
Efficient Reachability Analysis of Hierarchical

Reactive Machines

R. Alur, R. Grosu, and M. McDougall

Department of Computer and Information Science
University of Pennsylvania

Email: alur,grosu,mmcdouga@cis.upenn.edu

URL: www.cis.upenn.edu/~alur,grosu,mmcdouga

Abstract. Hierarchical state machines is a popular visual formalism
for software specifications. To apply automated analysis to such speci-
fications, the traditional approach is to compile them to existing model
checkers. Aimed at exploiting the modular structure more effectively, our
approach is to develop algorithms that work directly on the hierarchical
structure. First, we report on an implementation of a visual hierarchical
language with modular features such as nested modes, variable scoping,
mode reuse, exceptions, group transitions, and history. Then, we identify
a variety of heuristics to exploit these modular features during reachabil-
ity analysis. We report on an enumerative as well as a symbolic checker,
and case studies.

1 Introduction

Recent advances in formal verification have led to powerful design tools for hard-
ware (see [CK96] for a survey), and subsequently, have brought a lot of hope of
their application to reactive programming. The most successful verification tech-
nique has been model checking [CE81,QS82]. In model checking, the system is
described by a state-machine model, and is analyzed by an algorithm that ex-
plores the reachable state-space of the model. The state-of-the-art model checkers
(e.g. Spin [Hol97] and Smv [McM93]) employ a variety of heuristics for efficient
search, but are typically unable to analyze models with more than hundred state
variables, and thus, scalability still remains a challenge. A promising approach
to address scalability is to exploit the modularity of design. Modern software
engineering methodologies such as UML [BJR97] exhibit two kinds of modular
structures, architectural and behavioral. Architectural modularity means that a
system is composed of subsystems using the operations of parallel composition
and hiding of variables. The input languages of standard model checkers (e.g.,
S/R in Cospan [AKS83] or Reactive modules in Mocha [AH99]) support ar-
chitectural modularity, but provide no support for modular description of the
behaviors of individual components. In this paper, we focus on exploiting the
behavioral hierarchy for efficient model checking.
The notion of behavioral hierarchy was popularized by the introduction of

Statecharts [Har87], and exists in many related modeling formalisms such as



Modecharts [JM87] and Rsml [LHHR94]. It is a central component of various
object-oriented software development methodologies developed in recent years,
such as Room [SGW94], and the Unified Modeling Language (Uml [BJR97]).
Such hierarchic specifications have many powerful primitives such as exceptions,
group transitions, and history, which facilitate modular descriptions of complex
behavior. The conventional approach to analyze such specifications is to compile
them into input languages of existing model checkers. For instance, Chan et
al [CAB+98] have analyzed Rsml specifications using Smv, and Leue et al have
developed a hierarchical and visual front-end to Spin. While the structure of the
source language is exploited to some extent (e.g., [CAB+98] reports heuristics
for variable ordering based on hierarchical structure, and [BLA+99] reports a
way of avoiding repeated search in same context), compilation into a flat target
language loses the input structure. In terms of theoretical results concerning the
analysis of such descriptions, verifying linear properties of sequential hierarchical
machines can be done efficiently without flattening [AY98], but in presence of
concurrency, hierarchy causes an exponential blow-up [AKY99].

The input language to our model checker is based on hierarchic reactive mod-
ules [AG00]. This choice was motivated by the fact that, unlike Statecharts
and other languages, in hierarchic reactive modules, the notion of hierarchy is
semantic with an observational trace-based semantics and a notion of refinement
with assume-guarantee rules. Furthermore, hierarchic reactive modules support
extended state machines where the communication is via shared variables. The
first contribution of this paper is a concrete implementation of hierarchic reactive
modules. Our implementation is visual consistent with modern software design
tools, and is in Java. The central component of the description is a mode. The
attributes of a mode include global variables used to share data with its envi-
ronment, local variables, well-defined entry and exit points, and submodes that
are connected with each other by transitions. The transitions are labeled with
guarded commands that access the variables according to the the natural scop-
ing rules. Note that the transitions can connect to a mode only at its entry/exit
points, as in Room, but unlike Statecharts. This choice is important in view-
ing the mode as a black box whose internal structure is not visible from outside.
The mode has a default exit point, and transitions leaving the default exit are
applicable at all control points within the mode and its submodes. The default
exit retains the history, and the state upon exit is automatically restored by
transitions entering the default entry point. Thus, a transition from default exit
to entry models a group transition applicable to all control points inside. While
defining the operational semantics of modes, we follow the standard paradigm
in which transitions are executed repeatedly until there are no more enabled
transitions. Our language distinguishes between a mode definition and a mode
reference, and this allows sharing and reuse.

