessary
to express mobility.

5.4.1 The Syntax

The context free syntax of networks is given below where P is the name of a param-
eterized network:

N ::= x = t j N k N j 9x.N j P(!x)

Hence, a non-recursive network is described in this case as

9u1; : : : ; um: u1 = g1(
!
x;

!
u) k : : : k un = gn(

!
x;

!
u)

where m < n. For the context sensitive syntax we must consider the following
aspects:
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1. The parallel composition M k N of two networks automatically conects the
output channels of M to the input channels having the same name of N and
reciprocally. These channels cease to be input channels for M k N.

2. Networks can be composed only if they have disjoint output channels. Oth-
erwise, common output channels would have to be merged in some way. We
want to avoid this situation.

3. For parameterized networks P (
!
x) we have to know which are the input and

which are the output channels. This is given by the network signature which

has the form P : �1 � : : :� �n
c1�:::�cn! net. Each �k de�nes the type of the

channel k and ck states if it is an input or an output channel (ck 2 fi; og).

The rules given below have no axioms. This is because they are based on the
context sensitive syntax for �-terms. A typing assertion � �� e : � says that e is a
well formed �-term of stream type � with free stream variables in �. The contexts
of the network terms contain additional information stating the input or the output
nature of the channel variables. An output channel x of type � is written as o(x) : �
to distinguish it from an input one which is written as i(x) : �. When we do not
want to distinguish between input and output channels we write c(x) : �. For a
context � = fx1 : �1; : : : ; xn : �ng we write c(�) for fc(x1) : �1; : : : ; c(xn) : �ng.

(eq)
�; x : � �� e : �

i(�); o(x) : � � x = e : net
fdom(�) = fv(e)� fxg

(ki) � �M : net � � N : net
� +� �MkN : net

f� +� context

(9i) �; o(x) : � � N : net

� � 9x:N : net

(pn)
� �� x1 : �1 : : : � �� xn : �n

c1(x1) : �1; : : : ; cn(xn) : �n � P (x1; : : : ; xn) : net

�
P 2 �

�1�:::��n
c1�:::�cn

! net

The operation + over contexts, takes care of the interconnections occurring in the
parallel composition. It builds a multiset modulo the following interconnecting
equations:

fi(x) : �g+ fi(x) : �g = fi(x) : �g
fi(x) : �g+ fo(x) : �g = fo(x) : �g

The �rst equation says that input channels are shared. The second one says that an
output channel is connected to the input channel with the same name. The input
channel is removed from the input/output channel context. If the same channel
occurs with di�erent types or twice as output then neither of the above rules can
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be applied. As a consequence the multiset cannot be reduced to a set i.e. to a valid
context and the composition is unde�ned.

The annotation c1� : : :�cn where ci 2 fi; og in the type of a parameterized network
reects its potential input/output behavior.

5.4.2 The Structural Congruence

As in �-calculus, network components can be understood asmolecules in a Brownian
motion which react if they have complementary channels. The existential quanti�er
plays the role of the membrane. It is interesting that these solution properties are
a natural consequence of the intended interpretation for our calculus as a subset of
the �rst order logic with equality and recursive predicates (read k as ^).
Our calculus is axiomatic. As a consequence we do not de�ne a separate reduction
relation. Instead we have laws which correspond to the structural congruence of the
�-calculus and laws corresponding to communication.

The congruence relation , must satisfy the following axioms.

(1) �{equivalence

9x.P , 9y.P[y/x] fy 62fv(P)

(2) (N /,, k, 0) is a symmetric monoid with 0 = true

(2.1) N k (M k P) , (N k M) k P
(2.2) N k 0 , N
(2.3) N k M , M k N

(3) Scoping rules for 9
(3.1) 9x.0 , 0
(3.2) 9x.9y. N , 9y.9x. N
(3.3) 9x. (N k M) , N k 9x. M fx 62 fv(N)

(4) Recursion - For each de�nition P(
!
x) = K add

P(
!
y ) = K[

!
y/

!
x]

(5) Input and output neutrals

(5.1) i(x) 2 Chan(N) ) (N , 9u. u = x k N[u/x])
(5.2) o(y) 2 Chan(N) ) (N , 9v. y = v k N[v/y])

The graphical representation of the neutrals is given in Figure 5.15.



5.4. A CALCULUS OF MOBILE NETWORKS 127

id
y

<=>
x

id
vux y

N N

Figure 5.15: The input and output neutrals

5.4.3 Communication

In contrast to the �-calculus we have only one axiom. Requiring that, is a congru-
ence relation we automatically obtain the equivalents for (par); (res) and (struct).
However, we can follow a similar path to the �-calculus when giving an operational
semantics.

