
Combating Information Overload in Non-Visual Web
Access Using Context

Jalal Mahmud Yevgen Borodin Dipanjan Das
∗

I.V. Ramakrishnan

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{jmahmud, borodin, ram}@cs.sunysb.edu

ABSTRACT
Web sites are designed for graphical mode of interaction.
Sighted users can visually segment Web pages and quickly
identify relevant information. On the contrary, individu-
als with visual disabilities have to use screen readers to
browse the Web. As screen readers process pages sequen-
tially and read through everything, Web browsing becomes
time-consuming and strenuous. Although, the use of short-
cut keys and searching offers some improvements, the prob-
lem still remains. In this paper, we address this problem
using the notion of context. Our prototype system, CSurf,
embodying our approach, provides all features of a usual
screen reader. However, when a user follows a link, CSurf
captures the context of the link, processes it with several
NLP techniques, and uses it to identify relevant informa-
tion on the next page. CSurf rearranges the content of the
page, so, that the relevant information is read out first. We
conducted a series experiments to evaluate the performance
of CSurf against the state-of-the-art screen reader JAWS.
Our results show that the use of context can save browsing
time and substantially improve the browsing experience of
visually disabled individuals.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—natural language, Voice I/O ; H.3.3 [Information
Systems]: Search and Retrieval

General Terms
Algorithms, Design, Human Factors, Experimentation.

Keywords
Web Navigation, Context, Voice Browsing, Screen-Reader,
CSurf, User Interface, Information Rearrangement.

1. INTRODUCTION
The Web has become an indispensable source of informa-

tion. The primary mode of interaction with the Web is via

∗Department of Computer Science, Carnegie Mellon Univer-
sity, dipanjan@cs.cmu.edu

Copyright is held by the author/owner(s).
IUI 2007, Jan 28–31, 2007, Hawaii
.

graphical browsers, which are designed for visual interac-
tion. As we browse the Web, we have to filter through a
lot of irrelevant data (e.g banners, commercials, navigation
bars). Sighted individuals can quickly segment any Web
page and identify the information that is most relevant to
them. The task becomes complicated for individuals with
visual disabilities. Blind people use screen readers [5, 1]
to browse the Web. However, screen readers process Web
pages sequentially, and provide little or no content filtering,
resulting in information overload. To address the problem
of information overload in non-visual Web browsing, screen-
readers often permit to skip blocks of text in the order they
appear on the page. Unfortunately, in many cases, users
still have to listen or skip through a substantial part of page
content before they get to the information. To help users lo-
cate the information quicker, a number of screen readers [5,
1] allow keyword searching. However, simple searching has
two problems: it works only for exact string matching and
it disorients users in case of a wrong match. In both cases
users have to start from the beginning of the page. The
problem of information overload in non-visual Web access
still remains. Is it possible to do better than that?

In this paper we describe a technique for context identifi-
cation and information rearrangement, based on the struc-
tural and visual organization of Web pages. We present an
algorithm and a system that will help blind users quickly
identify relevant information while surfing the Web, thus,
considerably reducing their browsing time.

The rest of this paper is organized as follows. In Section
2, we describe the architecture of CSurf, a prototype system
that implements context-based browsing. In Section 3 we
formalize the definition of context and describe our context
processing algorithm. Testing and evaluation of the system
appear in Section 4. Related work follows in Section 5. We
conclude this paper in Section 6 by describing several direc-
tions of further research.

2. SYSTEM ARCHITECTURE
The architecture of CSurf, our context-based browsing

system, is shown in Figure 1. Users communicate with the
system through the Interface Manager. The module uses
VoiceXML dialogs to interact with the users and present
Web page content. The interface allows keyboard and voice
input via our own VoiceXML interpreter [2], and provides
both basic and extended screen-reader navigation features,
such as shortcuts and corresponding voice commands.



Interface Manager

Browser Object

Context Analyzer

Frame Tree Processor

VXML

Dialog Generator

Frame Tree

HTTP
request

WEB

HTTP
request

HTML

Frame Tree

Frame Tree

HTTP
request

Figure 1: Architecture of CSurf

Context Analyzer is called twice for each Web page ac-
cess. When the user follows a link, the module collects the
context from the current page. When a new Web page is re-
trieved, the module executes our algorithm to contextualize
the page before it is presented to the user.