Our model checker checks invariants by reachability analysis of the input
model. The model is parsed into an internal representation that directly reflects
the hierarchical structure, and the analysis algorithms, symbolic and enumera-
tive, attempt to exploit it in different ways:



Transition indexing. The transition relation is maintained indexed by the
modes and their control points. In the enumerative setting, this is beneficial
for quick access to potentially enabled transitions, and also due to shared
mode definitions. In the symbolic setting, this provides a generalization of
the traditional conjunctively partitioned representation [McM93].

State-space representation. In the enumerative setting, states are represented
as stacks of vectors rather than vectors, and this is useful in handling pri-
orities of transitions. In symbolic search, we maintain the state-space as a
forest of binary decision diagrams indexed by control points. The resulting
search has, consequently, a mixture of enumerative and symbolic strategies.

Typing. Each mode explicitly declares the variables that it reads and writes,
thus, providing different types for different transitions. This information is
used in symbolic search for heuristics such as early quantification.

Variable scoping. The pool of variables is not global. For instance, the state
can consist of variables x and y in one mode, and x and z in another.
This information, available statically, is exploited by both the searches. This
optimization is possible due to the encapsulation provided by our language.

Note that the above heuristics are quite natural to the hierarchical represen-
tation, and has advantages with respect to the flat representation of the same
model. Another advantage of the language is that the granularity of steps of in-
teracting components can be controlled as desired. This is because a macro-step
of a mode corresponds to executing its micro-steps repeatedly until there are no
more enabled transitions, and parallel composition corresponds to interleaving
macro-steps.
We have implemented an enumerative checker based on depth-first search,

and a symbolic search that uses BDD packages from VIS [BHSV+96]. We report
on two case studies. As a first example, we modeled the tcp protocol. Our visual
interface allowed a direct mapping of the block-diagram description from [PD96],
and our enumerative checker found a deadlock bug in that description. Second,
we constructed an example that is illustrative of nesting and sharing of modes,
and scoping of variables. The performance of both enumerative and symbolic
checkers is significantly superior compared to the respective traditional checks.

2 Modeling Language

Modes A mode has a refined control structure given by a hierarchical state ma-
chine. It basically consists of a set of submode instances connected by transitions
such that at each moment of time only one of the submode instances is active.
A submode instance has an associated mode and we require that the modes
form an acyclic graph with respect to this association. For example, the mode
M in Figure 1 contains two submode instances, m and n pointing to the mode
N. By distinguishing between modes and instances we may control the degree
of sharing of submodes. Sharing is highly desirable because submode instances
(on the same hierarchy level) are never simultaneously active in a mode. Note
that a mode resembles an or state in Statecharts but it has more powerful
structuring mechanisms.



NM

c

j i h

d

pee2

e1

e3

e1

a
b

m : N n : N

x1 x2 x3

f

k

read x, write y, local z

ea
d

e1 b e2c

f

x1 dx x2

read z, write z, local u

g

q r

Fig. 1. Mode diagrams

Variables and scoping A mode may have global as well as local variables. The
set of global variables is used to share data with the mode’s environment. The
global variables are classified into read and write variables. The local variables of
a mode are accessible only by its transitions and submodes. The local and write
variables are called controlled variables. Thus, the scoping rules for variables are
as in standard structured programming languages. For example, the mode M in
Figure 1 has the global read variable x, the global write variable y and the local
variable z. Similarly, the mode N has the global read-write variable z and the
local variable u.
The transitions of a mode may refer only to the declared global and local

variables of that mode and only according to the declared read/write permission.
For example, the transitions a,b,c,d,e,f,g,h,i,j and k of the mode M may
refer only to the variables x, y and z. Moreover, they may read only x and z and
write y and z. The global and local variables of a mode may be shared between
submode instances if the associated submodes declare them as global (the set of
global variables of a submode has to be included in the set of global and local
variables of its parent mode). For example, the value of the variable z in Figure
1 is shared between the submode instances m and n. However, the value of the
local variable u is not shared between m and n.