(6) Internal Communication

9x: N k x = a : Q , 9x: N[a : x=x] k x = Q[a : x=x]

The graphical representation for (6) is given in Figure 5.16.

a

a

a

<=>

Q

x

Q

x

N N

Figure 5.16: Local channel communication

It can be explained as follows. The rest Q of the stream x can be given a local name
y i.e. y = Q. Then x = a : y. If we substitute x with a : y in N and Q then x
does not occur anymore in N and Q and it can therefore be discarded. Now using
�-conversion we can rename y in x. A proof for the equivalences (5.1) and (6) in
a natural deduction style is given in Appendix D. The communication axiom also
gives the motivation for the rules (5). They prepare the network N for the internal
communication.

5.4.4 The Mobile Nets versus the �-Calculus

The input-directed output example discussed in Section 5.3.4 can be expressed in
the above calculus very similarly to the �-calculus description. The con�guration is
shown again in Figure 5.17.
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o2 on

21 n

a

1 2i i ni

o1

Sen

Rec Rec Rec

Sen = a(o).o m.Sen’

Figure 5.17: Input-directed output

This can be described in the above syntax as follows:

Syst
def
= 9 a; i1; : : : ; in; o1; : : : ; on:
o1 = Rec1(i1) k : : : k on = Recn(in) k Sen(a)

Sen(i : a(i)) = 9u: (i = m : u) k Sen(a(u))

The stream a is not further speci�ed. It should contain only channel names which
are not already de�ned as outputs in the system con�guration otherwise we get the
merge problem. How to verify this condition statically is not treated in this thesis
and it is left as a further research problem. This example also shows the de�nition
of a recursive network.

The input-directed input example can be modeled as before. We split here for change
the input of Rec in two channels. The con�guration is shown in Figure 5.18.

21 n

a

i 2i i1 n

1 2 no o o

o

Rec

Sen Sen Sen

Rec = a(i).i(x).Rec’

Figure 5.18: Input-directed input

It can be described in the above syntax as follows:
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Syst(p)
def
= 9 o; i1; : : : ; in; o1; : : : ; on:

o1 = Sen1(i1) k : : : k on = Senn(in) k o = Rec p o1 a

Rec p (talk : i) (j : a) = case p of
0 : ps ) out : Rec ps i (j : a)
1 : ps ) Rec ps j a

As before, the channels a and i1; : : : ; in are not further speci�ed here.
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Chapter 6

Implementation

An implementation of the type inference algorithm given in Section 3.2 was written
in common Lisp. It is an extension of the system Illyria to support lazy data types
and function extension. Illyria was developed at IBM by Aiken and Wimmers and
it is used to type the language FL, a successor of the Backus' language FP.

In the following examples we use some syntactic conventions of lisp. A quote sup-
presses evaluation; the value of a quoted expression is just the unevaluated expres-
sion. Terms must be quoted. Either a normal quote or a back-quote may be used.
If an expression is back-quoted, then any subexpression ,x is replaced by the value
of variable x. The prompt of the Common Lisp interpreter is <cl>. Finally, Illyria
displays unions as j and intersections as &.

For example, the function which applies its argument on the argument itself can be
de�ned and typed in this system as below.

<cl> (defvar t-half-bottom '(lam x (x x)))
T-HALF-BOTTOM

<cl> (typ t-half-bottom)
forall (a, c).c ! a
where
0 � c � c ! a

This type is more general than the familiar one which is recovered by making a = b.

The untyped �xed-point operator can be de�ned and typed as below.

<cl> (defvar t-y '(lam u ((lam x (u (x x))) (lam x (u (x x))))))
T-Y

<cl> (typ t-y)
forall (a, b).((b ! a) & (b ! b)) ! a

131
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As before this type is more general than the familiar one which is recovered by
making a = b.

A simple point object with coordinates 0 and 1 can be de�ned and type checked as
below. Constructor symbols are preceded by a colon.

<cl> (defvar xyD `(lam m
(case m of

(:x 0)
(:y 1)

)
))

XYD

<cl> (typ xyD)
forall (a).a ! ((INT ? (a & X)) j (INT ? (a & Y)))
where
0 <= a <= X j Y

If we apply xyD on :x or :y we obtain the expected type INT.

<cl> (defvar xyA1 `(,xyD :x))
XYA1

<cl> (typ xyA1)
INT

We can extend this de�nition with a color as follows.

<cl> (defvar xycD `(,xyD extend
(:c :red)

))
XYCD

<cl> (typ xycD)
forall (a, b).b !

