
Performance Guarantees for B-trees
with Different-Size Atomic Keys

Michael A. Bender
Stony Brook
Tokutek, Inc.

Bradley C. Kuszmaul
MIT

Tokutek, Inc

Haodong Hu
Microsoft

Bender--B-trees with different-sized keys

In B-trees in textbooks, all keys have the same size.

Actual B-trees support different-size keys, but
with no nontrivial performance guarantees.

This talk: give provably good guarantees for the
expected search cost in a modified B-tree.

This talk

2

K B

O(log N)ff=B/K

Bender--B-trees with different-sized keys

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys, but
with no nontrivial performance guarantees.

This talk: give provably good guarantees for the
expected search cost in a modified B-tree.

This talk

3

K B

O(log N)ff=B/K

Bender--B-trees with different-sized keys

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys, but
with no nontrivial performance guarantees.

This talk: give provably good guarantees in an only
slightly modified B-tree.

This talk

4

K B

O(log N)ff=B/K

Bender--B-trees with different-sized keys

Example Showing Problem

5

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Example Showing Problem

When the length-8 keys are pivots (and the block size
is 8), the tree height is 4:

6

a c e g i k m o

dddddddd

hhhhhhhh

llllllll

bbbbbbbb ffffffff jjjjjjjj nnnnnnnn

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Example Showing Problem

When the length-1 keys are pivots (and the block size
is 8), the tree height is 2:

Choice of pivot affects the B-tree performance.

7

a c me i k og

bbb
bbb

bb
ddd

ddd
dd

fff
fff

ff
hhh

hhh
hh

jjj
jjj

jj
lll

lll
ll

nnn
nnn

nn

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Cannot compare first byte of with .

8

Keys are Atomic, Not Strings

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Cannot compare first byte of with .

Only the comparison function understands the keys.

Keys are opaque. Need to send entire key to comparison
function and store entire key in node.

9

Keys are Atomic, Not Strings

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

bbbbb
bbb o

a bbbbb
bbb

c
ddddd

ddd
e fffff

fff
g hhhhh

hhh

i jjjjj
jjj

k
lllll

lll
m nnnnn

nnn

Bender--B-trees with different-sized keys

Cannot compare first byte of with .

Only the comparison function understands the keys.

Keys are opaque. Need to send entire key to comparison
function and store entire key in node.

10

Keys are Atomic, Not Strings

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

bbbbbbbb

o

a
bbbbbbbb

c
dddddddd

e
ffffffff

g
hhhhhhhh

i
jjjjjjjj

k
llllllll

m
nnnnnnnn

before

after

Bender--B-trees with different-sized keys

Cannot compare first byte of with .

Only the comparison function understands the keys.

Keys are opaque. Need to send entire key to comparison
function and store entire key in node.

String B-tree techniques don’t work [Ferragina, Grossi 98].

Front compression (prefix compression) doesn’t work
[Bayer, Unterauer 77] [Wagner 73].

11

Keys are Atomic, Not Strings

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Terminology

earliest vs. latest: order determined by comparison
function.

shortest versus longest: how many bytes to store key

(Words to avoid: small, large, minimum.)

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

So if I say....

15

Key is the largest
key and smallest key.
Key is
the largest key and
the second smallest.

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn
o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

... I mean...

16

Key is the latest
key and shortest key.
Key is
the longest key and
the second earliest.

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Bender--B-trees with different-sized keys

Algorithmic Performance Model

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

• Two-levels of memory.
• Two parameters: block-size B, memory-size M.

Performance metric:
• Minimize # of block transfers

Memory

Disk

B

B

Bender--B-trees with different-sized keys

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.

18

B

O(log N)B

B-11 B

Bender--B-trees with different-sized keys

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.

19

B

O(log N)B

B-11 B

Bender--B-trees with different-sized keys

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size B keys as pivots: O(log B) factor worse.

20

O(log N)2

B

B-11 B

Choice of Pivot Matters For Variable-Size Keys

Bender--B-trees with different-sized keys
21

before

after

Comparison Cost

Comparison cost:
of transfers to bring

keys into memory.

Bender--B-trees with different-sized keys

Desired Guarantee

Let K be the average key size.

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

22

Bender--B-trees with different-sized keys

Desired Guarantee

Let K be the average key size.