Control points and transitions To obtain a modular language, we require the
modes to have well defined control points classified into entry points (marked as
white bullets) and exit points (marked as black bullets). For example, the mode
M in Figure 1 has the entry points e1,e2, e3 and the exit points x1,x2,x3.
Similarly, the mode N has the entry points e1,e2 and the exit points x1,x2. The
transitions connect the control points of a mode and of its submode instances to
each other. For example, in Figure 1 the transition a connects the entry point
e2 of the mode M with the entry point e1 of the submode instance m. The name
of the control points of a transition are attributes and our drawing tool allows
to optionally show or hide them to avoid cluttering.
According to the points they connect, we classify the transitions into entry,

internal and exit transitions. For example, in Figure 1, a,d are entry transi-
tions, h,i,k are exit transitions, b is an entry/exit transition and c,e,f,g,j
are internal transitions. These transitions have different types. Entry transitions
initialize the controlled variables by reading only the global variables. Exit tran-
sitions read the global and local variables and write only the global variables.
The internal transitions read the global and the local variables and write the
controlled variables.



Default control points To model preemption each mode (instance) has a
special, default exit point dx. In mode diagrams, we distinguish the default exit
point of a mode from the regular exit points of the mode, by considering the
default exit point to be represented by the mode’s border. A transition starting
at dx is called a preempting or group transition of the corresponding mode. It
may be taken whenever the control is inside the mode and no internal transition
is enabled. For example, in Figure 1, the transition f is a group transition for
the submode n. If the current control point is q inside the submode instance n
and neither the transition b nor the transition f is enabled, then the control is
transferred to the default exit point dx. If one of e or f is enabled and taken
then it acts as a preemption for n. Hence, inner transitions have a higher priority
than the group transitions, i.e., we use weak preemption. This priority scheme
facilitates a modular semantics. As shown in Figure 1, the transfer of control to
the default exit point may be understood as a default exit transition from an
exit point x of a submode to the default exit point dx that is enabled if and
only if, all the explicit outgoing transitions from x are disabled. We exploit this
intuition in the symbolic checker.

History and closure To allow history retention, we use a special default entry
point de. As with the default exit points, in mode diagrams the default entry
point of a mode is considered to be represented by the mode’s border. A transi-
tion entering the default entry point of a mode either restores the values of all
local variables along with the position of the control or initializes the controlled
variables according to the read variables. The choice depends on whether the last
exit from the mode was along the default exit point or not. This information is
implicitly stored in the constructor of the state passed along the default entry
point. For example, both transitions e and g in Figure 1, enter the default entry
point de of n. The transition e is called a self group transition. A self group
transition like e or more generally a self loop like f,p,g may be understood
as an interrupt handling routine. While a self loop may be arbitrarily complex,
a self transition may do simple things like counting the number of occurrences
of an event (e.g., clock events). Again, the transfer of control from the default
entry point de of a mode to one of its internal points x may be understood
as a default entry transition that is taken when the value of the local history
variable coincides with x. If x was a default exit point n.dx of a submode n
then, as shown in Figure 1, the default entry transition is directed to n.de. The
reason is that in this case, the control was blocked somewhere inside of n and de-
fault entry transitions originating in n.de will restore this control. A mode with
added default entry and exit transitions is called closed. Note that the closure is
a semantic concept. The user is not required to draw the implicit default entry
and exit transitions. Moreover, he can override the defaults by defining explicit
transitions from and to the default entry and exit points.

Operational semantics: macro-steps In Figure 1, the execution of a mode,
say n, starts when the environment transfers the control to one of its entry points
e1 or e2. The execution of n terminates either by transferring the control back



to the environment along the exit points x1 or x2 or by “getting stuck” in q or
r as all transitions starting from these leaf modes are disabled. In this case the
control is implicitly transferred to M along the default exit point n.dx. Then, if
the transitions e and f are enabled, one of them is nondeterministically chosen
and the execution continues with n and respectively with p. If both transitions
are disabled the execution of M terminates by passing the control implicitly to its
environment at the default exit M.dx. Thus, the transitions within a mode have
a higher priority compared to the group transitions of the enclosing modes.
Intuitively, a round of the machine associated to a mode starts when the

environment passes the updated state along a mode’s entry point and ends when
the state is passed to the environment along a mode’s exit point. All the internal
steps (the micro steps) are hidden. We call a round also a macro step. Note that
the macro step of a mode is obtained by alternating its closed transitions and
the macro steps of the submodes.

Semantics The execution of a mode may be best understood as a game, i.e.,
as an alternation of moves, between the mode and its environment. In a mode
move, the mode gets the state from the environment along its entry points. It
then keeps executing until it gives the state back to the environment along one of
its exit points. In an environment move, the environment gets the state along one
of the mode’s exit points. Then it may update any variable except the mode’s
local ones. Finally, it gives the state back to the mode along one of its entry
points. An execution of a mode M is a sequence of macro steps of the mode.
Given such an execution, the corresponding trace is obtained by projecting the
states in the execution to the set of global variables. The denotational semantics
of a mode M consists of its control points, global variables, and the set of its
traces.