((((INT ? (a & X)) j (INT ? (a & Y))) ? (b & NOTfCg)) j
(RED ? (b & C)))

where
0 <= b <= C j (a & NOTfCg)
0 <= a <= X j Y

Applying xycD on :x and :c we get as expected the types INT and RED.

<cl> (defvar xycA1 `(,xycD :x))
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<cl> (defvar xycA2 `(,xycD :c))
XYCA1
XYCA2

<cl> (typ xycA1)
INT
<cl> (typ xycA2)
RED

Similarly, we can override the de�nition for the y coordinate as follows.

<cl> (defvar xyDO `(,xyD extend
(:y :red)

))
XYDO

<cl> (typ xyDO)
forall (a, b).b !

((((INT ? (a & X)) j (INT ? (a & Y))) ? ((b & NOTfYg))) j
(RED ? (b & Y)))

where
0 <= b <= Y j (a & NOTfYg)
0 <= a <= X j Y

Applying now xyDO to :x and :y we get as expected the types INT and RED.

<cl> (defvar xyDOa1 `(,xyDO :x))
<cl> (defvar xyDOa2 `(,xyDO :y))
XYDOA1
XYDOA2

<cl> (typ xyDOa1)
INT
<cl> (typ xyDOa2)
RED

Finally, a stream of :x messages can be de�ned and type-checked as follows.

<cl> (defvar stD `(,t-y (lam self (:cons :x self))))
STD

<cl> (typ stD)
CONS(X, a)
where

a = CONS(X, a)
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Chapter 7

Conclusions and Future Work

In this thesis we have developed a functional, asynchronous model for concurrent
object oriented programming. This model is based on the implicitly typed calculus
�8;!;c;[;\;?
� and it views an object con�guration as a network of stream processing

functions interacting over streams of messages.

Both concurrency aspects and OO issues inuenced our object model and the prop-
erties of the calculus. Concurrency considerations determined us to abandon the
record model in favor of the case-function one. Inheritance motivated the use of
subtyping with its natural extension to union, intersection and conditional types.
Parameterized or generic classes motivated the use of parametric polymorphism.
Finally, the recursive nature of objects which is implicit in the use of the pseudo-
variables self and myclass motivated the use of recursive types. Recursive types
were also necessary to model streams and provided the theoretical background for
passing streams themselves as messages. Higher order streams proved to be very
useful in expressing mobile systems. For the further investigation of mobility we
also developed a network calculus.

From a theoretical perspective, some of the main contributions of this thesis are:

� A new way to model objects as case-functions. This modeling treats in a
uniform manner both the sequential and the concurrent dialects of OO pro-
gramming. Moreover it closes the gap between functions and objects and
between objects and processes.

� A formal meaning for the basic OO concepts like objects and classes, links and
associations, polymorphism and inheritance. Associated with objects we gave
a meaning for object creation, encapsulation and message passing. Associated
with classes we gave a meaning for inheritance and polymorphism. Finally,
object con�gurations explained links and associations.

� An asynchronous model for concurrent OO programming. Associated with

135
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concurrency we showed how higher order streams can be used to model mo-
bility. Moreover, for the further analysis of mobility we developed a network
calculus.

From a practical perspective we mention:

� A step towards the integration of informal OO methodologies and formal meth-
ods. Providing the OMT or the Fusion method with our formal notation seems
to be pragmatically feasible. In this respect note that our formalism makes
the very desirable uni�cation of the functional and of the dynamic aspects of
a system.

� The practical veri�cation of our ideas with an implementation of the inference
algorithm.

As with any work of this nature there are aspects in this thesis which were de-
liberately ignored or simpli�ed in order to keep its size and complexity between
reasonable limits. The following sections describe additional areas for further study
outlining some preliminary ideas in each case.

7.1 Theoretical Work

7.1.1 A First Order Logic

In chapter 3 we were mainly interested to develop a type theoretical framework for
explaining OO issues like inheritance and polymorphism.

A �rst priority of the future activity is to extend this framework with the associated
equational theory. This theory can be further embedded in the �rst order logic as
done for example for the language Spectrum [45]. This would allow us to support
system developments from abstract, non-executable speci�cations to concrete, exe-
cutable implementations. This logic will also allow us to investigate the usefulness
of OO concepts like inheritance and subtyping in the speci�cation process.