The Browser Object module downloads Web content
every time the user requests a new page to be retrieved. The
module is built on top of the Mozilla Web Browser coupled
with extended JREX Java API wrapper.

Frame Tree Processor extracts the Frame Tree repre-
sentation of the Web page. A Frame Tree is a tree-like data
structure that contains Web page content and formatting,
specifying how a Web page has to be rendered. The module
cleans, reorganizes, and partitions the frame tree. Subse-
quently, Context Analyzer reorders the frame tree before
passing it to the Dialog Generator.

The Dialog Generator module uses a collection of dialog
templates to convert the frame tree into a Voice-XML dialog.
The latter is then delivered to the Interface Manager. Some
more architectural details appear in [8].

3. CONTEXT ANALYSIS
In this section we formally define the notion of context

and describe the phases of the context analysis algorithm.

Context: Given a frame tree of a Web page and a link with
its corresponding tree node ni, context is defined as a
multiset that includes the text of the link node, along
with the text contained in the m sibling nodes {n1, ...,
ni−1, ni+1, ..., nm} of ni.

Consider an example when the source is the front page
of The New York Times news Web site, Figure 2 (a). The
context of the encircled link is the text surrounded by the
dotted line. Figure 2 (b) shows the corresponding frame tree
with the link and its siblings.

1. Context Identification and Ranking: The frame tree
is searched for all nodes containing the URL selected by the
user. The text in and around the link is extracted from the
frame tree and stored in a multiset, after all function words
have been removed.

We denote this multiset as Scontext and a member of this
set as Wcontext. The Porter’s Stemming Algorithm [11] is

used to obtain stems for all words in Scontext. The stems are
stored in multiset Sstem. We denote the members of Sstem

as Wstem. The words in Scontext are then ranked (weighted)
according to their proximity to the link. Through a series
of experiments, we chose the rank (weight) of each Wstem

to be half the rank of the corresponding Wcontext. At this
point, the destination Web page is fetched, Figure 3 (a).

2. NLP Based Context Matching: The algorithm matches
the words in the multisets to the text in all leaves of the new
frame tree, Figure 3 (b), which are then assigned respective
weights. The steps are enumerated below:

a. Run a depth first search to identify all leaves {Leaf1,
..., Leafn} in the frame tree of the destination page.

b. For each Leafi:

i. Set its weight Wi to 0.

ii. If Leafi contains text, tokenize and store the text
in a corresponding Listi, after removing the func-
tion words. Apply Porter’s Stemming Algorithm
to each word in Listi to get StemListi.

iii. Perform a search of the context keywords from
the set Scontext in Listi.

iv. For each successful context keyword match incre-
ment Wi by the weight of the keyword.

v. Perform a search of the stemmed keywords from
the set Sstem in StemListi.

vi. For each successful match of the stemmed key-
word increment Wi by the weight of the stemmed
keyword.

vii. Compute Lexical Similarity (that uses inverse of
Edit Distance) as described in [6] between each
word of the set Scontext and the words in Listi.
Multiply each similarity value by the weight of
the context word and add this result to Wi.

viii. Repeat the above step for each word of the set
Sstem and the words in StemListi.

Continuing our example in Figure 3, the frame tree of the
destination page will be searched for all words occurring in
the context of of the link from the source page. By the
end of this step, the leaf nodes, marked with clear-box icons
in Figure 3 (b), will have accumulated their weights. The
weights W : n express the relevance of each leaf-node with
respect to the context gathered from the source Web page.
Higher weight implies greater relevancy.

3. Block Ranking and Rearrangement: We propa-
gate the weights from the leaves of the frame tree up to a
certain node/block, which we identify as a parent of seman-
tically related nodes. We define such node as Marker Node.
To identify Marker Node, we initiate a depth first search
from the root of the frame tree and recursively merge the
geometrically aligned nodes. Web pages are usually orga-
nized in such a way that semantically related information is
grouped together. Thus, the geometric alignment can help
identify blocks containing semantically related information.
For example, in Figure 2 (a), all Web page objects in the
area surrounded by the dotted line have the same geometri-
cal alignment and are otherwise related. The corresponding



(a) Source Page (b) Source Frame Tree

Figure 2: Context Identification and Ranking

node will be identified as a marker node in frame tree. In
Figure 2 (b) marker nodes are denoted by circular icons.