Parallel composition by interleaving A mode having only two points, the
default entry and the default exit, is called a mode in top level form. These modes
can be used to explicitly model all the parallel composition operators found in the
theory of reactive systems [AG00]. For simplicity we consider in this paper only
the interleaving semantics of parallel composition. In this semantics, a round
(macro step) of a composed mode is a round of one of its submodes. The choice
between the submodes is arbitrary. We can easily model this composition, by
overriding the default entry transions of the submodes if these are in top level
form. Note also that, the state of the supermode is given, as expected, as a tuple
of the states of the submodes.

3 Search Algorithms

3.1 Enumerative Search

The enumerative search algorithm takes as input a set of top-level modes and
a set of global variables that these modes can read and modify. We are also
given an invariant that we want this system to satisfy. The invariant is a boolean



x= true
y= false

a = 3 a = 3

s1 s2 s3

a = 3

u= truex : bool
y : bool

u : bool

a : int

M2

M1 M3

Mode Diagram Some Possible States

Fig. 2. Local variables conserve state size

expression defined on the global variables. For the enumerative search we assume
that each of the top-level modes is sequential; each top-level mode represents
a single thread of execution. These top-level modes are run concurrently by
interleaving their macro-steps. A state of the system consists of the values of all
the global variables and the state of each of the top-level modes. In each round
one of the modes may modify the variables and change its own internal state
yielding a new state. The set of states of the system can therefore be viewed as
a directed graph where, if s and t are states of the system, (s, t) is an edge in
the graph if and only if s yields t after one round of execution.
Searching all states is straightforward; beginning from an initial state we

perform a depth-first search on the graph. For each state we encounter during
the search we check that the desired invariant holds. If the invariant doesn’t hold
for some state then the depth-first search algorithm supplies us with a path in
the graph from the initial state to the state which violates the invariant. This
path forms a counter-example which is returned to the user.
The set of states that have been visited is stored in a hash table so that we

can check if a given state is in the set in constant time. The set of successors of
a state is computed by examining the modes. The hierarchical structure of the
modes is retained throughout the search. This structure allows us to optimize
the search in a number of ways.

Transition Indexing To determine if there is an edge from a state s to a state
t we need to examine all the possible sequences of micro-steps that are enabled
in s. Each micro-step corresponds to a transition from the active control point
to a destination point (which becomes the active point in the next micro-step).
In the mode representation transitions are indexed by their starting points. If
we want to find all enabled transitions we only need to examine those that start
from the active point.

Local Variables Modes have local variables which are only visible to submodes.
The internal state of a mode can be stored as a stack of sets of variables. This
stack resembles the control stack present during the execution of a program in
C or Java. Each element of the stack contains the variables that are local to the
corresponding level in the mode hierarchy.



Since local variables of a mode are available only to the submodes of that
mode the size of a mode’s state is smaller than a system where all variables are
global. Figure 2 shows a simple mode diagram and three possible states of the
mode. Modes M1 and M3 are submodes of M2. States s1, s2 and s3 are the
respective possible states when M1, M2 and M3 are active. If M1 is active the
x, y and a variables are in scope and therefore must be present in the state s1,
The variable u is not in scope if M1 is active and therefore it is not present in
state s1. If M2 is active then x, y and u are not scope and not present in s2.
Similarly, s3 does not contain the x and y variables. This means the total size
of the state of a mode is proportional to the depth of the hierarchy.

State Sharing The stack structure of a mode’s state also allows us to conserve
memory by sharing parts of the state. Two states which are distinct may nev-
ertheless contain some stack elements which are identical. We can construct the
states in such a way that the equivalent elements of the stack are actually the
same piece of memory.
For example, states s and t have two levels of hierarchy corresponding to

local and global variables. If all the global variables have the same values in s
and t then both s and t can refer to the same piece of memory for storing the
values of the global variables.

State Hashing The tool gives the user the option of storing a hash of a state
instead of the entire state. Since the hashed version of a state occupies less
memory than the state itself we can search more states before we run out of
memory. The problem with this technique is that the enumerative search will
skip states whose hashes happen to be the same as previously visited states. As
a result the enumerative search may falsely conclude that an invariant is true
for all states. On the other hand, any counter-example that is found is valid.
By varying the amount of information lost through hashing we can balance the
need for accuracy with the need to search large state spaces. The Spin model-
checker uses this hashing technique [Hol91] for states which have a fixed number
of variables. However, our tool must hash states which vary in size and structure
(because of the local variables).