7.1.2 Strictness Declarations

In order to keep things simple we used in this thesis only lazy constructors. This is
also the case for lazy languages like Haskell or Gofer. However, in a �rst order logic
it would be desirable to allow strictness declarations for various argument positions
of constructors. One could imagine declarations of the form:

cons(�; �) strict in 1
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The modi�cation of the type inference system, of the type inference algorithm and
of the semantics is straight forward. Syntactically we have to replace the rule (� cc)
by

(� cc)0 � jS; c(l1; : : : ; ln) � c(r1; : : : ; rn) ; � j S; l1 � r1; : : : ; ln � rn
j S; li1 � 0
: : :

j S; lik � 0

where i1; : : : ; ik are the strict positions of the constructor c.

Semantically a uniform treatment of constructors which are strict on some argument
positions and lazy on others is achieved by using lifting and coalesced products.
Instead of the type (U � : : :� U)? we can use the isomorphic type U? 
 : : :
 U?.
Strict positions are not lifted like in the product U 
U? which corresponds to cons.

7.1.3 PER Semantics

The ideal or inclusive sets model given in section 3.3 allows a very intuitive inter-
pretation for types as sets and for subtyping as inclusion. A well known de�ciency
of this model is that the � rule is not sound and consequently extensionality fails.
Although this does not inuence our soundness lemma this could not be satisfactory
when providing the equational theory.

The main reason that subset models do not form models of typed lambda calculus is
that equality is untyped or independent of type. However, we can construct models
in much the same spirit if in addition to a membership predicate we also associate
an equivalence relation with each type. The equivalence says when two elements are
to be regarded as equal with respect to that type. The membership relation and
the equivalence relation can be combined by using Partial Equivalence Relations
(PERs). In this case types can be interpreted as PERs and subtyping as inclusion
of relations. PER models for recursive types known as CUPERs (Complete Uniform
PERs) were developed in [7, 27, 8, 1].

7.1.4 Typed Semantics

The ideal and the CUPER models are type assignment semantics. However, follow-
ing the directions presented in section 3.3.2 we can give a typed semantics for our
calculus. The main technical di�culty in this case seems to be proving coherence.
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7.1.5 Merge Component

In the network calculus presented in section 5.4 we allowed to compose networks
only if they had disjoint output channels. In this way we avoided merging. In a
practical implementation however, it could be necessary to explicitly use merging
components. Further work should investigate the usefulness of explicit merging
components and give an adequate formal treatment.

7.1.6 The Calculus of Mobile Networks

The calculus presented in section 5.4 has to be further developed. For example, in
this calculus it is possible to describe network con�gurations both on the functional
and on the predicative level. Since these descriptions are not completely independent
we have to �nd out the right balance between them.

An important role in mobility is played by privacy constraints. In this respect we
need syntactical criteria to assure the correctness of con�gurations like the input-
directed output one.

Experience with this calculus should be gained by using it on particular examples.
These should also point out if additional rules are necessary.

Last but not least, we should provide the calculus both with an operational and
with a denotational semantics.

7.2 Practical Work

7.2.1 Type Simpli�cation

The implementation of the type inference algorithm always returns the least type
of an expression. This is not the principal type because it is often equivalent with
other types which are not instances of this type. An important aspect is therefore
to put this type in a \most-simple" form. This is currently done by a type simpli-
�cation algorithm. However, this algorithm does not always deliver the expected
results, especially when conditional types occur in conjunction with recursive ones.
It is therefore necessary to carefully analyze the sources of these anomalies and to
redesign the simpli�cation part if necessary.

7.2.2 Theorem Proving

Theorem proving in presence of subtyping got much interest in the last period. It
would be therefore very desirable to extend existing theorem provers like e.g. Isabelle
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with a type system along the lines presented in this thesis. Since Isabelle uses the
Hindley-Milner type inference algorithm which is an instance of ours, this seems to
be practically realizable.

7.2.3 Object Oriented Methodologies

An interesting practical consideration is to integrate our formal framework with an
OO methodology like OMT or Fusion. Especially Fusion which is a \descendent" of
OMT seems to be appropriate for this purpose because its operations speci�cation
and its asynchronous communication model are very close to ours.



140 CHAPTER 7. CONCLUSIONS AND FUTURE WORK



Appendix A

The Type Inference System

A.1 Types

A.1.1 Type Expressions

� ::= � j �1 ! �2 j c(�1; : : : ; �n) j �1 [ �2 j �1 \ �2 j �1?�2 j 0 j 1
� ::= � j 8�i:� where S

A.1.2 Subtyping

Proper Constraints

l ::= 0 j � j r! l j c(l1; : : : ; ln) j l1 \ l2 j l1 [ l2
r ::= 0 j � j l! r j c(r1; : : : ; rn) j r1 \ r2 j r1 [ r2 where r1 \ r2 = 0

