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Abstract—In this paper, we investigate the transmission-power
assignment problem for k-connected mobile ad hoc networks
(MANETs), the problem of optimizing the lifetime of a MANET
at a given degree k of connectivity by minimizing power consump-
tion. Our proposed solution is fully distributed and uses a model-
based transmission power adaptation strategy based on model-
predictive control. Specifically, a stochastic model of the network
is used by a state estimator to predict the network’s future
degree of connectivity and remaining energy. The predicted states
are used by an optimizer to derive an optimal transmission
power assignment sequence which tracks the desired connectivity
level k while minimizing energy consumption. Our experimental
results on a simulated wireless sensor network comprising 100
mobile nodes reveals that our localized topology control algo-
rithm provides an almost identical control policy to that of a
globalized scheme which is solving a fully observable problem.
The difference, of course, is in the scalability of our localized
solution, which requires much less communication bandwidth
and energy than the globalized approach.

I. INTRODUCTION

Various civil and military applications possess an inherent
need for the rapid deployment of mobile users and concomitant
network support. Examples include establishing survivable,
efficient, dynamic communication for emergency and rescue
operations and disaster relief efforts. Centralized and organized
network connectivity is inappropriate for such applications;
rather, they require mobile ad hoc networks (MANETs) [1].
For this reason, and due to the fact that such networks
are emblematic of the purest form of distributed systems,
MANETs have in recent years have become a topic of intense
interest within the networking research community.

A MANET is an autonomous collection of mobile devices
that communicate over wireless links. Mobile devices are
typically powered by batteries, and it is expensive and some-
times infeasible to recharge them. MANETs are intrinsically
decentralized, meaning that all network activities, including
discovering the topology, must be executed by the nodes them-
selves. The absence of a centralized infrastructure makes these
networks an attractive solution for implementing and manag-
ing mobile wireless sensor networks. Wireless sensor networks
[2] are an important emerging technology for monitoring the
physical world via a large number of distributed sensing
node. Many applications [3] [4] [5] [6] need sensor nodes
to be mobile making such networks similar to MANETS.
However, sensor networks are typically more resource con-

strained compared to MANETS because of the use of small,
embedded devices and impracticality of recharging batteries.
Thus, mobile sensor networks make a challenging case study
in our context.

Complicating matters further is the fact that, in these
networks, hosts are also routers and this poses a major
robustness problem. Nodes running out of battery power not
only lose their own individual capabilities, but also impact the
entire network by changing routing functionality. In addition,
connectivity is strongly influenced by frequently changes in
topology due to node mobility.

In the paper, we present a novel, power-aware approach for
increasing the robustness of MANETs. The robustness of a
wireless ad hoc network is characterized by its level of k-
connectivity over time. A k-connected network has k disjoint
connecting paths between any pair of nodes. The particular
problem we are interested in solving is the transmission-power
assignment problem for k-connectivity (TPAP): optimizing the
lifetime of a MANET at a given degree k of connectivity
by minimizing power consumption. Algorithms that address
this problem are sometimes referred to as topology control
algorithms, and this shall be the case here. The interest in
studying the TPAP for k-connected MANET is motivated by
the fact that, when a network is k-connected, up to k−1 node
failures can be tolerated without disconnecting the network.

We approach this optimization problem from a decision-
theoretical point of view. A stochastic model of the network
is used by a state estimator to predict the network’s future
connectivity degree and remaining energy. The predicted states
are used by an optimizer to derive an optimal transmission
power assignment sequence that steers the network behavior to
the desired connectivity level k while minimizing energy con-
sumption. Our topology control algorithm is fully distributed,
with each node utilizing p-hop neighborhood link information
in order to estimate global network connectivity.

In order to evaluate our algorithm’s performance, we devel-
oped a comprehensive simulation model of a wireless sensor
network comprising 100 mobile nodes using the Castalia open-
source simulation environment [7]. Our experimental results
reveal that our localized topology control algorithm, which
is solving a partially observable problem, provides an almost
identical control policy to that of a globalized scheme, which is
solving a fully observable problem. The difference, of course,



is in the scalability of our localized solution, which requires
much less communication bandwidth and energy than the
globalized approach.

