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Terminology for DAGs
• D = critical path length (longest path in DAG)
• W = total work (# nodes in DAG)

Theorem [Graham, Brent]: A greedy schedule has 
makespan <W/P +D .

Ex: D = 8
W = 13

− 2-approx because both W/P & D are lower bounds on OPT.
− In most || programs, W/P >>D, greedy is almost OPT. 

Greedy is ideal. We want FSS to be as close as possible to Greedy.
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How We Model Asynchrony: 
Oblivious Adversary

• We assume that the adversary determines the 
processor speeds at each point in time. 

• Oblivious adversary
− knows structure of DAG and initial state of system, but
− does NOT know outcome of coin tosses of DAG scheduler.

• Realistic model of many sources of asynchrony (but 
not all). Common in asynchronous || computing
− [Gibbons 89] [Cole, Zajicek 89] [Martel,Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90] 

[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93] 
[Aumann,Bender,Zhang 96]. 

• Firing Squad Scheduling works well with asynchrony. 
For convenience, we can assume synchronous timesteps. 
Results carry over to asynchronous setting.



Firing-Squad Scheduling (FSS)

Whenever a processor is free, it randomly and 
independently chooses a task to execute from 
(a subset of) the tasks that are ready to run.

Redundancy: Some tasks may be executed many times.

Used in papers on asynchronous || computing (eager scheduling)
[Gibbons 89] [Cole, Zajicek 89] [Martel,Park,Subramonian 90] [Nishimura 90] [Kedem,Palem,Spirakis 90] 
[Kedem, Palem, Rabin, Raghunathan 92] [Aumann,Rabin 94] [Aumann,Kedem,Palem,Rabin, 93] 
[Aumann,Bender,Zhang 96]. 
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Firing-Squad Scheduling (FSS) Cont.
• Redundancy no preemption or process migration. 

− A task that is bogged down on one proc finishes on another.
• FSS is well adapted for oblivious adversary 

− (Which is why we can pretend things are synchronous).

• Previous work: FSS for DAGs with synchronization 
barriers. 

This talk: analysis of FSS on general DAGs.



Question: Which Version of FSS is Better 
or Are They the Same? 

ALL—choose from 
all ready tasks.
– Minimizes redundant 

work in a time step.
– Pushes on the total 
work. 

LEVEL—choose from 
ready tasks at the 
lowest level of DAG.
– Increases redundant 

work in time step, but
– Pushes on the critical 
path.



Really, which is better, ALL or LEVEL? 



Results: LEVEL is Asymptotically Better

I originally thought both algs
performed the same. 

Most people I ask prefer ALL.

• Adding all dependencies between levels of the 
DAG actually improves makespan.
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Overview

• DAGs
• Asynchrony + Oblivious Adversary
• Firing Squad Scheduling
• ALL vs. LEVEL
• Asymptotic Bounds + explanation
• Firing Squad Scheduling w/o dependencies
• DAG exhibiting Lower Bound



FSS with No Dependencies
• Each processor randomly chooses a victim (task) and 

executes that task. 
• Question: how many rounds ‘til all tasks finish? 









Makespan of DAG is O(D log*P ).

Constructing a Difficult DAG for ALL

So far things are good. 
Now we add difficult structure to the DAG….



Adding “Shark’s Teeth” to Our Dag
Important aspect of sharks teeth: Whenever 

one tooth falls out, another one fills the gap.

Goal: keep from executing each jaw for x steps. 
Optimize so that x is as big as possible.





Now Optimize for x and y

Want to show x steps to finish jaw 
and x is # levels of shark teeth: 

Total work is PD =W.

Substituting: 



What I’m not showing you…

• Asynchrony—how do we make it go away.
• Upper bound for ALL—Technical. Gives less 

insight than lower bound.
• Correct proofs. 



Conclusion

• Tight analysis of Firing Squad Scheduling of 
DAG on Asynchronous Procs. 
(Previous work was for DAGs with synchronization barriers.)

• LEVEL >> ALL, i.e.,
removing dependencies between jobs can make 
makespan asymptotically worse!
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• Scheduling on Related Procs [Jaffe 80] [Chudak, Shmoys 97] [Chekuri, 
Bender 01]

− Speeds don’t vary. Centralized scheduler. 
− O(log P )-approx is best known.

• Graham/Brent bound for different speeds [Bender,Rabin 02]

− Speeds vary, but procs know their own speeds
− Applications to Cilk.
− Efficient in common case that W/P >>D.

Other Related Work on Different-Speed Procs

• Intuitively: want fast procs on long paths in DAG.
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