
The Snowblower Problem

Estie Arkin, Michael Bender,
Joseph Mitchell, Valentin Polishchuk

Stony Brook University

Suppose that your backyard looks
like this:

One morning you wake up and it is
covered with snow…

…uniformly covered

So you pull out your snowblower…

…or your Snowblower

…or your SNOWBLOWER

…and begin snowblowing
Depending on your backyard, snowblowing may
look like this…

or snowblowing may look like this:

This talk: Algorithmic Aspects of
Snowblowing

• Introduce the snowblowing problem
(intermediate between TSP and
material-handling problems)

• Give O(1) approximation algorithms for
several versions of the problem

• Prove NP-hardness for some versions of
the problem

Snowblower:Material-Shifting Machine
• It lifts snow from one location, and piles it on

an adjacent location

We must respect max
snow depth (height) D, because…

…if we pile snow up too high…

…the snowblower gets stuck

Where to dispose of the snow?
(neighbor’s yard)

Where to dispose of the snow?
(neighbor’s yard)

We can pile snow arbitrarily high on the
neighbor’s lawn…

Effectively the neighbor’s lawn
has infinite capacity

Alternatively: boundary is “cliff”
We dump as much snow as we want

(A bigger cliff)

We can achieve infinite capacity
using a snow melter…

Snow Melter

SNOW MELTER

SB Problem Definition - Driveway

• Polygonal domain P
– integral-orthogonal

and pixelated
– no holes

• SB
1 pixel (initially

in garage)

SB Problem Definition
• SB moves from pixel to

adjacent pixel
– picks up all snow
– throws onto a neighbor pixel
– or over the boundary of region
– max depth of snow D ≥ 2

• Objective: minimize the
length of the path of the
snowblower

sb

sb

The SBP is TSP-like
• Milling/lawnmowing [Arkin,Fekete,Mitchell00, ArkinHeldSmith00, Held91]

– visit = remove
• never re-visit in NP

• Material handling [pushing blocks; extensive OR literature]

– visit = move
• may need to re-visit a lot in NP?

• The Snowblower Problem (SBP)
– visit = move

• stacking ≤ D allowed
– visit a boundary pixel = remove

• our algs in NP

We are not the first to consider
pixel environments for snowblowing…

City of Danville
Public Works Department
Danville, VA 24540

Throw Direction

On which pixel can snow be placed?

s

Right Left

Forward?

Yes
- if adjustable

Backward?

• Not easy to implement. But it makes the
algorithms easier.

Backward?

• Not easy to implement. But it makes the
algorithms easier.

Default Model
• Throwback allowed
• Not intended to be realistic,

but easy to describe and
other models reduce to it

8-APX

s

s

Adjustable-Throw Model
Right, left, or fwd

9-APX s

s

Fixed-Throw Model
Right only

106-APX s

s

A Key Idea

• Voronoi decomposition
– closest bndry pixel edge

• tie-breaking
– clear Voronoi-cell-by-

Voronoi-cell

• Lower Bounds
– snow amount
– distance to boundary

Lower Bounds
• snow LB

snowLB(R) = # of pixels of region R with snow

• distance LB
distLB(R) = [distance from pixel

to the boundary]pixel R∈

Boundary Cells Are Of Two Types
(by our tiebreaking rule)

• Combs

• Lines

e

e

handle

tooth

tooth

Line-clearing (D=3)
• Move up D,

doing back
throws

• U-turn

• Forward throw
moving down to
boundary

s
e

Line-clearing (D=3)

e

s

• Move up D,
doing back
throws

• U-turn

• Forward throw
moving down to
boundary

Line-clearing (D=3)

e

s

• Move up D,
doing back
throws

• U-turn

• Forward throw
moving down to
boundary

Line-clearing (D=3)

e

s

• Move up D,
doing back
throws

• U-turn

• Forward throw
moving down to
boundary

Line-clearing (D=3)
• Move up D,

doing back
throws

• U-turn

• Forward throw
moving down to
boundary

2

e

s

Line-clearing (D=3)
• Move up D,

doing back
throws

• U-turn

• Forward throw
moving down to
boundary e

s

3

Line-clearing (D=3)
• Move up D,

doing back
throws

• U-turn

• Forward throw
moving down to
boundary

s
e

Cost of Line L
• Each D-full pass (clearing D snow units)

distLB(cleared) = (h+1+…+h+D)/D
~ h+D/2

cost = 2(h+D)
≤ 4 distLB(cleared)

• The pass that is not D-full
cost ≤ 2 snowLB(L)

• Total cost to clear line L
cost(L) ≤ 4 distLB(L) + 2 snowLB(L)

e

h
D

Clearing a Comb (D = 3)
First clear whatever lines
we can using D-full passes
(where clear D units of snow)

cost(L) ≤ 4 distLB(L)

Now the comb is ready for
another operation: “brush-
ready”.

s

Brush Operation for Clearing Combs

• “Capacitated DFS”
– Proceed tooth by tooth
– until D units of snow moved

• clear a tooth and move down

Cost of a Brush (red part)

• A brush
– through handle
– through teeth

• Each tooth is visited ≤ 2 times (there & back twice)

[Because brush-ready we know snow(tooth) < D]

• For all brushes
cost(red) ≤ 4 snowLB(teeth)

Cost of a Brush (blue)
• We charge the cost of

the blue part of the brush
to the distLB of the snow
cleared in previous brush.

cost(blue) ≤ 2 distLB(cleared) +
4 snowLB(handle)

t

All Brushes

cost(brushes) =
cost(blue) + cost(red)

≤ 4 snowLB(comb) +
2 distLB(cleared)

Comb Clearing
cost(comb) =
cost(line-clearing) + cost(brushes)
≤ 4 snowLB(comb) + 4 distLB(comb)

Cost of Polygon P
Treat each vornoi cell independently…

cost(L) ≤ 4 snowLB(L) +
2 distLB(L)

cost(comb) ≤ 4 snowLB(comb) +
4 distLB(comb)

cost(P) ≤ 4 snowLB(P) +
4 distLB(P)

OPT ≥ snowLB(P), distLB(P)

8-approx

Other Throw Models

• Idea: simulate
backthrow and reduce
to the default model

• One issue: snow doesn’t
travel directly to its
Voronoi edge

Line-clearing

• D-full pass

s
e

s
e

• -full pass

s
e

s
e

Brush
• D →

with any cleared pixel
≤ 1 “extra” pixel is

“touched”
brush is feasible

Adjustable Throw

(4 + 3D/)-approx

Fixed Throw

(34 + 24D/)-approx
more involved emulations

Hardness

• In NP
– by our algorithms

• NP-hard
– Hamilton Cycle in deg ≤ 3

grid graphs
– default/adjustable throw
– holes

Polygons with holes
• Holes as obstacles

– verbatim
• Holes as cliffs

– bridge holes
• width-2 paths

– same alg
• bd pixels around the

tree
– increases approx

factor

Nonuniform Initial Depth

• Straightforward generalization
– approx factors depend on D linearly

Nonrectiliear
• Once around boundary

– apply algorithms

Central Vacuum System

Dustpan Vac in Baseboard

“Infinite” Capacity

Vacuum Cleaner Problem

Robot

Exactly the SBP
default model

Conclusion
SBP

3 throw models
• default

– vacuum-cleaner
• adjustable
• fixed

O(1)-approx (8,9,106)
NP-complete

• default/adjustable
• holes

Open

• Hardness
– simple polygon
– fixed throw

• Improve approx factors

Turn Cost

Online

Throwing >1 away

Multiple SBs

