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Bender--B-trees with different-sized keys

In B-trees in textbooks, all keys have the same size.

Actual B-trees support different-size keys, but 
with no nontrivial performance guarantees.

This talk: give provably good guarantees for the 
expected search cost in a modified B-tree.

This talk
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Bender--B-trees with different-sized keys

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys, but 
with no nontrivial performance guarantees.

This talk: give provably good guarantees in an only 
slightly modified B-tree.

This talk
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Bender--B-trees with different-sized keys

Example Showing Problem
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Bender--B-trees with different-sized keys

Example Showing Problem

When the length-8 keys are pivots (and the block size 
is 8), the tree height is 4:
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Bender--B-trees with different-sized keys

Example Showing Problem

When the length-1 keys are pivots (and the block size 
is 8), the tree height is 2:

Choice of pivot affects the B-tree performance. 
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Bender--B-trees with different-sized keys

Cannot compare first byte of                       with      .
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Keys are Atomic, Not Strings
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Bender--B-trees with different-sized keys

Cannot compare first byte of                       with      .

Only the comparison function understands the keys. 

Keys are opaque. Need to send entire key to comparison 
function and store entire key in node. 
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Only the comparison function understands the keys. 

Keys are opaque. Need to send entire key to comparison 
function and store entire key in node. 
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Bender--B-trees with different-sized keys

Cannot compare first byte of                       with      .

Only the comparison function understands the keys. 

Keys are opaque. Need to send entire key to comparison 
function and store entire key in node. 

String B-tree techniques don’t work [Ferragina, Grossi 98]. 

Front compression (prefix compression) doesn’t work
[Bayer, Unterauer 77] [Wagner 73].
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Bender--B-trees with different-sized keys

Terminology

earliest vs. latest: order determined by comparison 
function.

shortest versus longest: how many bytes to store key

(Words to avoid: small, large, minimum.)
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So if I say....
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Key      is the largest 
key and smallest key. 
Key                     is 
the largest key and 
the second smallest.
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... I mean...
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Key      is the latest 
key and shortest key. 
Key                     is 
the longest key and 
the second earliest.
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Bender--B-trees with different-sized keys

Algorithmic Performance Model

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

• Two-levels of memory.
• Two parameters: block-size B, memory-size M.

Performance metric:
• Minimize # of block transfers 

Memory

Disk

B

B



Bender--B-trees with different-sized keys

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2. 
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.
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Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2. 
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.
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Bender--B-trees with different-sized keys

Example: N keys with average size <2. 
• N/B keys with size B and N-N/B keys with size 1.

Size B keys as pivots: O(log B) factor worse. 
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Bender--B-trees with different-sized keys
21

before

after

Comparison Cost

Comparison cost: 
# of transfers to bring 

keys into memory.



Bender--B-trees with different-sized keys

Desired Guarantee

Let K be the average key size. 

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.
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Bender--B-trees with different-sized keys

Desired Guarantee

Let K be the average key size. 

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

Unfortunately, we cannot get this for worst-case 
searches, but we’ll get it in expectation.
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Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.
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Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.

•
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Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.

•
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Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.
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search: Θ(log  N)search: Θ(log  N/B) B2

1B

Related work: how to optimize B-tree height

• static (no inserts/deletes)
• DP-based
• (far from our target guarantee)

[Vaishnavi, Kriegel, Wood 80] [Gotleib 81] [Huang, Vishwanathan 90] [Becker 94]



Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Extreme example: N keys with average size K<2. 
• 1 key with size M and N-1 keys with size 1.
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Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Extreme example: N keys with average size K<2. 
• 1 key with size M and N-1 keys with size 1.

