Performance Guarantees for B-trees with Different-Size Atomic Keys

Michael A. Bender Stony Brook Tokutek, Inc. Haodong Hu Microsoft Bradley C. Kuszmaul MIT Tokutek, Inc

This talk

In B-trees in textbooks, all keys have the same size.

Bender--B-trees with different-sized keys

This talk

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys, but with no nontrivial performance guarantees.

Bender--B-trees with different-sized keys

This talk

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys, but with no nontrivial performance guarantees.

This talk: give provably good guarantees in an only slightly modified B-tree.

Example Showing Problem

Bender--B-trees with different-sized keys

5

Example Showing Problem

When the length-8 keys are pivots (and the block size is 8), the tree height is 4:

6

Example Showing Problem

When the length-1 keys are pivots (and the block size is 8), the tree height is 2:

Choice of pivot affects the B-tree performance.

Bender--B-trees with different-sized keys

Cannot compare first byte of **bbbbbbb** with **C**. Only the comparison function understands the keys. Keys are opaque. Need to send entire key to comparison function and store entire key in node.

Cannot compare first byte of <u>bbbbbbb</u> with <u>C</u>. Only the comparison function understands the keys. Keys are opaque. Need to send entire key to comparison function and store entire key in node.

Cannot compare first byte of **bbbbbbb** with **C**. Only the comparison function understands the keys. Keys are opaque. Need to send entire key to comparison function and store entire key in node.

String B-tree techniques don't work [Ferragina, Grossi 98].

Front compression (prefix compression) doesn't work [Bayer, Unterauer 77] [Wagner 73].

Terminology

earliest vs. *latest*: order determined by comparison function.

shortest versus longest: how many bytes to store key

(Words to avoid: small, large, minimum.)

So if I say....

... I mean...

Algorithmic Performance Model

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

- Two-levels of memory.
- Two parameters: block-size **B**, memory-size **M**.

Performance metric:

• Minimize # of block transfers

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Size 1 keys as pivots: optimal.

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Size *B* keys as pivots: *O*(log *B*) factor worse.

Comparison Cost

Desired Guarantee

Let *K* be the *average* key size.

Goal: O(log_{B/K}N) memory transfers per operation.

• Generalizes what happens if keys all have the same size *K*.

Desired Guarantee

Let *K* be the *average* key size.

Goal: O(log_{B/K}N) memory transfers per operation.

• Generalizes what happens if keys all have the same size *K*.

Unfortunately, we cannot get this for worst-case searches, but we'll get it in expectation.

Example: *N* keys with average size *K*<2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Example: *N* keys with average size *K*<2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Example: *N* keys with average size *K*<2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

But we are ok in expectation: $(1-1/B) \log_B N + (1/B) \log_2 N = O(\log_B N)$.

Example: *N* keys with average size *K*<2.

• *N/B* keys with size *B* and *N-N/B* keys with size 1.

Related work: how to optimize B-tree height

[Vaishnavi, Kriegel, Wood 80] [Gotleib 81] [Huang, Vishwanathan 90] [Becker 94]

- static (no inserts/deletes)
- DP-based
- (far from our target guarantee)

Extreme example: *N* keys with average size *K*<2.

• 1 key with size *M* and *N*-1 keys with size 1.

But we are ok in expectation: $(1-1/N) \log_B N + (1/N) M/B = O(\log_B N)$.

Extreme example: N keys with average size K<2.

• 1 key with size *M* and *N*-1 keys with size 1.

But we are ok in expectation: $(1-1/N) \log_B N + (1/N) M/B = O(\log_B N)$.

These two examples have different flavors.

- LB for first example is based on tree structure.
- LB for for second example is based on reading the key.
- Both motivate why we consider expectation.