S ::= l � r; S j �

Subtyping Rules

(� ref)
S ` � � �

(� tra)
S ` �1 � �2 S ` �2 � �3

S ` �1 � �3

(�!)
S ` � 01 � �1 S ` �2 � �

0

2

S ` �1 ! �2 � �
0

1 ! �
0

2
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(�! c)
S ` �1 ! �2 6� c(� 01; : : : �

0
n)

(� c!)
S ` c(� 01; : : : � 0n) 6� �1 ! �2

(� cd)
S ` c(�1; : : : �n) 6� d(� 01; : : : �

0
m)

f if c 6= d

(� cc)
S ` �1 � � 01 : : : S ` �n � � 0n
S ` c(�1; : : : �n) � c(� 01; : : : �

0
n)

(� \r) S ` � � �1 S ` � � �2
S ` � � �1 \ �2

(� \lb)
S ` �1 \ �2 � �i

f i = 1; 2

(� [l) S ` �1 � � S ` �2 � �
S ` �1 [ �2 � �

(� [gb)
S ` �i � �1 [ �2 f i = 1; 2

(�?1) S ` �1 � �
S ` �1?�2 � �

(�?2) S ` �2 � 0
S ` �1?�2 � �

(� 0l)
S ` 0 � �

(� 0c)
S ` c(�1; : : : ; �n) 6� 0

(� 0!)
S ` �1 ! �2 6� 0
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A.1.3 Recursive Constraints

Contractive types

0 � � 1 � �
� � � :� � �
c(�1; : : : ; �n) � � �1 ! �2 � �
� � � , � 6= � �1?�2 � � , �1 � � ^ �2 � �
�1 [ �2 � � , �1 � � ^ �2 � � �1 \ �2 � � , �1 � � ^ �2 � �

Rules for Free Variables

(� vl)
S; l � � � u j A; � � � ` � � �

(� vr)
S; l � � � u j A; � � � ` � � �

(� �vl)
S; l � � � u j A; � � � ` u � �

S; l � � � u j A ` � � �

(� �vr)
S; l � � � u j A; � � � ` � � l

S; l � � � u j A ` � � �

(� �vlr)1
S; l � �j � u j A; �i � �j ` �i � l

S; l � �j � u j A ` �i � �j
fi � j

(� �vlr)2
S; l � �i � u j A; �i � �j ` u � �j

S; l � �i � u j A ` �i � �j
fj � i

Rules for Bound Variables

(� bl)
S; � = �1 j A; � � �2 ` � � �2

(� br)
S; � = �1 j A; �2 � � ` �2 � �

(� �bl)
S; � = �1 j A; � � �2 ` �1 � �2

S; � = �1 j A ` � � �2
f�1 � �

(� �br)
S; � = �1 j A; �2 � � ` �2 � �1

S; � = �1 j A ` �2 � �
f�1 � �
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(� �blr)
S; � = �1; � = �2 j A; � � � ` �1 � �2

S; � = �1; � = �2 j A ` � � �
f�1 � �; �2 � �

A.2 Expressions

A.2.1 Context free syntax

e ::= x j �x:e j e1e2 j c(e1; : : : ; en)
j case e of p1 ) e1 : : : pn ) en
j e1 extend (p) e)
j let x = e1 in e2

p ::= x j x as p j c(p1; : : : ; pn)

A ::= x : �;A j � f no x occurs twice

A.2.2 Context sensitive syntax

(var) x : � 2 A
S[�i=�i] j A � x : � [�i=�i]

f� = 8�i:� where S

(! i)
S j A; x : �1 � e : �2
S j A � �x:e : �1 ! �2

(! e)
S j A � e1 : �1 S j A � e2 : �2 S ` �1 � �3 ! �4 S ` �2 � �3

S j A � e1 e2 : �4

(con)
S j A � e1 : �1 : : : S j A � en : �n
S j A � c(e1; : : : ; en) : c(�1; : : : ; �n)

(cas)

S j A � e : �
S j A;Api � pi : �

0
i ; ei : �i

S ` � � [ni=1�
0
i

S j A � case e of pi ) ei : [ni=1�i?� \ �i0

(ext)

S j A � f : � 00

S j A;Ap � p : � 0; e : �
S ` � 00 � �1 ! �2
S ` �3 � � 0 [ (�1 \ :� 0)

S j A � f extend (p) e) : �3 ! (�?�3 \ � 0 [ �2?�3 \ :� 0)
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(asp)
S j A � x : �1; p : �2
S j A � x as p : �1 \ �2

(let)
S j A � e1 : �1 S 0 j A; x : � � e2 : �2
S; S 0 j A � let x = e1 in e2 : �2

f� = Gen(S;A; �1)
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Appendix B