3.2 Symbolic Search

Similarly to the enumerative search algorithm, the symbolic search algorithm
takes as input a set of top-level modes and a set of variables that these modes can
read and modify and an invariant that we want this system to satisfy. However,
in contrast to the enumerative search we do not need to assume that the top-
level modes are sequential. The reason is that a state in this case is not a stack,
but rather a map (or context) of variables to their values. This context varies
dynamically, depending on the currently accessible variables.
In order to perform the symbolic search for a hierarchic mode we could pro-

ceed as follows. (1) Obtain a flat transition relation associated to the hierarchic
mode. (2) Represent the reached states and the transition relation by ordered



multi-valued binary decision diagrams (mdds). (3) Apply the classic symbolic
search algorithm. This is the current model checking technology.
We argue however, that such a flat representation is not desirable. The main

reason is its inefficient use of memory. One can do much better by keeping the
above mdds in a decomposed way, as suggested by the modular structure. In
particular, a natural decomposition is obtained by keeping and manipulating
the control points outside the mdds.

Reached set representation. Keeping the control points outside the state
allows us to partition the state space in regions, each containing all states with
the same control point. This decomposition has not only the advantage that any
partition may be considerably smaller than the entire set but also that it is very
intuitive. It is the way mode diagrams, and in general extended state machines,
are drawn. Hence, we represent the reached state space by a mapping of the
currently reached control points to their associated reached region mdd. The
region mdd of a control point is minimized by considering only the variables
visible at that control point. This takes advantage of the natural scoping of
variables in a hierarchic mode.

Update relation representation. The update relation of a hierarchic mode
d is not flattened. It is kept in d by annotating each transition of d with the
mdd corresponding to the transition. This has the following advantages. First,
all instances of d at the same level of the hierarchy and connected only at their
regular points may share these transitions. The reason is that their local variables
are never simultaneously active. Second, working with scoped transition relations
and knowing the set of variables U updated by a transition t (broadly speaking
working with typed transition relations) we may compute the image image(R, t)
of a region R in an optimal way as (∃U.R ∧ t)[U/U ′] and not as (∃V.R ∧ t ∧
idV \U ))[V/V ′] where V is the set of all variables and idV \U is the conjunction of
all relations x′ = x with x ∈ V \U . The second, more inefficient representation is
to our knowledge the way the image is computed in all current model checkers.
Moreover, while the internal and default transitions have this optimized form,
the entry and exit transitions allow even further optimization via quantification
of variables that are no longer needed.

Entry transitions. image(R, t) = (∃(U\Vl).R∧ t)[U/U ′] because R and t is
not allowed to reference the unprimed local variables in Vl.

Exit transitions. image(R, t) = (∃(U∪Vl).R ∧ t)[U/U ′] because t is not al-
lowed to reference the primed local variables in V ′

l and the unprimed local
variables in Vl are hidden.

Variable ordering The variable ordering is naturally suggested by the partial
ordering between modes. Considering that variable names are made disjoint by
prefixing them with the names of the submode instances along the path to the
referencing submode instance, then the ordering is nothing but the lexicographic
ordering of the prefixed names. This ordering makes sure that variables defined
at the same level in the mode hierarchy are grouped together.



ctr01

top

system

user

local c : (0..2) := 1

id

id

ctrl00

inc

lv
ctr00

local v0 : (0..n) := 0
read-write c

ctrl0

id

id inc

lv

i

i k

o

read-write c

system

ctrl0
inc

ctrl1

lvid

local w : (0..n) := 0 read-write c
local u0 : (0..n) := 0

o

lv

en

Fig. 3. A generic hierarchic example

Initialization. The initial state is a mapping of the history variables to a
special, bottom value. Passing this state along the default entry point of the
top-level mode, all the way down in the mode hierarchy, assures the selection
of an initialization transition that updates the local variables according to their
initialization statement in the mode diagram. The initial reached set maps the
default entry point of the top level mode to this state.