The rest of this paper develops along the following lines.
Section II considers related work. Section III describes our
topology control algorithm for the k-connected TPAP. Sec-
tion IV contains our performance-evaluation results, while
Section V offers our concluding remarks and future work.

II. RELATED WORK

The recent literature describes a number of efforts aimed
at increasing the fault tolerance of MANET topologies and
devising algorithms for building such topologies. In geometric
random graphs, Penrose studied in general the problem of k-
connectivity of fixed radius networks in a d-dimensional cube
deployment region [8]. He showed that the communication
graph becomes k-connected as soon as its minimum node
degree reaches k if the number of the nodes goes to infinity and
the deployment region is a d-dimensional cube. Relatedly, sev-
eral researchers have studied the problem of kconnectivity in
dense ad hoc networks, revealing an interesting analogy with
non-geometric random graphs [9] [10]. Although interesting,
the theory of geometric random graph cannot be applied in
realistic scenarios, because this can be used only to derive
results concerning dense ad hoc networks.

In the past years, several topology control algorithms have
been also proposed based on different available topology
information on each network node. Li and Hou [11] provide
a position-based topology control algorithm preserving k-
connectivity; this is position-based topology control algorithm
preserving k-connectivity. Their algorithm is position-based
because it uses information about node locations. about the
node location. Two approaches are introduced: one centralized
(FGSS) and the other distributed and localized (FLSS). These
approaches proposed greedy algorithms in the sense that at
each iteration, the edge with minimum weight is chosen until
the k-connectivity is satisfied. In this kind of approach, the
nodes are usually equipped with a low-power GPS receiver for
providing node location estimation, which decreases message
exchange among nodes. The CBTC topology control protocol
of [12]is direction-based in the sense that relies on the ability
of nodes to estimate the relative direction of their neighbors.
The key idea is that a node must retain connections to at least
one neighbor in every direction defined by a specific parameter
ρ. Bahramgiri et al. [13] extended CBTC to provide k-
connectivity. The CBTC protocol is usually implemented using
directional antennas for obtaining directional information of
the signal sources.

These approaches, unlike our own, do not deal with node
mobility because they construct a k-connected topology in
stationary networks. Considerable work has been reported in
the literature for stationary networks and few efforts have
focused on the issue of topology control with mobility. The
dynamic nature of mobile networks requires periodical infor-
mation exchange to reorganize the topology, which directly
impacts performance of the topology control algorithms.

In mobile scenarios, an interesting topology control scheme
for mobile networks is proposed by Zavlanos and Pappas
[14], who model connectivity as an imaginary obstacle in a
free space and use artificial potential fields to avoid collisions
with it. This work, however, focuses more the actuation and
control than on the power consumption and transmission
power assignment problem.

In mobile ad hoc networks, a scalable topology control
needs: (i) to use only local neighborhood information to obtain
a topology picture avoiding specific hardware request; (ii)
to be executed frequently in order to account for the new
positions of the nodes due to mobility. Therefore, the reduction
of control traffic overhead is fundamental when implementing
topology control mechanisms in mobile networks, because
data transmission is the main critical factor that sacrifices
device limited resources like energy.

In recent years, significant effort has been made in research
and development of MANET and tremendous advancements
have been achieved with respect to decision and control theory.
In [15], the localization problem of sensor nodes is formulated
as an on-line estimation in a nonlinear dynamic system and the
authors propose a Robust Extended Kalman state estimator for
solving it. Gupta et al. [16] develop a stochastic sensor selec-
tion algorithm that decides how schedule the sensors access
to the network to minimize the error covariance adopting a
state estimator. From a control prespective, a recent survey
on packet loss compensation can be found in [17]. In [18],
the authors propose a receding horizon control where multiple
vehicles cooperate to arrive at multiple target points while
maximizing rewards. Although these work does not address k-
connectivity and power consumption, its relation to our work
seems worthy to be investigated.

III. DESCRIPTION OF OUR APPROACH

In this section, we describe the topology-control algorithm
we have developed for optimizing the lifetime of a MANET at
a given degree k of connectivity. We begin with an overview
of our approach, followed by detailed discussions of the
algorithm’s main modules, including the system identification
module, the Kalman state estimator, and the model-based
power optimizer.