These two examples have different flavors.
• LB for first example is based on tree structure.
• LB for for second example is based on reading the key.
• Both motivate why we consider expectation.
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search: Θ(log  N)Read: Θ(1+M/B) B

1M

But we are ok in expectation: (1-1/N) logBN + (1/N) M/B = O(logBN).
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Static atomic-key B-tree (only searches)
• Expected leaf search cost:                      

 

• Linear construction cost for sorted data:                 

Results
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Dynamic atomic-key B-tree
• Expected leaf search cost :  

 

• Cost to insert/delete/search for key L of random rank (amort): 
                                                 

• Cost to insert/delete/search for key of arbitrary rank: 
modification cost is dominated by search cost.
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• Applies even for nonuniform search probabilities

Results

36

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B) 
and K≤ Ω(B)

Scan bound since 
total length= NK 

important

O(|L|/B) is cost to read L into memory



Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
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Static atomic-key B-tree (only searches)
• Expected leaf search cost:                      

 

• Linear construction cost for sorted data:                 

Dynamic atomic-key B-tree
• Expected leaf search cost :  

 

• Cost to insert/delete/search for key L of random rank (amort): 
                                                 

• Cost to insert/delete/search for key of arbitrary rank: 
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
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Results
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Static Atomic-Key B-tree

Greedy construction algorithm
• Greedily select pivot elements for the root node
• Proceed recursively on all subtrees of the root. 

Intuition
• Pick small keys in root to maximize fanout.
• Pick evenly distributed keys to reduce the search space.

To prove
• Root has a good structure.
• Recursive substructures achieve good performance, even 

though subtrees may have different average key sizes. 
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Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

      

Case 2: K= !(B). Root has size O(K) and fanout 2.
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Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

Overall search cost:

Case 2: K= !(B). Root has size O(K) and fanout 2.

Overall search cost: 
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Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

Overall search cost:

Case 2: K= !(B). Root has size O(K) and fanout 2.

Overall search cost: 
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Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K. 
Divide into f groups of equal cardinality (each has N/f). 
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall 
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex.  4  4  3  4  1  2  2  2  3  2  5  4  3  1  4  4  

Ave K=3. 
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Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K. 
Divide into f groups of equal cardinality (each has N/f). 
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall 
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex.  4  4  3  4  1  2  2  2  3  2  5  4  3  1  4  4  

Ave K=3. Ave of mins =1.75.
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Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K. 
Divide into f groups of equal cardinality (each has N/f). 
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall 
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex.  4  4  3  4  1  2  2  2  3  2  5  4  3  1  4  4  

Ave K=3. Ave of mins =1.75.
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Note: only true because groups have the same size. 

Enough structure to bound the size and fanout of the root. 



Bender--B-trees with different-sized keys

Root Construction

1. Divide keys into                                equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3.  So f=4.
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Root Construction

1. Divide keys into                                equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3.  So f=4.
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Construction of Rest of Tree

Proceed recursively in each subtree.
(Different value of K (and thus                               )
in each subtree.

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh
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Static atomic-key B-tree (only searches)
• Expected leaf search cost:                      

 

• Linear construction cost for sorted data:                 

Dynamic atomic-key B-tree
• Expected leaf search cost :  

 

• Cost to insert/delete/search for key L of random rank (amort): 
                                                 

• Cost to insert/delete/search for key of arbitrary rank: 
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
• O(BN3) operations
• Applies even for nonuniform search probabilities

Results
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Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality.
Within constant factors is good enough.
We don’t need the shortest key as a pivot. 
We can choose a key whose length is at most twice the 
average in that group.

52
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Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality.
Within constant factors is good enough.
We don’t need the shortest key as a pivot. 
We can choose a key whose length is at most twice the 
average in that group.

Thus, > half the keys in a group could be a pivot.

The shortest key can remain as pivot even if the group 
grows or shrinks by a constant factor.   
Structure isn’t brittle. 
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Dynamic Atomic-Key B-tree (Cont)

Second idea: Insert elements directly into leaves. 
Rebuild entire subtrees whether there have been “too 
many” inserts/deletes. 
(Don’t bother splitting and merging. )

amortized update cost =    rebuild cost
                                           # updates between rebuilds

Problem: standard technique chokes because value of K 
changes over time. (Value of K during rebuild is different from 
value of K at actual insert/delete.)
Can be fixed. (Ask after talk.)
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Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like 

most about our product TokuDB is its predictability. 
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