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

Unfortunately, we cannot get this for worst-case
searches, but we’ll get it in expectation.

23

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

24

search: Θ(log N)search: Θ(log N/B) B2

1B

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

•

25

search: Θ(log N)search: Θ(log N/B) B2

1B

O(log N/B)2

B

O(log N)B

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

•

26

search: Θ(log N)search: Θ(log N/B) B2

1B

But we are ok in expectation: (1-1/B) logBN + (1/B) log2N=O(logBN).

O(log N/B)2

B

O(log N)B

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

27

search: Θ(log N)search: Θ(log N/B) B2

1B

Related work: how to optimize B-tree height

• static (no inserts/deletes)
• DP-based
• (far from our target guarantee)

[Vaishnavi, Kriegel, Wood 80] [Gotleib 81] [Huang, Vishwanathan 90] [Becker 94]

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Extreme example: N keys with average size K<2.
• 1 key with size M and N-1 keys with size 1.

28

search: Θ(log N)Read: Θ(1+M/B) B

1M

But we are ok in expectation: (1-1/N) logBN + (1/N) M/B = O(logBN).

Bender--B-trees with different-sized keys

Why We Cannot Attain Good Worst-Case Bounds

Extreme example: N keys with average size K<2.
• 1 key with size M and N-1 keys with size 1.

These two examples have different flavors.
• LB for first example is based on tree structure.
• LB for for second example is based on reading the key.
• Both motivate why we consider expectation.

29

search: Θ(log N)Read: Θ(1+M/B) B

1M

But we are ok in expectation: (1-1/N) logBN + (1/N) M/B = O(logBN).

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Results

30

O(�K/B� log1+�B/K� N)

O(NK/B)

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Results

31

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Results

32

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Results

33

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Results

34

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

O(|L|/B) is cost to read L into memory

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Results

35

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

important

O(|L|/B) is cost to read L into memory

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
• O(BN3) operations
• Applies even for nonuniform search probabilities

Results

36

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

important

O(|L|/B) is cost to read L into memory

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
• O(BN3) operations
• Applies even for nonuniform search probabilities

Results

37

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

important

RAM not external memory. (Won’t discuss in talk.)

O(|L|/B) is cost to read L into memory

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
• O(BN3) operations
• Applies even for nonuniform search probabilities

Results

38

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

To discuss next

Bender--B-trees with different-sized keys

Static Atomic-Key B-tree

Greedy construction algorithm
• Greedily select pivot elements for the root node
• Proceed recursively on all subtrees of the root.

Intuition
• Pick small keys in root to maximize fanout.
• Pick evenly distributed keys to reduce the search space.

To prove
• Root has a good structure.
• Recursive substructures achieve good performance, even

though subtrees may have different average key sizes.

39

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

Case 2: K= !(B). Root has size O(K) and fanout 2.

40

B

K

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

Overall search cost:

Case 2: K= !(B). Root has size O(K) and fanout 2.

Overall search cost:

41

B

K

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Case 1: K=O(B). Root has size O(B) and fanout Θ(B/K).

Overall search cost:

Case 2: K= !(B). Root has size O(K) and fanout 2.

Overall search cost:

42

B

K

O(�K/B� log1+�B/K� N)
≈Θ(B/K)=1

O(�K/B� log1+�B/K� N)
=2≈K/B

cost of reading root ave fanout

cost of reading root ave fanout

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K.
Divide into f groups of equal cardinality (each has N/f).
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex. 4 4 3 4 1 2 2 2 3 2 5 4 3 1 4 4

Ave K=3.

43

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K.
Divide into f groups of equal cardinality (each has N/f).
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex. 4 4 3 4 1 2 2 2 3 2 5 4 3 1 4 4

Ave K=3. Ave of mins =1.75.

44

Bender--B-trees with different-sized keys

Root Structure of Static Atomic Key B-tree

Useful Lemma: Consider N #s whose average is K.
Divide into f groups of equal cardinality (each has N/f).
Take the min in each group (say Ki is min of group i).
Then average of these minima is at most the overall
average K (i.e., (K1+K2+...+Kf)/f " K).

Ex. 4 4 3 4 1 2 2 2 3 2 5 4 3 1 4 4

Ave K=3. Ave of mins =1.75.

45

Note: only true because groups have the same size.

Enough structure to bound the size and fanout of the root.