The following steps describe the Block Ranking procedure:

a. Starting with one level above the leaf nodes, propagate
the weights of the leaves up in the frame tree.

b. For a block node m, having n children, calculate its
weight:

Wm =
Pn

i=1(n− i + 1) ∗Wchildi

where i = 1, ..., n, and Wchildi denotes the weight of
the ith child of the block node m.

c. Do not propagate the weights beyond the marker nodes.

d. Store all marker nodes in a list for further processing.

We observed that the first node in any block is usually more
important than the subsequent nodes. We use this observa-
tion in multiplying the weight Wchildi of each child node in
a block m by (n−i+1). Thus, with each new child node, we
reduce its contribution to the total weight of the block m.
Then, the frame tree is reorganized based on the weights of
the marker nodes, so that the most relevant block of infor-
mation is placed first. The marker node, expanded in Figure
3 (b), happens to have the most weight, which makes it the
most relevant block. The section of the Web page, corre-
sponding to the selected marker node, is shown in Figure 3
(a). The frame tree is rearranged in such a way, that the
Interface Manager will first read the most relevant block,
which, in our case, is the article about the identity theft.
Having finished with the article, the Interface Manager will
continue reading the rest of the Web page content.

4. PERFORMANCE
To measure the performance of our system, we experimen-

tally compared the CSurf Web browser against the state-of-
the-art JAWS screen-reader. In our experiments we also
conducted preliminary qualitative evaluation of CSurf with
blind and low-vision users at Helen Keller Services for the
Blind (HKSB), Hempstead, NY. The evaluators were expe-
rienced computer users proficient with JAWS.

In our testing, we used twenty four Web sites spanning
four content domains: news, books, consumer electronics,
and office supplies. We did 5 navigations on each Web

Table 1: CSurf Performance.
Time Taken (using)

Web Sites CSurf JAWS
µ σ µ σ

NYTimes 25.2 2.4 90.5 5.2
LATimes 21.4 1.3 100.8 6.5

GoogleNews 38.6 2.1 112.5 5.4
YahooNews 42.7 1.1 120.2 7.1

CNN 36.8 1.7 106.8 4.5
BBCNews 34.5 2.3 92.4 6.3

Bloomberg News 41.5 2.9 106.4 3.5
Washington Post 56.9 2.5 90.5 5.2

Amazon 50.4 10.2 145.5 14.4
BN 70.2 13.23 161.5 21.42

AbeBooks 88.2 23.45 182.1 31.12
Khazana 74.4 31.5 211.4 22.5
BlackWell 90.4 21.3 172.1 23.4
OfficeMAX 101.6 23.6 200.2 31.52
OfficeDepot 89.9 15.8 184 25.23
QuillCorp 82.6 19.6 195 31.84
Walmart 106.1 13.7 180 20.2

Shop 91.5 10.4 230 26.13
Staples 75.5 14.5 210.4 36.3
BestBuy 90.5 20.7 190 36.7

Buy 91.3 21.2 176.7 20.5
CompUSA 111.3 20.4 186.78 21.5
BizRate 114.2 23.2 179.8 25.3
ecost 115.3 24.1 220.2 26.1

*All times are in seconds .

site. The performance testers were asked to measure the
total time1 taken to reach the relevant information using
our browser. For baseline comparison, they were also asked
to carry out the same experiments with the JAWS screen-
reader using the same set of Web pages. We allowed the use
of JAWS shortcut keys to skip blocks of text and accelerate
browsing.

