Visual Formalisms Revisited

Radu Grosu
Technische Universität München

joint work with
Gheorge Stefanescu and Manfred Broy

Motivation

Interactive Applications

- An important domain of concern of SEng.
- Difficult to develop:
- data
- behavior
- interconnection
- architecture
- distribution

Developer/Customer Interaction

- Successful communication between customer software expert \Longrightarrow successful software development.
- Many modern SE Methods, like UML, ROOM and SDL recommend the use of visual formalisms.

Use of Visual Formalisms

- data
- behavior
- intercommunication
- architecture
- distribution
- E/R diagrams
- statecharts
- message sequence charts
- data-flow diagrams
- deployment diagrams

What are Visual Formalisms

- Directed graphs interpreted in a particular context.
- Intended to be compositional:
- each node can be itself a graph
- each node has a separate meaning

Problems

- No adequate hierarchic graphs model
- No clear denotational model

Severe consequences

A Telephone Central - with Statecharts

Telephone Central - Our Approach

Central

onHook

The Graphical Notation

Nodes and Arcs

Graph $=\mathrm{a}$ set of nodes connected by a set of arcs
Node interface $=$ set of incoming/outgoing arcs
$-\operatorname{arcs} a$ denote types D_{a}

- nodes N denote relations $N \subseteq D_{a} \times D_{b}$

Graph Construction Primitives

Operators on nodes

Visual attachment

Sequential composition

Connectors

Identity

Identification

Feedback

Ramification

Transposition

Additive and Multiplicative Interpretations

Additive (+) Interpretation of visual attachment

Additive (+) Interpretation of connectors

Multiplicative (x) interpretation of visual attachment

Multiplicative (x) interpretation of connectors

Computation Model

Interactive system $=$ network of autonomous agents. Agent $=$ sequential machine .

$$
\operatorname{Cmp}(s)=\left(\operatorname{Com}^{*} ; \Delta_{s} ;<;\left(\text { Out }^{*} \times \mathrm{I}\right)\right) \uparrow
$$

Architecture Specification

Port Specification

TelI $=\mathrm{tk} \mid$ onH \mid offH $\mid \operatorname{dig}(I)$
$\mathrm{TelO}=\mathrm{tk}|\mathrm{dtB}| \mathrm{dtE}|\mathrm{rtB}| \mathrm{rtE}|\mathrm{rbB}| \mathrm{rbE}|\mathrm{bsB}| \mathrm{bsE}$

BusI $=\operatorname{tk}(I)|\mathrm{onH}(I)| \mathrm{rtB}(I)|\mathrm{rtE}(I)| \mathrm{rbB}(I)|\mathrm{rbE}(I)| \mathrm{bsy}(I)$
BusO= BusI

Interconnection Specification

TelSw $\in(\text { TelI } \times \text { BusI })^{N} \rightarrow \wp(\text { TelO } \times \text { BusO })^{N}$
BUS $\in\left(\text { BusO }^{n}\right)^{N} \rightarrow \wp\left(\left(\text { Bus }^{n}\right)^{N}\right)$
Central $\in\left(\text { TelI }^{n}\right)^{N} \rightarrow \wp\left(\left(\text { TelO }^{n}\right)^{N}\right)$
Central $=\left(\times_{i=1}^{n}\right.$ TelSw $) \otimes B U S$

Component Specification

Leaf and Composed Nodes

$$
\text { Node } \left.\hat{=}{ }_{i=1}^{m}(\text { entry })+\mathrm{I}\right) ;{ }_{m+1}>;<_{n+1} \stackrel{N}{i=1}_{\left(+\left(\text {action }_{i} ; \text { exit }\right)+\text { wait }\right)}^{n}
$$

Actions

Action $=$ relation between the current state and
input and the next state: $a \subseteq(I \times S) \times S$

Specified by its characteristic predicate:

+ backprimed variables - current input
+ plain variables - current state
+ primed variables - next state

Predefined Actions

Events - modeled by togling boolean variables:

$$
e ? \hat{=} \cdot e \neq e \wedge e^{\prime}={ }^{\prime} e \quad e!\hat{=} e^{\prime}=\neg e
$$

Message passing - modeled with pairs (e, m):

$$
e ? a \hat{=} e ? \wedge ' m=a \quad e!a \hat{=} e!\wedge m^{\prime}=a
$$

The Leaf-Node ringing

Hierarchical States

init onH

$$
\text { onHook } \equiv i d l e \oplus \text { ringing }
$$

Transitions to Compound States

$$
t e l S w \equiv \text { onHook } \oplus \text { offHook }
$$

Strong and Weak Preemption

Strong preemption
Weak preemption

Entry/Exit Actions for Comp States

> eOffHook $\equiv 2$ entry;pOffHook;2exit
> entry \equiv tmo!set (60), entry \equiv tmo! reset

History Variables

$$
\text { admin } \hat{=} \underset{i=1}{+} \operatorname{intProc}_{i}
$$

Conclusions

We showed how to combine modular specifications of control and data-flow.

Practical relevance:
\Rightarrow clear foundation for execution-tools,
\Rightarrow basis for prototyping and visual transformation, \Rightarrow basis for verification and optimization.

Theoretical relevance:
\Rightarrow semantics of interaction as mixed graph algebras,
\Rightarrow model for linear and linear temporal logic.