Image computation. The main loop of the image computation algorithm is
as usual. It starts with the initial macro onion ring (the initial reached set) and
computes in each iteration (macro-step) a new macro onion ring by applying the
image computation to the current macro onion and (the update relation of) the
top level mode. The algorithm terminates either if the new macro onion ring is
empty or if its intersection with the target region (containing the “bad” states)
is nonempty.
The image computation of the next macro onion ring is the secondary loop. It

starts with a micro onion ring having only one control point: the pair consisting
of the default entry point of the top level mode and the macro onion ring mdd.
Each micro step computes a new onion ring by applying the image computation
to all points in the current micro onion ring and for each point to all outgoing
transitions in a breadth first way. A destination point is added to the new micro
onion ring if the difference between the computed mdd and the mdd associated to
that point in the reached set is not empty. The mdd in the reached set is updated
accordingly. The loop terminates when the new micro onion ring contains again
only one control point, the default exit point of the top level mode and its
associated mdd. The new macro onion ring is then the difference between the
set of states corresponding to this mdd and the reached set associated to the top
level default entry point.

Generic hierarchic system. In Figure 3 we show a generic hierarchic system
with three levels of nesting. The mode user nondeterministically sets a con-
trol variable c to 1 or 2 meaning increment and respectively leave. The mode
system consists of the nested modes ctrl0 and ctrl1, that are further decom-
posed in the modes ctrl00, ctrl01 and ctrl10, ctrl11, respectively. Each has
a local variable ranging between zero and a maximum value n that is incre-
mented when c is 1 and the value of the local variable is less than n. When c is
2 or when c is one and the local variable reached n the mode is left. To ensure



only one increment per macro-step, after performing a transition the mode sets
c to 0. This blocks it until the user sets the next value. The identity transition
id is the same on all levels and it is defined as follows:

id =̂ true -> skip

The transitions lv and inc of the mode system are defined as below:

lv =̂ c = 2 | (c = 1 & w = n) -> c := 0; w := 0;

inc =̂ c = 1 & w < n -> c := 0; w := w + 1;

Except the local variable to be tested and incremented, the transition inc has
the same definition in all modes. The exit transition lv has a simpler body in
the submodes. For example in mode ctrl00:

lv =̂ c = 2 | (c = 1 & u0 = n) -> skip

Finally, the entry transitions en and lv of the leaf modes have the same definition
modulo the local variable. For example, in mode ctrl00:

lv =̂ c = 2 -> skip

en =̂ c != 2 -> c := 0; u0 := 0;

The mdd associated to the point k of the mode ctrl00 is a boolean rela-
tion Rctrl00.k(c, w, v0, u0). Similarly, the mdds associated to the exit point o
of the modes ctrl00 and ctrl0 are boolean relations Rctrl00.o(c, w, v0) and
Rctrl0.o(c, w) respectively. Note that variables are not quantified out at the de-
fault exit points because we have to remember their value. Additionally, at these
points we have to save the active submode information. Hence, the mdds associ-
ated to the default exit points dx of the modes ctrl00 and ctrl0 are boolean re-
lations Rctrl00.dx(c, w, v0, u0) and Rctrl0.dx(c, w, v0, u0, h0) respectively. The his-
tory variable h0 is 0 if the active submode is ctrl00 and 1 if the active submode
is ctrl01.
The mdd associated to a transition is a relation constructed, as usual, by

considering primed variables for the next state values. For example, the transition
inc of the mode ctrl00 is defined by the relation

inc(c, c′, u0, u
′
0) =̂ c = 1 ∧ u0 < n ∧ c′ = 0 ∧ u′

0 = u0+1

The image of the region Rctrl00.k under the transition inc is computed as below:

(∃c, u0. Rctrl00.k(c, w, v0, u0) ∧ inc(c, c′, u0, u
′
0)) [c, u0/c′, u′

0]

Lacking typing information, most model checkers use the more complex relation:

(∃c, w, v0, u0. Rctrl00.k(c, w, v0, u0) ∧ inc(c, c′, u0, u
′
0) ∧

w′ = w ∧ v′0 = v0) [c, w, v0, u0/c′, w′, v′0, u
′
0]

The exit transition lv of the mode ctrl00 is defined by the following relation:

lv(c, u0) =̂ c = 2 ∨ (c = 1 ∧ u0 = n)



The image of the region Rctrl00.k under this transition is computed as below:

∃u0. Rctrl00.k(c, w, v0, u0) ∧ lv(c, u0)

It quantifies out the local variable u0. It is here where we obtain considerable
savings compared to classic model checkers. The image of the region Rctrl00.i

under the entry transition:

en(c, c′, u′
0) =̂ c �= 2 ∧ c′ = 0 ∧ u′

0 = 0

does not quantify out the local variable u0 even if u0 was updated, because the
transition is not allowed to used the unprimed value of u0.

