
Scheduling DAGs on Asynchronous
Processors

Michael A. Bender
Stony Brook

Cynthia A. Phillips
Sandia Labs

This Talk
• Efficiently execute a DAG on p asynchronous

processors

• Motivation: Using free cycles on networks of
workstations, running tasks on server farms,
grid computing, etc.

• Results: an analysis of
firing-squad scheduling on DAGs.

This Talk
• Efficiently execute a DAG on p asynchronous

processors

• Motivation: Using free cycles on networks of
workstations, running tasks on server farms,
grid computing, etc.

• Results: an analysis of
firing-squad scheduling on DAGs.

Terminology for DAGs
• D = critical path length (longest path in DAG)
• W = total work (# nodes in DAG)

Theorem [Graham, Brent]: A greedy schedule has
makespan <W/P +D .

Ex: D = 8
W = 13

− 2-approx because both W/P & D are lower bounds on OPT.
− In most || programs, W/P >>D, greedy is almost OPT.

Greedy is ideal. We want FSS to be as close as possible to Greedy.

What I mean by asynchrony…

Even if the hardware is synchronous, there can
be asynchrony at the application level

Proc 1

Proc 2

Proc 3

Proc p

Even if the hardware is synchronous, there can
be asynchrony at the application level

What I mean by asynchrony…

• Even if the hardware is synchronous, there can
be asynchrony at the application level

Proc 1

Proc 2

Proc 3

Proc p

How We Model Asynchrony:
Oblivious Adversary

• We assume that the adversary determines the
processor speeds at each point in time.

• Oblivious adversary
− knows structure of DAG and initial state of system, but
− does NOT know outcome of coin tosses of DAG scheduler.

• Realistic model of many sources of asynchrony (but
not all). Common in asynchronous || computing
− [Gibbons 89] [Cole, Zajicek 89] [Martel,Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90]

[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

• Firing Squad Scheduling works well with asynchrony.
For convenience, we can assume synchronous timesteps.
Results carry over to asynchronous setting.

Firing-Squad Scheduling (FSS)

Whenever a processor is free, it randomly and
independently chooses a task to execute from
(a subset of) the tasks that are ready to run.

Redundancy: Some tasks may be executed many times.

Used in papers on asynchronous || computing (eager scheduling)
[Gibbons 89] [Cole, Zajicek 89] [Martel,Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90]
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93]
[Aumann,Bender,Zhang 96].

10
10 8

101
2

3

4 6 2

5 7
10

11

98

12

Firing-Squad Scheduling (FSS) Cont.
• Redundancy no preemption or process migration.

− A task that is bogged down on one proc finishes on another.
• FSS is well adapted for oblivious adversary

− (Which is why we can pretend things are synchronous).

• Previous work: FSS for DAGs with synchronization
barriers.

This talk: analysis of FSS on general DAGs.

Question: Which Version of FSS is Better
or Are They the Same?

ALL—choose from
all ready tasks.
– Minimizes redundant

work in a time step.
– Pushes on the total
work.

LEVEL—choose from
ready tasks at the
lowest level of DAG.
– Increases redundant

work in time step, but
– Pushes on the critical
path.

Really, which is better, ALL or LEVEL?

Results: LEVEL is Asymptotically Better

I originally thought both algs
performed the same.

Most people I ask prefer ALL.

• Adding all dependencies between levels of the
DAG actually improves makespan.

Makespan of LEVEL

Results

Makespan of ALL

Makespan of LEVEL

Results

Makespan of ALL

Makespan of ALL

Makespan of LEVEL

Results

Makespan of ALL

Makespan of LEVEL

Results

Makespan of ALL

Makespan of LEVEL

Results

Overview

• DAGs
• Asynchrony + Oblivious Adversary
• Firing Squad Scheduling
• ALL vs. LEVEL
• Asymptotic Bounds + explanation
• Firing Squad Scheduling w/o dependencies
• DAG exhibiting Lower Bound

FSS with No Dependencies
• Each processor randomly chooses a victim (task) and

executes that task.
• Question: how many rounds ‘til all tasks finish?

Makespan of DAG is O(D log*P).

Constructing a Difficult DAG for ALL

So far things are good.
Now we add difficult structure to the DAG….

Adding “Shark’s Teeth” to Our Dag
Important aspect of sharks teeth: Whenever

one tooth falls out, another one fills the gap.

Goal: keep from executing each jaw for x steps.
Optimize so that x is as big as possible.

Now Optimize for x and y

Want to show x steps to finish jaw
and x is # levels of shark teeth:

Total work is PD =W.

Substituting:

What I’m not showing you…

• Asynchrony—how do we make it go away.
• Upper bound for ALL—Technical. Gives less

insight than lower bound.
• Correct proofs.

Conclusion

• Tight analysis of Firing Squad Scheduling of
DAG on Asynchronous Procs.
(Previous work was for DAGs with synchronization barriers.)

• LEVEL >> ALL, i.e.,
removing dependencies between jobs can make
makespan asymptotically worse!

Makespan of LEVEL

Results

Makespan of ALL

Makespan of LEVEL

Results

Makespan of ALL

• Scheduling on Related Procs [Jaffe 80] [Chudak, Shmoys 97] [Chekuri,
Bender 01]

− Speeds don’t vary. Centralized scheduler.
− O(log P)-approx is best known.

• Graham/Brent bound for different speeds [Bender,Rabin 02]

− Speeds vary, but procs know their own speeds
− Applications to Cilk.
− Efficient in common case that W/P >>D.

Other Related Work on Different-Speed Procs

• Intuitively: want fast procs on long paths in DAG.

	Scheduling DAGs on Asynchronous Processors
	This Talk
	This Talk
	Terminology for DAGs
	What I mean by asynchrony…
	What I mean by asynchrony…
	How We Model Asynchrony: �Oblivious Adversary
	Firing-Squad Scheduling (FSS)
	Firing-Squad Scheduling (FSS) Cont.
	Question: Which Version of FSS is Better or Are They the Same?
	Results: LEVEL is Asymptotically Better
	Overview
	FSS with No Dependencies
	Constructing a Difficult DAG for ALL
	Adding “Shark’s Teeth” to Our Dag
	Now Optimize for x and y
	What I’m not showing you…
	Conclusion
	Other Related Work on Different-Speed Procs