A. Approach Overview

Our topology control algorithm uses a transmission-power
adaptation scheme based on model-based predictive con-
trol [19][20]. Referring to this methodology, our control al-
gorithm utilizes a dynamic model of the network to predict
and guide the future network behavior in terms of energy
consumption and connectivity level. At each sampling interval,
an optimal sequence of transmission power assignments is
calculated in such a way to optimize a cost objective function
over a future horizon. In this way, we characterize the dynamic
network model using an input-output black-box modeling
technique, in which the inputs u(t) correspond to transmission-
power assignments and the outputs y(t) are the connectivity
and remaining energy levels as shown in Figure 1.



Fig. 1. Dynamic network model.

The proposed topology control algorithm is characterized
by the following steps:

1) Initially the future outputs for a determined prediction
horizon P are predicted at each sample interval t by the
State Estimator using a learned dynamic network model;

2) These outputs y(t+ k|t) for k = 1, ..., P depend on the
known values up to instant t (past inputs and outputs)
and on future inputs u(t+ k), k = 0, ..., C − 1 where C
is the control horizon;

3) The sequence of future inputs is calculated by the
optimizer solving a quadratic programming problem in
order to keep the future network outputs as close as
possible to the predefined reference trajectory r(t), that
represents the desired k-connectivity and energy level;

4) The first value of this optimal sequence is injected into
the network device;

5) The sampling rate is adjusted if the estimation error is
out of a predefined admissible range;

6) In the next sample interval we repeat step 1 using
the new measured outputs and moving forward both
horizons by one time interval.

Every sampling period, each node sends a broadcast mes-
sage to discover its neighbors and then collects neighborhood
link-state information in order to measure the current observ-
able outputs. Maintenance of global network link information
requires significant communication overhead especially when
nodes are mobile, and in large-scale ad hoc networks the
network delay makes this approach impracticable. Localized
solutions are therefore preferred. Using a localized solution,
a node makes decisions solely based on the link information
available from itself and its p-hop neighboring nodes. The
aggregation of these local link-states constitutes a partial
communication graph that is used by nodes to estimate the
global k-connectivity degree. Although the communication
of neighboring link-state information is affected by network
delays, the overall delays is significantly smaller than in the
global case and can be easily managed by setting the prediction
and control horizons in a such way that:

P − C � dmax/∆t (1)

where P is the prediction horizon, C is the control horizon,
dmax is the maximum delay, and ∆t is the sampling rate. In
this way, the communication delay is not significant for the
overall control.

In our approach, we learn a stochastic network model based
on measured observable data gathered from several test-beds;
see Section III-B. The identified network model is then used
by a Kalman estimator in order to predict the network behavior
over the prediction horizon; see Section III-C. Assuming that
the estimates are available, an optimizer computes the opti-

mal sequence of transmission-power assignments by solving
a quadratic problem in order to trace the desired network
behavior over the control horizon; see Section III-D. Figure 2
shows the overall control methodology.

Fig. 2. Overall control methodology for topology control.

In the problem we are solving, we consider mobile sym-
metric ad hoc networks with omni-directional transmissions.
That is, we assume that: (i) the network is dynamic, nodes are
mobile, and the topology of the network can change over the
time; (ii) all established links are symmetric or bidirectional,
so that if a node u is assigned to receive transmissions
from a node v, then it must also be able to transmit to v;
(iii) omni-directional transmissions are given by antennas that
provide a 360-degree transmission pattern covering an area
around the node at a given transmission power. Changing the
transmission power changes the dimension of coverage area.
The network communication graph is given by an undirected
graph G = (V,E), where V is the set of mobile nodes and
E is the set of undirected links. In general, this graph may
be directed, but our symmetric link constraint allows us to
remove all unidirectional links.

B. System Identification

The dynamic network behavior is unknown and we thus ap-
ply a black-box approach to learn its model [21]. This is a very
flexible mathematical approach that allows one to build models
by analyzing the measured data obtained by experimentation.
As such, we can derive the model without knowing the rules
that govern the network state. The aim is to model the network
dynamics in term of transmission power, k-connectivity, and
energy consumption. A black-box approach consists of analyz-
ing the input-output data relationship to derive the state-space
model structure and parameters. The most important phases to
building the model are: (i) experiment design and deployment;
(ii) experimental data gathering; (iii) data prepossessing in
order to remove possible experimental errors that can affect
the final model; (iv) the identification of a multivariable linear
time-invariant finite-dimensional system model that “best fits”
the experimental data; and (v) model validation.