Bender--B-trees with different-sized keys

Root Construction

1. Divide keys into equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3. So f=4.

46

f = max
�
3,
�
B
K

��

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

Bender--B-trees with different-sized keys

Root Construction

1. Divide keys into equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3. So f=4.

47

f = max
�
3,
�
B
K

��

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

Bender--B-trees with different-sized keys

Root Construction

1. Divide keys into equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3. So f=4.

48

f = max
�
3,
�
B
K

��

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

Bender--B-trees with different-sized keys

Root Construction

1. Divide keys into equal-size groups.

2. Pick shortest key in each group.

3. Store these keys in root (except 1st & last groups).

Ex: B = 12, K = 3. So f=4.

49

f = max
�
3,
�
B
K

��

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

< B

e jj

Bender--B-trees with different-sized keys

Construction of Rest of Tree

Proceed recursively in each subtree.
(Different value of K (and thus)
in each subtree.

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

< B

e jj

f = max
�
3,
�
B
K

��

Bender--B-trees with different-sized keys

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Optimal static atomic-key B-tree:
• O(BN3) operations
• Applies even for nonuniform search probabilities

Results

51

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

To discuss next

Bender--B-trees with different-sized keys

Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality.
Within constant factors is good enough.
We don’t need the shortest key as a pivot.
We can choose a key whose length is at most twice the
average in that group.

52

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

< B

e jj

Bender--B-trees with different-sized keys

Dynamic Atomic-Key B-tree

One idea: Groups need not be of equal cardinality.
Within constant factors is good enough.
We don’t need the shortest key as a pivot.
We can choose a key whose length is at most twice the
average in that group.

Thus, > half the keys in a group could be a pivot.

The shortest key can remain as pivot even if the group
grows or shrinks by a constant factor.
Structure isn’t brittle.

53

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

< B

e jj

Bender--B-trees with different-sized keys

Dynamic Atomic-Key B-tree (Cont)

Second idea: Insert elements directly into leaves.
Rebuild entire subtrees whether there have been “too
many” inserts/deletes.
(Don’t bother splitting and merging.)

amortized update cost = rebuild cost
 # updates between rebuilds

Problem: standard technique chokes because value of K
changes over time. (Value of K during rebuild is different from
value of K at actual insert/delete.)
Can be fixed. (Ask after talk.)

54

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

55

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

People want performance guarantees for B-trees
• The manual for Oracle Berkeley DB manual claims that BDB

runs in O(logB/KN) transfers.
• As our results show, this folk theorem is incorrect.
• But the claim helps motivate the guarantees we achieve.

56

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

People want performance guarantees for B-trees
• The manual for Oracle Berkeley DB manual claims that BDB

runs in O(logB/KN) transfers.
• As our results show, this folk theorem is incorrect.
• But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?
• Maybe B-trees empirically perform predictably enough.

57

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

People want performance guarantees for B-trees
• The manual for Oracle Berkeley DB manual claims that BDB

runs in O(logB/KN) transfers.
• As our results show, this folk theorem is incorrect.
• But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?
• Maybe B-trees empirically perform predictably enough.
• Maybe B-trees are so unpredictable already (e.g., because of

memory cliffs) that our guarantees are second-order effects.

58

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

People want performance guarantees for B-trees
• The manual for Oracle Berkeley DB manual claims that BDB

runs in O(logB/KN) transfers.
• As our results show, this folk theorem is incorrect.
• But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?
• Maybe B-trees empirically perform predictably enough.
• Maybe B-trees are so unpredictable already (e.g., because of

memory cliffs) that our guarantees are second-order effects.
• Lots to explore.....

59

Bender--B-trees with different-sized keys

Waxing Philosophical

People want performance guarantees
• I have a startup Tokutek. One of the things customers like

most about our product TokuDB is its predictability.

People want performance guarantees for B-trees
• The manual for Oracle Berkeley DB manual claims that BDB

runs in O(logB/KN) transfers.
• As our results show, this folk theorem is incorrect.
• But the claim helps motivate the guarantees we achieve.

Will our theoretical guarantees have practical value?
• Maybe B-trees empirically perform predictably enough.
• Maybe B-trees are so unpredictable already (e.g., because of

memory cliffs) that our guarantees are second-order effects.
• Lots to explore.....

60