Following the testing, we had CSurf evaluated at HKSB.
The evaluators noted that context-based browsing, although
not always accurate, is a substantial improvement over reg-
ular browsing using screen-readers. The evaluation demon-
strated that the use of context can save browsing time and
substantially improve browsing experience of visually dis-
abled Internet users. The instructors at HKSB are ready to
switch over to CSurf for Web browsing and start teaching
their students to use it, as soon as we have a stable ver-
sion implementing all major functionalities of JAWS screen-

1Here total time represents the period that starts when the
user follows a link and ends when our system begins to read
the relevant information on the next Web page.



(b) Destination Frame Tree(a) Destination Page

Figure 3: Most Relevant Block Identification

reader. HKSB have also agreed to provide their power users
with visual disabilities for pre-release beta testing.

5. RELATED WORK
The work described in this paper has broad connections

to research in non-visual Web access, information rearrange-
ment in Web pages, and contextual analysis.

Blind users access the Web using screen-readers, such as
JAWS [5] and IBM’s Home Page Reader [1]. BrookesTalk
[12] makes summaries of Web pages to address the infor-
mation overload problem in non-visual Web access. CSurf
departs from these systems in scope and approach. Specifi-
cally, it helps to find the relevant information quickly on on
following a link. Information Rearrangement in Web Pages
typically relies either on rules [9] or logical structures [10].
Our system automatically captures contextual information
and re-arranges the content. Contextual Analysis for non-
visual Web navigation is not a well-studied problem. The
system in [3] uses the context of a link to get the preview of
the next Web page before following a link. In contrast, we
aim to help visually disabled users quickly identify relevant
information after following a link. A poster with our initial
ideas on context-based browsing and some preliminary test-
ing [7] appears in the proceedings of ASSETS2006. Here,
we extend our preliminary work and give a detailed context
algorithm improved with several NLP techniques. We also
report evaluation at Helen Keller Services for the Blind [4].

6. CONCLUSION AND FUTURE WORK
In this paper, we have described the design and implemen-

tation of CSurf, a context-directed non-visual Web browsing
system. We presented the results of our quantitative per-
formance evaluation and the qualitative evaluation at the
Helen Keller Services for the Blind. The results show that
context-based browsing can reduce information overload in
non-visual Web browsing. A massive beta testing and eval-
uation will be performed following the first official release of
our voice browser. We also identify several potentially useful
areas for further research. If search keywords are treated as
context, our algorithm can be easily extended to allow smart
searching within a Web page. We are currently researching
summarization techniques to further save the browsing time.
We are also investigating the feasibility of applying machine

learning algorithms and statistical models to context iden-
tification and ranking.

7. REFERENCES
[1] C. Asakawa and T. Itoh. User interface of a home

page reader. In ACM Intl. Conf. on Assistive
Technologies (ASSETS), 1998.

[2] Y. Borodin. A flexible vxml interpreter for non-visual
web access. In ACM Conf. on Assistive Technologies
(ASSETS), 2006.

[3] S. Harper, C. Goble, R. Stevens, and Y. Yesilada.
Middleware to expand context and preview in
hypertext. In Assets ’04: Proceedings of the 6th
international ACM SIGACCESS conference on
Computers and accessibility, 2004.

[4] http://www.hellenkeller.org.

[5] http://www.freedomscientific.com/.

[6] D. Lin. An information-theoretic definition of
similarity. In Proceedings of International Conference
on Machine Learning, 1998.

[7] J. Mahmud, Y. Borodin, D. Das, and
I. Ramakrishnan. Improving non-visual web access
using context. In ASSETS, 2006.

[8] I. Ramakrishnan, A. Stent, and G. Yang. Hearsay:
Enabling audio browsing on hypertext content. In Intl.
World Wide Web Conf. (WWW), 2004.

[9] T. Raman. Audio system for technical readings. PhD
Thesis, Cornell University, 1994.

[10] H. Takagi and C. Asakawa. Transcoding proxy for
nonvisual web access. In ACM Intl. Conf. on Assistive
Technologies (ASSETS), 2000.

[11] C. van Rijsbergen, S. Robertson, and M. Porter. New
models in probabilistic information retrieval. British
Library, 1980.

[12] M. Zajicek, C. Powell, and C. Reeves. Web search and
orientation with brookestalk. In Proceedings of Tech.
and Persons with Disabilities Conf., 1999.


