Visual Formalisms Revisited

Radu Grosu

Technische Universität München

joint work with Gheorge Stefanescu and Manfred Broy

Motivation

Interactive Applications

- An important domain of concern of SEng.
- Difficult to develop:
 - data
 - behavior
 - interconnection
 - architecture
 - distribution

Developer/Customer Interaction

- Successful communication between customer software expert
 successful software development.
- Many modern SE Methods, like UML, ROOM and SDL recommend the use of visual formalisms.

Use of Visual Formalisms

- data
- behavior
- intercommunication
- architecture
- distribution

- E/R diagrams
- statecharts
- message sequence charts
- data-flow diagrams
- deployment diagrams

What are Visual Formalisms

- Directed graphs interpreted in a particular context.
- Intended to be compositional:
 - each node can be itself a graph
 - each node has a separate meaning

Problems

- No adequate hierarchic graphs model
- No clear denotational model

A Telephone Central - with Statecharts

Telephone Central - Our Approach

onHook

The Graphical Notation

Nodes and Arcs

Graph = a set of nodes connected by a set of arcs Node interface = set of incoming/outgoing arcs

- arcs *a* denote types D_a

- nodes *N* denote relations $N \subseteq D_a \times D_b$

Graph Construction Primitives Operators on nodes

Additive and Multiplicative Interpretations

Additive (+) Interpretation of visual attachment

1.s

1.t

 N_2

Additive (+) Interpretation of connectors

Multiplicative (x) interpretation of visual attachment

Multiplicative (x) interpretation of connectors

Computation Model

Interactive system = network of autonomous agents. Agent = sequential machine.

 $Cmp(s) = (Com^*; \Delta_s; < ; (Out^* \times I))^{\uparrow}$

Architecture Specification

Port Specification

TelI = tk | onH | offH | dig(I)TelO = tk | dtB | dtE | rtB | rtE | rbB | rbE | bsB | bsE

BusI = tk(I)| onH(I)| rtB(I)| rtE(I)| rbB(I)| rbE(I)| bsy(I)BusO= BusI

Interconnection Specification

 $TelSw \in (Tell \times BusI)^N \to \mathcal{O}(TelO \times BusO)^N$

$$BUS \in (BusO^n)^N \to \mathcal{O}((BusI^n)^N)$$

 $Central \in (TelI^n)^N \to \mathcal{O}((TelO^n)^N)$

 $Central = (\times_{i=1}^{n} TelSw) \otimes BUS$

Component Specification

Leaf and Composed Nodes

 $Node \triangleq (+(entry)+I);_{m+1} > :<_{n+1}; (+(action_i;exit)+wait)$ i=1

Actions

Action = relation between the current state and input and the next state: $a \subseteq (I \times S) \times S$

Specified by its characteristic predicate:

- + backprimed variables current input
- + plain variables

- current input - current state
- + primed variables
- next state

Predefined Actions

Events - modeled by togling boolean variables:

 $e? \stackrel{\circ}{=} e^{*} e \neq e^{*} \wedge e^{*} = e^{*} e^{*} e^{*} = e^{*} e^{*} e^{*} = e^{*} e$

Message passing - modeled with pairs (*e*,*m*):

 $e?a \triangleq e? \land m = a$ $e!a \triangleq e! \land m' = a$

The Leaf-Node ringing

entry	<u></u>	to!rtB	exit	<u></u>	to!rtE
<i>rtE</i>	_	<i>bi</i> ?rtE(<i>nr</i>)	answer	<u></u>	ti?offH
rt B	≙	bi ?rtB(n) \land bo !bsy(n)	wait	≙	\neg (ti ?∨ bi ?)

Hierarchical States

 $onHook \equiv idle \oplus ringing$

Transitions to Compound States

 $telSw \equiv onHook \oplus offHook$

Strong and Weak Preemption

Strong preemption

Weak preemption

Entry/Exit Actions for Comp States

 $eOffHook \equiv 2 \text{ entry}; pOffHook; 2 \text{ exit}$ entry $\equiv tmo! \text{ set}(60), \text{ entry} \equiv tmo! reset$

History Variables

 $admin \stackrel{?}{=} \stackrel{N}{+} intProc_i$ *i*=1

Conclusions

We showed how to combine modular specifications of control and data-flow.

Practical relevance:

- \implies clear foundation for execution-tools,
- \Rightarrow basis for prototyping and visual transformation,
- \implies basis for verification and optimization.

Theoretical relevance:

- \implies semantics of interaction as mixed graph algebras,
- \Rightarrow model for linear and linear temporal logic.