The input-output data used for learning are provided by
a series of test beds. The experimental conditions have
been designed for including a wide range of frequen-
cies in order to accurately estimate the model parame-
ters. In this way, given input-output data (estimation data),
< u(t), y(t) >: t = 1, ..., T , and a parameterized state space
model structure, we estimate the model using standard fitting
techniques. Moreover, statistical model validation is performed



by the residual analysis using a fresh data set, the validation
data, for cross validation [22]. Ultimately, we obtain a state-
space model in which x(t) is the internal network state, the in-
put action u(t) represents the transmission-power assignment
(input action), output y0(t) is the k-connectivity level, and
output y1(t) is the remaining battery level.

C. State Estimator

In the black-box approach, the network state x(t) is not
directly measurable. The issue then is to estimate x(t) given
access only to the measured outputs y(t) as shown in Figure 3.

Fig. 3. Kalman Estimator schema used by the topology control algorithm.

The Kalman estimator is an efficient recursive filter that
estimates the state of a dynamic system from a series of
incomplete and noisy measurements. The estimator is given
by a set of recursive equations that provides an efficient
computational means to estimate the state of a process in a
way that minimizes the mean of the squared error (i.e. the
mean square disagreement between the observed value and
the estimated value). The estimator is recursive in the sense
that it does not need to store all previous measurements and
reprocess all data each sampling interval. Rather, the estimator
is based on previously learned state space model:

x(t+ 1) = Ax(t) +Bu(t) + w(t) (2)
y(t) = Cx(t) + v(t) (3)

For zero-initial conditions and in the absence of disturbances
one can derive the following truncated step response model
[20]:

y(t) =
n−1∑
i=1

Hi∆u(t− i) +Hnu(t− n). (4)

where n is the truncation order and ∆u(t) = u(t)− u(t− 1).
In (2) and (3), w(t) and v(t) are random variables respec-
tively representing the node mobility disturbance in the state
equation and the error sources in the observation equation due
to the use of a localized algorithm for the vertex connectivity
feedback mechanism. The localized algorithm makes our sys-
tem partially observable because we estimate a global network
property from local link-state information. As such, the model
we deal with is a partially observable stochastic model [23].
The random variables are assumed to be independent, white,

and, with normal probability distributions

p(w(t)) ∼ N(0, Q(t)), (5)
p(v(t)) ∼ N(0, R(t)), (6)

where Q and R are the mobility disturbance covariance
matrix and the observation disturbance covariance matrix,
respectively.

The Kalman Estimator estimates the network state using
a form of feedback control: the estimator estimates the state
at time t and then obtains feedback by k-connectivity and
battery measurements. As such, the equations for the Kalman
estimator fall into two groups: time-update equations and
measurement-update equations. See Figure 4.

Fig. 4. Kalman Estimator cycle.

The time-update equations are responsible for projecting
forward (in time) the current state and error covariance esti-
mates x̂(t−1) and P (t−1), respectively, to obtain the a priori
estimates x̂(t)− and P (t)− for the next time step. As new
observations are obtained, the measurement-update equations
are responsible for incorporating these observations into the a
priori estimate to obtain a more accurate posteriori estimate
x̂(t) and to refine the prediction by computing the Kalman gain
K(t) which minimizes the posteriori error covariance P (t).

1) Localized k-vertex connectivity algorithm: The dis-
tributed algorithm that we have developed for topology control
uses only local link-state information to calculate k-vertex
connectivity, a localized notion of k-connectivity. Logically,
nodes can make mistakes in their estimate of k-connectivity,
as it is impossible for them to know about alternate connec-
tions in different parts of the network. However, in many
applications, the fact that the whole network is or is not
globally k-connected may be of limited importance, thereby
furthering the appeal of a localized computation. Moreover,
localized algorithms incur significantly less computation and
communication overhead. In our localized algorithm, each
node u utilizes the connectivity information embedded in
the p-hop subgraph centered at u (derived from u’s p-hop
neighborhood) in order to compute k-vertex connectivity.