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Linear construction cost for sorted data: O(NK/B)

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \le \Omega(B)$
- Linear construction cost for sorted data: O(NK/B)

Static atomic-key B-tree (only searches)

• Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \le \Omega(B)$

total length= NK

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \leq \Omega(B)$
- Linear construction cost for sorted data: O(NK/B) ← Scan bound since

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key L of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B)$
- Cost to insert/delete/search for key of *arbitrary* rank: *modification cost is dominated by search cost.*

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \leq \Omega(B)$

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key L of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B) \leftarrow O(|L|/B)$ is cost to read L into memory
- Cost to insert/delete/search for key of *arbitrary* rank: *modification cost is dominated by search cost.*

total length= NK

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \leq \Omega(B)$
- Linear construction cost for sorted data: O(NK/B) ← Scan bound since

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key L of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B) \leftarrow O(|L|/B)$ is cost to read L into memory
- Cost to insert/delete/search for key of *arbitrary* rank:
 modification cost is dominated by search cost. important

total length= NK

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \leq \Omega(B)$
- Linear construction cost for sorted data: O(NK/B) ← Scan bound since

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key *L* of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B) \leftarrow O(|L|/B)$ is cost to read *L* into memory
- Cost to insert/delete/search for key of *arbitrary* rank:
 modification cost is dominated by search cost. important

- O(BN³) operations
- Applies even for nonuniform search probabilities

total length= NK

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N) \leftarrow and K \leq \Omega(B)$
- Linear construction cost for sorted data: O(NK/B) ← Scan bound since

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key *L* of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B) \leftarrow O(|L|/B)$ is cost to read *L* into memory
- Cost to insert/delete/search for key of *arbitrary* rank:
 modification cost is dominated by search cost.

 important

- Applies even for nonuniform search probabilities

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Linear construction cost for sorted data: O(NK/B)

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key L of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B)$
- Cost to insert/delete/search for key of *arbitrary* rank: *modification cost is dominated by search cost.*

- O(BN³) operations
- Applies even for nonuniform search probabilities

Static Atomic-Key B-tree

Greedy construction algorithm

- Greedily select pivot elements for the root node
- Proceed recursively on all subtrees of the root.

Intuition

- Pick small keys in root to maximize fanout.
- Pick evenly distributed keys to reduce the search space.

To prove

- Root has a good structure.
- Recursive substructures achieve good performance, even though subtrees may have different average key sizes.

Case 1: K=O(B). Root has size O(B) and fanout $\Theta(B/K)$.

Case 2: $K = \Omega(B)$. Root has size O(K) and fanout 2.

Bender--B-trees with different-sized keys

Case 1: K=O(B). Root has size O(B) and fanout $\Theta(B/K)$.

Overall search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$

Case 2: $K = \Omega(B)$. Root has size O(K) and fanout 2.

Overall search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$

Case 1: K=O(B). Root has size O(B) and fanout $\Theta(B/K)$.

Case 2: $K = \Omega(B)$. Root has size O(K) and fanout 2.

42

Useful Lemma: Consider N #s whose average is K. Divide into f groups of equal cardinality (each has N/f). Take the min in each group (say K_i is min of group i). Then average of these minima is at most the overall average K (i.e., $(K_1+K_2+...+K_f)/f \le K$).

Ave *K*=3.

Useful Lemma: Consider N #s whose average is K. Divide into f groups of equal cardinality (each has N/f). Take the min in each group (say K_i is min of group i). Then average of these minima is at most the overall average K (i.e., $(K_1+K_2+...+K_f)/f \le K$).

Ave *K*=3. Ave of mins =1.75.

Useful Lemma: Consider N #s whose average is K. Divide into f groups of equal cardinality (each has N/f). Take the min in each group (say K_i is min of group i). Then average of these minima is at most the overall average K (i.e., $(K_1+K_2+...+K_f)/f \le K$).

Ave *K*=3. Ave of mins =1.75.

Note: only true because groups have the same size. Enough structure to bound the size and fanout of the root.

1. Divide keys into $f = \max \{3, \lfloor \frac{B}{K} \rfloor\}$ equal-size groups. **2.** Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

aaaa bbbb ccc dddd e ff gg hh iii jj kkkkk llll mmm n oooo ppp

Ex: *B* = 12, *K* = 3. So *f*=4.

