
Cache-Adaptive
Analysis

Michael A. Bender1 Erik Demaine4 Roozbeh Ebrahimi1
Jeremy T. Fineman3 Rob Johnson1

Andrea Lincoln4 Jayson Lynch4 Samuel McCauley1

1 3 4

Available Memory Can Fluctuate in Real Systems

Memory fluctuations are common
•Jobs starting and stopping
•Irregular parallel programs
•Any time-sharing system

Performance can be lost when algorithms can't adapt to
changes in available memory
•Thrashing (when available memory shrinks)
•Underutilization (when available memory grows)

Process 1's RAM

Process 2
requests more RAM

Process 3
leaves

Adapting to Memory Changes: Empirical

Database papers on adaptive sorting or joins:
•Empirical good, but not provably good.
•Rarely present in production systems, despite the need.

 [Pang, Carey, Livny, VLDB 93], [Zeller+Gray VLDB 90], [Zhang+Larson VLDB
97], [Zhang+Larson, CASCON 96], [Pang, Carey, Livny, SIGMOD/COMAD 93],
[Graefe 13]

Adapting to Memory Changes: Theoretical

Barve and Vitter [98, FOCS 99] generalize the I/O
model [Aggarwal+Vitter ’88] to allow RAM to change
size.
•These are hard and technically sophisticated results

(sorting, FFT, matrix multiplication, etc).

•There’s been little followup work over the last 15 years.

It's hard to write memory-adaptive code and harder
to prove bounds about it.

We can design cache-
adaptive algorithms using

cache-oblivious algorithms.

Key Insight

Results

Tools for cache-adaptive analysis.
• Extension to external-memory and cache-oblivious models.

• Square profiles and inductive charging

• Worst-case profile analysis

• Machinery for porting progress bounds from DAM to CA model

Characterization theorem for when CO algorithm is CA
• Covers many Akra-Bazzi-style divide-and-conquer algorithms, e.g.

• Matrix multiplication (two versions, one is CA, one is not)

• Matrix transpose

• Jacobi multi-pass filter

• All-pairs shortest paths

Typical Master-theorem-style CO algorithms are either
optimal or log N off.

Cache-oblivious FFT is not CA, but is at most log log N off.

• Edit distance

• Longest common substring

Additional Results

Proof that Lazy Funnel Sort [Brodal, Fagerberg 02] is cache adaptive.

Paging results when the cache changes sizes.
• Farthest-in-future is still optimal (cf. [Belady 66]).

• LRU with 4-memory and 4-speed augmentation is competitive with OPT.

• LRU is constant-competitive even if cache hits are not free.
‣And even if OPT gets to perform prefetching.

Generalizes Disk Access Machine (DAM) model [Aggarwal+Vitter '88].
•Data is transferred in blocks between RAM and disk.
•Performance is measured in terms of block transfers.

Now size of internal memory is a function of time.
•Can change arbitrarily
•Can change without advance notice

Cache-Adaptive Model

DiskRAM

B

B

M(t)

time

M(t)

Data size: N

Ideal-cache model: DAM model + automatic paging
•Contents of cache are managed by a separate paging algorithm.
•Time bounds are parameterized by B, M, N.
•Goal: Minimize # of block transfers ≈ time.

Beautiful restriction:
•Parameters B, M are unknown to the algorithm or coder.
•An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious Algorithms [Frigo, Leiserson,

Prokop, Ramachandran ’99]

B=?

DiskRAM

B=?

M=?

N × N matrix multiplication: 8 multiply-adds of N/2 × N/2 matrices:

=
A11 A12

A21 A22 × +
B11 B12

B21 B22

A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B22

Example: Recursive Matrix Multiplication is Cache-
Oblivious

T (N) = {O(N 2
/B) if N 2

=O(M)

8T (N /2)+O(N 2
/B) otherwise

= O(N 3

B√M)

Proving Algorithms Optimal in DAM
Model: Progress Bounds

A progress bound
upper-bounds the amount of
useful work that any
algorithm can accomplish
given M memory and M/B I/Os.