Formally, let V be a set of nodes deployed in a certain
bounded two-dimensional region R, with |V | = n. Given any
p, 0 ≤ p ≤ n− 1, the p-hop subgraph centered at a node u is



the bidirectional subgraph induced from those nodes within p-
hops of u. We denote this graph by Gp(u) = (Vp(u), Ep(u)),
where Vp is the p-hop neighbor set of u, including u itself and
all nodes within p-hops of u, and Ep(u) is the set of existing
links among the nodes in Vp(u). Note that the hop distance
d(u, v) is less or equal to p for all v ∈ Vp(u).

We also define Bp(u), the p-hop node set of u, which is
the set of all nodes that are exactly p hops distant from u;
d(u, v) = p, ∀v ∈ Bp(u). Thus, V0(u) = B0(u) = {u},
Vp(u) = Vp−1(u) ∪ Bp(u), for p ≥ 1. Our algorithm for k-
vertex connectivity enriches the Bp(u) subgraph by adding
cross edges that connect nodes in Bp(u) ⊆ Vp(u) with nodes
in Bp+1(u). The aim of this enrichment process is to take
into account outgoing disjoint paths that connect the subgraph
Gp(u) with the subgraph Gp+1(u). This is motivated by the
fact that Gp(u) can be, for example, 12-connected, but there
is only a single outgoing disjoint path; we therefore refine
the localized estimate in Gp(u) by returning 1-connectivity.
Summarizing, node u computes k-vertex connectivity in the
subgraph Gp(u) and then refines its estimation if the number
of outgoing disjoint paths is less than this quantity.

2) Adaptable Sampling Period: An important aspect of our
topology control algorithm is the rate at which it samples
the output variables y0(t) (the k-connectivity level) and y1(t)
(the remaining battery) of the MANET under observation:
the higher the sampling rate, the more accurate the view of
the network state. The higher the sampling rate, however, the
higher the computation and communication overhead incurred
by the control policy, and therefore the greater the drain on the
battery energy reserves. We therefore use Kalman estimation
error to adaptively adjust the sampling rate. Using the dynamic
model representing the network, each node can make predic-
tions of future measurement based on the Kalman estimator
prediction/correction paradigm. As such, new observations
will be compared to previous predictions and an error value
will be calculated on the basis of these comparisons. If the
error value exceeds the predefined admissible error range, the
sampling rate will be increased; otherwise, it will be decreased.

min
∆u(t),...,∆u(t+C−1)

P∑
l=1

||ŷ(t+ l|t)− r(t+ l)||2Γl

+ ||∆u(t+ l − 1)||2Bl
(7)

ŷ(t+ l|t) =
l∑
i=1

Hi∆u(t+ l − i)

+
n−1∑
i=l+1

Hi∆u(t+ l − i) (8)

+ Hnu(t+ l − n) + d̂(t+ l|t)

d̂(t+ l|t) = d̂(t|t) = y(t)−
n−1∑
i=1

Hi∆u(t− i)

+ Hnu(t+ l − n) (9)

∆u(t+ l) = 0, C ≤ l < P (10)

ŷ(t+ l|t)= predicted value of y at time t+ l based on
the information available at time t

d̂(t+ l|t)= predicted value of the process disturbances
output at time t+ l based on information
available at time t

Hi= model step response matrix coefficient
n= truncation order

||x||2Q= xTQx, norm of x weighted by Q
Bl, Γl= weighting matrices

D. Optimizer
Let P and C be the prediction and control horizons, re-

spectively. Assuming that the estimates of x(t) are available
at time t, the optimal setting of the transmission power is
obtained by solving the quadratic problem defined in (7). The
first term represents the predicted deviation at future instants
between the system output and the reference points r(t) and
is used to track the desired behavior. The second term guides
the adjustment in the transmission power assignment. The
vector r(t) consists of r0(t), the desired k-connectivity level
(e.g. 10-connectivity) and r1(t), the desired remaining battery
level, which is set to the maximum battery charge since the
aim is to save energy. In equation (8), consisting of four
terms, the future outputs of the system are predicted. The first
includes the present and all the future input actions, which are
calculated by solving (7). The second and third terms include
the past values of the input action that are known at time t.
The fourth is the predictive disturbance, which is assumed
constant for all future time, but at time t, d̂ is estimated
as the difference between the measured system output y(t)
and the output predicted using the process model. In each
sampling period, the quadratic problem is solved resulting in
new optimal transmission power assignments.