1. Divide keys into $f = \max \{3, \lfloor \frac{B}{K} \rfloor\}$ equal-size groups.

- 2. Pick shortest key in each group.
- 3. Store these keys in root (except 1st & last groups).

1. Divide keys into $f = \max \{3, \lfloor \frac{B}{K} \rfloor\}$ equal-size groups. **2.** Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: *B* = 12, *K* = 3. So *f*=4.

- **1.** Divide keys into $f = \max \{3, |\frac{B}{K}|\}$ equal-size groups.
- 2. Pick shortest key in each group.
- 3. Store these keys in root (except 1st & last groups).

Ex: *B* = 12, *K* = 3. So *f*=4.

Construction of Rest of Tree

Proceed recursively in each subtree. (Different value of *K* (and thus $f = \max \{3, \lfloor \frac{B}{K} \rfloor\}$) in each subtree.

Bender--B-trees with different-sized keys

– To discuss next

Static atomic-key B-tree (only searches)

- Expected leaf search cost: $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Linear construction cost for sorted data: O(NK/B)

Dynamic atomic-key B-tree

- Expected leaf search cost : $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N)$
- Cost to insert/delete/search for key L of random rank (amort): $O(\lceil K/B \rceil \log_{1+\lceil B/K \rceil} N + |L|/B)$
- Cost to insert/delete/search for key of *arbitrary* rank: *modification cost is dominated by search cost.*

- O(BN³) operations
- Applies even for nonuniform search probabilities

Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality. Within constant factors is good enough. We don't need the shortest key as a pivot. We can choose a key whose length is at most twice the average in that group.

Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality. Within constant factors is good enough. We don't need the shortest key as a pivot. We can choose a key whose length is at most twice the average in that group.

Thus, > half the keys in a group could be a pivot.

The shortest key can remain as pivot even if the group grows or shrinks by a constant factor.

Structure isn't brittle.

Dynamic Atomic-Key B-tree (Cont)

Second idea: Insert elements directly into leaves. Rebuild entire subtrees whether there have been "too many" inserts/deletes. (Don't bother splitting and merging.)

amortized update cost = <u>rebuild cost</u> # updates between rebuilds

Problem: standard technique chokes because value of *K* changes over time. (Value of *K* during rebuild is different from value of *K* at actual insert/delete.) Can be fixed. (Ask after talk.)

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees for B-trees

- The manual for Oracle Berkeley DB manual claims that BDB runs in O(log_{B/κ}N) transfers.
- As our results show, this folk theorem is incorrect.
- But the claim helps motivate the guarantees we achieve.

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees for B-trees

- The manual for Oracle Berkeley DB manual claims that BDB runs in O(log_{B/κ}N) transfers.
- As our results show, this folk theorem is incorrect.
- But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?

• Maybe B-trees empirically perform predictably enough.

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees for B-trees

- The manual for Oracle Berkeley DB manual claims that BDB runs in O(log_{B/K}N) transfers.
- As our results show, this folk theorem is incorrect.
- But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?

- Maybe B-trees empirically perform predictably enough.
- Maybe B-trees are so unpredictable already (e.g., because of memory cliffs) that our guarantees are second-order effects.

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees for B-trees

- The manual for Oracle Berkeley DB manual claims that BDB runs in O(log_{B/K}N) transfers.
- As our results show, this folk theorem is incorrect.
- But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?

- Maybe B-trees empirically perform predictably enough.
- Maybe B-trees are so unpredictable already (e.g., because of memory cliffs) that our guarantees are second-order effects.
- Lots to explore.....

People want performance guarantees

• I have a startup Tokutek. One of the things customers like most about our product TokuDB is its predictability.

People want performance guarantees for B-trees

- The manual for Oracle Berkeley DB manual claims that BDB runs in O(log_{B/K}N) transfers.
- As our results show, this folk theorem is incorrect.
- But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?

- Maybe B-trees empirically perform predictably enough.
- Maybe B-trees are so unpredictable already (e.g., because of memory cliffs) that our guarantees are second-order effects.
- Lots to explore.....