A progress requirement
function R(N) lower bounds
the amount of work required
to solve all problems of size N.

ρ (M)

Example: Hong and
Kung's progress bound

for matrix multiplication
[Hong and Kung 81]

time

O(M3/2)
multi-

plications
M

M/B

m
e
m

o
ry

 s
iz

e

ρ (M)=O (M 3 /2)

R (N)=O (N 3)

Why Recursive Matrix Multiply is Optimal
in the DAM Model

time

O(M3/2)
multi-

plications
M

M/B

m
e
m

o
ry

 s
iz

e

So no algorithm can have running time less than

Ω(R (N)

ρ(M)
×

M
B)=Ω(N 3

M3/2×
M
B)=Ω(N3

B√M)
ρ (M)=O (M 3/2)

R (N)=O (N 3)

T (N)=O(N 3

B√M)CO matrix multiply running time:

What Can Go Wrong in the CA Model?

A∗B

R1=(A11∗B11 A11∗B12

A21∗B11 A21∗B12
)

R2=(A12∗B21 A12∗B22

A22∗B21 A22∗B22
)

return R1+R2

 8 recursive calls

 linear scan I/OsΘ(N
2

B)

No matter how
much memory

is available.

A11∗B11 A11∗B12 A22∗B22 R1+R2
...

Θ (N 2
/B)

What Can Go Wrong in the CA Model?

We can recursively construct
a “bad” profile WN that

● Has lot's of memory when
algorithm doesn't need it

● Little memory when
algorithm could use it

W
N

8 copies of W
N/2

...

N2

N2/B IOs

ρ(N 2
)

A11∗B11 A11∗B12 A22∗B22 R1+R2

Θ (N 2
/B)

...W
N/2

W
N/2

W
N/2

What Can Go Wrong in the CA Model?

...

W
N

8 copies of W
N/2

...

N2

N2/B IOs

ρ(N 2
)

A11∗B11 A11∗B12 A22∗B22 R1+R2

Θ (N 2
/B)

W
N/2

W
N/2

W
N/2

ρ(W N)=8ρ(W N /2)+Θ(ρ(N 2))

=8ρ(W N /2)+Θ(N 3
)

=Θ(N 3 log N)

WN supports a lot of progress:

What Can Go Wrong in the CA Model?

...

W
N

8 copies of W
N/2

...

N2

N2/B IOs

ρ(N 2
)

A11∗B11 A11∗B12 A22∗B22 R1+R2

Θ (N 2
/B)

W
N/2

W
N/2

W
N/2

ρ(W N)=8ρ(W N /2)+Θ(ρ(N 2))

=8ρ(W N /2)+Θ(N 3
)

=Θ(N 3 log N)

WN supports a lot of progress:

CO matrix multiply
makes only O(N3)
progress, so it is

not optimal.

(Simplified) Recipe for Analyzing
Cache Adaptivity

T (N)=aT (N /b)+Θ(N c /B)

S (N)=a S(N /b)+Θ(ρ(N c))

Write down recurrence relation for the algorithm:

Derive new recurrence by replacing additive terms
with progress bound :ρ

If S(N)=O(R(N)), then the algorithm is optimally
progressing.

This Recipe is General

Covers many different divide-and-conquer forms
•Master Theorem
•Akra-Bazzi
•Mutually recursive functions
•Plus others (e.g. cache-oblivious FFT)

Can answer several different questions
•Is an algorithm optimal?
•Is it not optimal?
•How far is it from optimal?

And it's easy!
•Just manipulating and solving recurrence relations

Conclusions

The CA model works.
• It is general enough to describe

real systems.

• It is easy to work with.

Cache-oblivious algorithms
are a good way to make CA
algorithms.
•Many cache oblivious

algorithms are CA.
•And are pretty close to

optimal otherwise.

Process 1's RAM

Process 2
requests more RAM

Process 3
leaves

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