(∃c. Rctrl00.i(c, w, v0) ∧ lv(c, c′, u′
0)) [c, u0/c′, u′

0]

The ordering of the unprimed variables in the generic hierarchic system is defined
as follows: c < w < v0 < u0 < u1 < v1 < u2 < u3.

4 Experimental Results

Mutual Exclusion Our smallest non-trivial experiment involved Peterson’s
algorithm for two party mutual exclusion [Pet81]. We implemented the algorithm
using three modes that run concurrently. Modes p1 and p2 represented the two
parties that want to use the shared resource. A special mode called clock was used
to toggle a variable tick that the other modes consume whenever a step of the
algorithm is executed. This use of a tick variable ensures that each macro-step of
a mode corresponds to exactly one step of the algorithm that we are modeling.
Once the tick variable is consumed a mode is blocked until the next macro-step.
This technique allows a programmer to control the number of micro-steps that
occur within one macro-step. Our tool performed an enumerative search of all
possible executions. The search revealed that the model has 276 distinct states,
all of which preserve mutual exclusion. The tool also verified that the algorithm
is free of deadlock by checking that each state of the model leads to at least
one successor state. Both searches took about 4 seconds to complete on an Intel
Celeron 333 mhz.

TCP The Transmission Control Protocol (TCP) is a popular network protocol
used to ensure reliable transmission of data. TCP connections are created when
a client opens a connection with a server. Once a connection is opened the client
and server exchange data until one party decides to close the connection. When
a connection is opened or closed the client and server exchange special messages
and enter a series of states.
TCP is designed to work even if some messages get lost or duplicated. It is

also designed to work if both parties simultaneously decide to close a connection.
A desirable property of protocol like TCP is that it cannot lead to deadlock; it
should be impossible for both client and server to be waiting for the other to
send a message.



LISTEN

CLOSED

ESTABLISHED

SYN-RCVD SYN-SENT

FIN-WAIT-2

CLOSE-WAITFIN-WAIT-1

CLOSING

TIME-WAIT

LAST-ACK

CLOSED

ACK

ACK

ACK

ACK

Close/FIN

Close/FIN

FIN/ACK

FIN/ACK

FIN/ACK

Close/FIN

ClosePassive Open
Close

Active open/SYN

SYN+ACK/ACK

SYN/SYN+ACK

SYN/SYN+ACK Send/SYN

Timeout

Fig. 4. TCP state-transition diagram

There is a concise description of the messages and states of TCP in [PD96]
which is reproduced in Figure 4. This description is given as a state-transition
diagram which makes it very easy to model it as a mode in our tool. We set
out to verify that the TCP protocol, as described in [PD96], is free of deadlock
under certain assumptions.
In our first experiment we simulated a client and server opening and closing

a TCP connection. In our model we assumed that the network never lost or
duplicated a message. We also assumed the client and server both had a one cell
queue for storing incoming messages; if a party received a second message before
it had a chance to process the first message then the first message would be lost.
Our tool performed an enumerative search of possible execution sequences and
discovered a bug in the description of TCP after searching 2277 states. If both
parties decide simultaneously to close the connection while in the established
state then they will both send FIN messages. One of the parties, say the client,
will receive the FIN message and respond by sending an ACK message and
entering the closing state. If this ACK arrives at the server before the other
FIN is processed the second FIN will get lost. When the ACK is read the server
will move to the fin-wait-2 state. Now the protocol is deadlocked; the client is
waiting for an ACK message while the server is waiting for a FIN message.
For our second experiment we modified the model so that the client and

server had queues that could hold two messages instead of one. A message would
only get lost if a third message arrived before the first was processed. Our tool
found a deadlock state in this model after searching 3535 states. Once again



the deadlock occurs after both client and server decide simultaneously to close
the connection. In this case, however, the server decides to close the connection
before it has been established. This can lead to a state where the server’s queue
gets filled and a message gets dropped. The deadlock occurs when the server is
in the fin-wait-2 state and the client is in the closing state, which is the same
deadlock state that we saw in the first TCP experiment.
Both experiments were performed using an Intel Celeron 333mhz machine.

The first experiment ran for 74 seconds and the second experiment ran for 138
seconds.