The type inference algorithm

B.1 The constraint accumulation algorithm

(var)z
(x : 8�i:� where S) 2 A
S[�i=�i] j A `Z x : � [�i=�i]

f�i new

(! i)z
S j A; x : � `Z e : �
S j A `Z �x:e : �! �

f� new

(! e)z
S1 j A `Z e1 : �1 S2 j A `Z e2 : �2

S1; S2; �1 � �! �; �2 � � j A `Z e1 e2 : �
f�; � new

(con)z
S1 j A `Z e1 : �1 : : : Sn j A `Z en : �n

S1; : : : ; Sn j A `Z c(e1; : : : ; en) : c(�1; : : : ; �n)

(cas)z
S j A `Z e : � Si j A;Api `Z pi : � 0i ; ei : �i

S; S1; : : : ; Sn;
� � [ni=1�

0
i

j A `Z case e of pi ) ei : [ni=1�i?� \ �i0

(ext)z
S 00 j A `Z f : � 00 S j A;Ap `Z p : � 0; e : �

S 00;
S;

� 00 � �! �;
 � � 0 [ (� \ :� 0) j A `Z f extend (p) e) :

 ! (�? \ � 0 [ �? \ :� 0)
f�; �;  new

(asp)z
S1 j A `Z x : �1 S2 j A `Z p : �2
S1; S2 j A `Z x as p : �1 \ �2
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(let)z
S1 j A `Z e1 : �1 S2 j A; x : � `Z e2 : �2

S1; S2 j A `Z let x = e1 in e2 : �2
f� = Gen(S1; A; �1)

B.2 Constraint Simpli�cation

(� 0l) � j S; 0 � r ; � j S

(� cc) � j S; c(l1; : : : ln) � c(r1; : : : rn) ; � j S; l1 � r1; : : : ; ln � rn

(�!) � j S; r1 ! l1 � l2 ! r2 ; � j S; l2 � r1; l1 � r2

(� [l) � j S; l1 [ l2 � r ; � j S; l1 � r; l2 � r

(� \r) � j S; l � r1 \ r2 ; � j S; l � r1; l � r2

(�?12) � j S; l1?l2 � r ; � j S; l1 � r j S; l2 � 0

(� [r) � j S; l � r1 [ r2 ; � j S; l \ :r1 � r2; l \ :r2 � r1

(� ref) � j S; � � � ; � j S

(� \lb) � j S; � \ l � � ; � j S

(� \l) � j S; � \ l � r ; � j S; � � (r \ l) [ :l



B.3. ELIMINATION ALGORITHM FOR :(:) AND (:) 149

B.3 Elimination Algorithm for :(:) and (:)

�1 \ �2 ; �1 \ �2
�1 [ �2 ; (�1 \ :�2) [ (�1 \ �2) [ (:�1 \ �2)
�1 ! �2 ; 0! 1

c(�1; : : : ; �n) ; c(�1; : : : ; �n)
� ; 1
0 ; 0

:�1 \ �2 ; (�1 \ :�2) [ (:�1 \ :�2) [ (:�1 \ �2)
:�1 [ �2 ; :�1 \ :�2
:�1 ! �2 ; [c2Cc(1; : : : ; 1)
:c(�1; : : : ; �n) ; (0! 1)[

; [d2C�fcgd(1; : : : ; 1)
; [c(:�1; 1; : : : ; 1) [ c(�1;:�2; : : : ; 1) [ c(� 1; : : : ; �n�1;:�n)

:� ; 0
:0 ; 1

B.4 Putting Types in Disjunctive Normal Form

� \ 0 ; 0

c(�1; : : : ; �n) \ c(� 01; : : : ; � 0n) ; c(�1 \ � 01; : : : ; �n \ � 0n)
c(�1; : : : ; �n) \ d(� 01; : : : ; � 0m) ; 0
c(�1; : : : ; �n) \ � 01 ! � 02 ; 0

�1 ! �2 \ 0! 1 ; �1 ! �2

� [ � ; �
� \ � ; �
(�1 [ �1) \ �3 ; (�1 \ �3) [ (�2 \ �3)
(� \ �1) \ �2 ; � \ (�1 \ �2)
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Appendix C

Domains

C.1 Complete Partial Orders

The following de�nitions are standard de�nitions from domain theory [46]. We
include them here to get a self contained presentation.