IV. EXPERIMENTAL RESULTS

In order to provide an experimental evaluation of the
proposed approach, we have implemented our topology control
algorithm in the Castalia open-source simulation environment
for wireless sensor networks [7], which is in turn built on
top of the OMNeT++ simulation environment for MANETs
and other forms of communication networks [24]. The choice
of Castalia was motivated by the fact that it provides an
accurate channel/radio model based on empirically measured
data and takes into account usually neglected issues such as
clock drift, sensor bias, sensor energy consumption, and CPU
energy consumption. Castalia also monitors key computational
resources, such as memory usage and CPU time.

Our Castalia-based simulation model captures a wireless
sensor network of Mica2 motes using Chipcon CC1100
transceivers. The mobility model is one in which nodes move
randomly with obstacle-free trajectories in a two dimensional
space. This is a memoryless mobility pattern because it retains
no knowledge concerning its past location and speed values.
In other words, the current speed and direction of a node have
no relation to its past values in the previous epoch. Tables I
and II provide the configuration parameters for the simulation
and the linear quadratic problem, respectively.



The wireless channel model is a log-normal shadowing
model [25], and is given by:

PL(d) = PL(d0) + 10n log10

(
d

d0

)
+Xσ (11)

where PL(d) is the path loss (power density attenuation) at
transmitter-receiver distance d, d0 is a reference distance, n
is the rate at which the signal decays, and Xσ is a zero-
means Gaussian random variable with standard deviation σ
which models the shadowing effect. As such, an irregular radio
coverage area can be obtained by setting σ 6= 0.

Fig. 5. Comparison of global and local control on node 25.

For experimental evaluation, a globalized solution, where
link state information are acquired by exchange of information,
is going to be less competitive due to overhead commu-
nication and network delay. For this reason, we report the
results of a simulation comparing a globalized solution, where
information about neighborhood nodes are available without
communication, to our localized solution. In this case, we
assume an "external watcher", which can access to neighbors
tables of all nodes without requesting communication. In this
way, the "external watcher" can build the exact picture of the
network and find the optimal policy for the TPAP. The applied
localized approach requires only the knowledge of a 5-hop
neighborhood. Obviously, the globalized solution without link
state information exchange is the best one can achieve because
it solve a fully observable decision problem finding the optimal
transmission power assignments.

Figures 5(a) and 6(a) compare the transmission power
assignments of the globalized (red line) and localized (blue
line) algorithms for nodes 25 and 57, respectively. Likewise,
Figures 5(b) and 6(b) compare the k-connectivity and battery-
level measurements of the global (red line) and local (red line)
approaches. The comparison reveals that our localized topol-
ogy control algorithm, which is solving a partially observable
problem, provides an almost identical control policy to that
of the globalized scheme. The difference, of course, is in the
scalability of our localized solution, which requires much less
communication overhead and energy than an implementable
globalized one that needs link state information exchange.

Fig. 6. Comparison of global and local control on node 57.

Simulation Area 50× 50 m
Nodes 100

Start Battery 200 J
Simulation Time 4000 sec

TABLE I
SIMULATION SETTING

V. CONCLUSIONS

Topology control is one of the most important techniques
used in mobile ad hoc networks to reduce energy consumption
while concomitantly satisfying global network properties. In
this paper, we discussed the importance of scalable topol-
ogy control for improving fault tolerance in MANETs. We



Reference Points r0 200
r1 8

Output Weights Γ0 1
Γ1 100

Input Weights B 0.8

TABLE II
LINEAR QUADRATIC PROBLEM SETTING

addressed this issue by applying a novel decision-theoretic
approach that seeks to optimize the lifetime of a MANET
at a given degree k of connectivity. Our proposed solution
is fully distributed (each node only needs to know its p-hop
neighborhood), and uses model-based prediction to minimize
communication overhead. An experimental evaluation reveals
that our localized topology control algorithm provides an
almost identical control policy to that of a centralized scheme
which is solving a fully observable problem. The difference
is in the scalability of our localized solution, which requires
much less communication bandwidth and energy than the
centralized one.
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