Generic hierarchic system The hierarchical structure of the example in Fig-
ure 3 makes it a good candidate for the state sharing optimization described in
Section 3.1. The three levels of local variables allow memory to be re-used when
storing states; if some levels are identical in two distinct states the enumerative
search algorithm makes an effort to share the memory used to store the levels
that both states have in common.
Each state contains a set of objects called environments. Each environment

keeps track of one level of the hierarchy. An enumerative search of this example
found 3049 distinct states in 138 seconds. These states contained 14879 envi-
ronment objects, but because of state sharing only 8103 environment objects
needed to be allocated. The technique yields a 45% reduction in the number of
objects needed to store the set of visited states.

The symbolic search takes advantage of the existential quantification of local
variables at all regular exit points. This leads, as shown in Figure 4, to a sig-
nificant saving both in space (total number of nodes in the mdd pool) and time
(for the reachability check) compared to the (C version) of the Mocha model
checker [AHM+98]. The comparison was done for different values for n.
Since the concurrency is in this example only on the top level and all the

variables (excepting c) are local, one can heavily share the transition relations.
In fact, only the modes ctr0 and ctr00 are necessary and all references may
point to these modes. As expected, using this sharing, we obtained the same
results with respect to the reached set.



5 Conclusions

We have reported on an implementation of a visual hierarchical language for
modeling reactive systems, and enumerative and symbolic checkers that work
directly on the hierarchical representation attempting to exploit the modular-
ity. While hierarchical specifications seem more convenient to express complex
requirements, in terms of the efficiency of analysis, two questions are of inter-
est. First, given a verification problem, should one use a hierarchical notation
hoping for tractable analysis? We don’t have adequate experimental evidence
yet to answer this. In fact, given that the modeling languages of different tools
differ so much, and different tools implement many different heuristics, param-
eters of a scientific comparison are unclear. Second, if the input specification is
hierarchical, should one use the proposed solution over compilation into a non-
hierarchical checker? Even though experimental data is small so far, we believe
that there is adequate conceptual evidence suggesting a positive answer. A lot of
work remains to be done to optimize the two checkers, and apply them to more
and substantial examples.

Acknowledgments This work was partially supported by NSF CAREER award
CCR97-34115, by DARPA/NASA grant NAG2-1214, by SRC contract 99-TJ-
688, by Bell Laboratories, Lucent Technologies, by Alfred P. Sloan Faculty Fel-
lowship, and by DARPA/ITO MARS program. The implementation of our enu-
merative and symbolic model checker uses components from Mocha, and the
help of all members of the Mocha team is greatfully acknowledged.

References

[AG00] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines.
In Proceedings of the 27th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 390–402, 2000.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[AHM+98] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proceedings of the 10th Inter-
national Conference on Computer Aided Verification, LNCS 1427, pages
516–520. Springer-Verlag, 1998.

[AKS83] S. Aggarwal, R.P. Kurshan, and D. Sharma. A language for the specifica-
tion and analysis of protocols. In IFIP Protocol Specification, Testing, and
Verification III, pages 35–50, 1983.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. In Automata, Languages and Programming, 26th International
Colloquium, pages 169–178. 1999.

[AY98] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
In Proceedings of the Sixth ACM Symposium on Foundations of Software
Engineering, pages 175–188. 1998.

[BHSV+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentell, F. Somenzi, A. Aziz,
S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,



R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A system
for verification and synthesis. In Proceedings of the Eighth Conference on
Computer Aided Verification, LNCS 1102, pages 428–432. 1996.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.

[BLA+99] G. Behrmann, K. Larsen, H. Andersen, H. Hulgaard, and J. Lind-Nielsen.
Verification of hierarchical state/event systems using reusability and com-
positionality. In TACAS ’99: Fifth International Conference on Tools and
Algorithms for the Construction and Analysis of Software, 1999.

[CAB+98] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498–519, 1998.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic
of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61–67, 1996.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software En-
gineering, 23(5):279–295, 1997.

[JM87] F. Jahanian and A.K. Mok. A graph-theoretic approach for timing analysis
and its implementation. IEEE Transactions on Computers, C-36(8):961–
975, 1987.

[LHHR94] N.G. Leveson, M. Heimdahl, H. Hildreth, and J.D. Reese. Requirements
specification for process control systems. IEEE Transactions on Software
Engineerings, 20(9), 1994.

[McM93] K. McMillan. Symbolic model checking: an approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[PD96] L. Peterson and B. Davie. Computer Networks: A Systems Approach. Mor-
gan Kaufmann, 1996.

[Pet81] G. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3), 1981.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent
programs in CESAR. In Proceedings of the Fifth International Symposium
on Programming, LNCS 137, pages 195–220. Springer-Verlag, 1982.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-time object oriented modeling
and design. J. Wiley, 1994.