De�nition 3.1 Partial order

A partial order U is a pair (U;v) where U is a set and (v) � U � U is a
reexive, transitive and antisymmetric relation. 2

De�nition 3.2 !-Cpo

A partial order U is (countably) !-complete i� every chain a1 v : : : v an v
: : : ; n 2 ! has a least upper bound in U . We denote it by ti2!xi. 2

De�nition 3.3 !-Pcpo

A chain complete partial order U is pointed i� it has a least element. In the
sequel we denote this least element by ?. 2

De�nition 3.4 Monotonic functions

Let U = (U;vU) and V = (V;vV ) be two pcpo's. A function1 f 2 V U is
monotonic i�

d vU d
0 ) f(d) vV f(d0)

2

1We write V U for all functions from U to V .
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De�nition 3.5 !-Continuous functions:

A monotonic function between !-pcpo's U and V is continuous i� for every
chain a1 v : : : v an v : : : in U :

f(
G
i2!

ai) =
G
i2!

f(ai)

2

C.2 Cpo Constructors

Let U = (U;vU) and V = (V;vV ) be two pcpo's.

Function Pcpo

The Set

U
c! V is the set of all continuous functions from U to V .

The Ordering

f v
U

c
!V

g i� 8a 2 U:f(a) vV g(a);
?
U

c
!V

= �x :U:?V

The Universal Property

External Axiomatization

1: 8f : (W � U)! V: f = apply � (Curry(f)� idU)
2: 8g : W ! (U ! V ): g = Curry(apply � (g � idU))

Internal Axiomatization

1: � � reduction : (�x:e)(e0) = e[e0=x]
2: � � reduction : �x:e(x) = e x 62 FV (e)

The Functor

f ! g : (U ! V )! (U 0 ! V 0)
f ! g = �h : U ! V: g � h � f
1: idU ! idV = idU!V

2: (f � g)! (g0 � f 0) = (g ! g0) � (f ! f 0)
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Figure C.1: The Universal Property and The Functor

Product Pcpo

The Set

U � V = f(u; v) j u 2 U ^ v 2 V g
The ordering

(d; e) vU�V (d0; e0) i� (d vU d
0) ^ (e vV e0)

?U�V = (?U ;?V )

The Universal Property

External Axiomatization

1: 8f1 : V ! U1; f2 : V ! U2; i � 2: �i � (f1; f2) = fi
2: 8h : V ! U1 � U2: h = (�1 � h; �2 � h)

Internal Axiomatization

1: 8x1 : U1; x2 : U2: �i(x1; x2) = xi
2: 8x : U1 � U2: x = (�1(x); �2(x))

The Functor

f1 � f2 : U1 � U2 ! U 0
1 � U 0

2

f1 � f2 = (f1 � �1; f2 � �2)
1: idU1

� idU2
= idU1�U2

2: (g1 � f1)� (g2 � f2) = (g1 � g2) � (f1 � f2)
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Figure C.2: The Universal Property and The Functor

This de�nitions may be generalized to n-ary products in a straight forward way.
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Coalesced Sum Pcpo

The Set

U � V = f(0; u) j u 2 U; u 6= ?Ug [ f(1; v) j v 2 V; v 6= ?V g [ f?g
The Ordering

x vU�V y i�

8><
>:
x = ? _
x = (0; x0) ^ y = (0; y0) ^ x0 vU y

0 _
x = (1; x0) ^ y = (1; y0) ^ x0 vV y0

The Universal Property

External Axiomatization

1: 8f1 : U1�! V; f2 : U2�! V; i � 2: [f1; f2] � ini = fi
2: 8h : U1 � U2�! V: h = [h � in1; h � in2]

Internal Axiomatization

outi : U1 � U2�! V
out1 = [�?x : U1:x;?]; out2 = [?; �?x : U2:x]

isi : U1 � U2�! Bool
is1 = [�?x1:tt; �?x2:ff ]; is2 = [�?x1:ff; �?x2:tt]

1: 8x : Ui: x = outi(ini(x))
2: 8x : U1 � U2: x = is1(x)! in1(out1(x)) j is2(x)! in2(out2(x)) j?

The Functor

f1 � f2 : U1 � U2 ! (U 0
1 � U 0

2)
f1 � f2 = [in1 � f1; in2 � f2]
1: idU1

� idU2
= idU1�U2

2: (g1 � f1)� (g2 � f2) = (g1 � g2) � (f1 � f2)
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Figure C.3: The Universal Property and The Functor

This de�nitions may be generalized to n-ary sums in a straight forward way.

Lift Pcpo
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The Set

U? = U � f0g [ f?U?g where ?U? is not a pair.

The Ordering

(x; 0) vU? (y; 0) i� x vU y
8z 2 U?:?U? vU? z

The Universal Property

External Axiomatization

1: 8f : U ! V: f = lift(f) � up
2: 8h : U?�! V: h = lift(h � up)

Internal Axiomatization

down : U?�! U
down = lift(idU)

� : U?�! Bool
� = lift(�x : U:tt)

1: 8x : U: x = down(up(x))
2: 8y : U?: y = �(x)! up(down(y)) j?

The Functor

(:)? : U ! U?
f? = lift(up � f)
1: (idU)? = idU?
2: (g � f)? = g? � f?
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Figure C.4: The Universal Property and The Functor

C.3 Bounded Complete Domains

De�nition 3.6 !-Finite

An element of a cpo is !-�nite i� whenever it is less than the limit tn2!xn
of a chain x1 v x2 : : : it is less than some element of the chain. The !-�nite



156 APPENDIX C. DOMAINS

elements in any subset X of a cpo are denoted by Xo. 2

De�nition 3.7 !-Algebraic

A cpo is !-algebraic i�

� it has countable many !-�nite elements,

� for every element x, there is an increasing chain (xn)n�0 of �nite elements
such that x = tn�0xn.

2

The problem with !-algebraic cpo's is that given algebraic cpo's U and V the func-
tion space U ! V is not algebraic. However, an additional condition removes this
problem.

De�nition 3.8 Bounded Complete cpo

A cpo U is bounded or consistently complete if every bounded subset of U has
a least upper bound. 2

De�nition 3.9 Bc-domain

A bounded complete domain is a bounded complete algebraic cpo. 2

All countable at cpo's are bc{domains and all the constructions send bc{domains
to bc{domains.

Proposition 3.1 Finite elements

(U � V )o = Uo � V o (U � V )o = Uo � V o (U?)
o = (Uo)? 2

De�nition 3.10 Continuous step function

For the function space U ! V the continuous step function (a ) b) for any
a 2 Uo; b 2 V o is de�ned by:

(a) b)(x) =

(
b if a v x
? otherwise

2

De�nition 3.11 Finite functions

Finite functions are the �nite lubs of step functions.
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f = (a1 ) b1) t : : : t (an ) bn)

f(x) = tfbi j ai v xg
The lub (a1 ) b1)t : : :t (an ) bn) exists if and only if whenever fai1; : : : ; aikg
is a subset of fai; : : : ; ang with an upper bound, then fbi1 ; : : : ; bikg has an
upper bound too. 2
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Appendix D

Network Calculus Proofs

D.1 Internal Communication (6)

\)"

9x:x = a_Q[x=y] ^N [x=y]

x = a_Q[x=y] ^N [x=y]

9x:x = Q[a_x=y] ^N [a_x=y]
(A)

9x:x = Q[a_x=y] ^N [a_x=y]
(9e)

The proof A is given below:

9z:z = Q[x=y] x = a_Q[x=y] ^N [x=y]

9z:z = Q[x=y] ^ x = a_Q[x=y] ^N [x=y]
(^i;9^)

z = Q[x=y] ^ x = a_Q[x=y] ^N [x=y]

z = Q[x=y] ^ x = a_z ^N [x=y]
(^ei;subst)

z = Q[a_z=y] ^N [a_z=y]
(^e;subst)

9x:x = Q[a_x=y] ^N [a_x=y]
(9i;�)

9x:x = Q[a_x=y] ^N [a_x=y]
(9e)

\("

9x:x = Q[a_x=y] ^N [a_x=y]

x = Q[a_x=y] ^N [a_x=y]

9x:x = a_Q[x=y] ^N [x=y]
(B)

9x:x = a_Q[x=y] ^N [x=y]
(9e)

The proof B is given below:

159
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9z:z = a_x x = Q[a_x=y] ^N [a_x=y]

9z:z = a_x ^ x = Q[a_x=y] ^N [a_x=y]
(^i;9^)

z = a_x ^ x = Q[a_x=y] ^N [a_x=y]

z = a_x ^ x = Q[z=y] ^N [z=y]
(^ei;subst)

z = a_Q[z=y] ^N [z=y]
(^e;subst)

9x:x = a_Q[x=y] ^N [x=y]
(9i;�)

9x:x = a_Q[x=y] ^N [x=y]
(9e)

D.2 Input Neutral (5.1)

\)"

9u:u = x N [x=y]

9u:u = x ^N [x=y]
(^i;9^)

u = x ^N [x=y]

u = x ^N [u=y]
(^ei;subst)

9u:u = x ^N [u=y]
(9i)

9u:u = x ^N [u=y]
(9e)

\("

9u:u = x ^N [u=y]

u = x ^N [u=y]

N [x=y]
(subst)

N [x=y]
(9e)
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