

TBD

TBD
Three backoff dilemmas

Michael A. Bender

Backoff is about sharing

Classic scenario:
• Many devices.
• 1 (shared) resource.
• Only one device can access the

resource at a time!

Examples:
• LANs
• Wireless networks
• Transactional memory
• Lock acquisition
• E-mail retransmission
• Congestion control (e.g., TCP)

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure collision/failure

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

Bad scenario: thousands of
devices contend for the resource.

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds.

[Abramson ’70]

Bad scenario: thousands of
devices contend for the resource.

W W W
Basic backoff question:

How to choose and adapt the
window size W.

packet 1
packet 2

collision/failure collision/failure successful slot

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

How many attempts to
acquire the resource

until a success?

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

How many attempts to
acquire the resource

until a success?
How well does

exponential backoff
deal with bursty

arrivals?

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

How many attempts to
acquire the resource

until a success?
How well does

exponential backoff
deal with bursty

arrivals?

[Metcalfe and Boggs ‘76]

Are there any
throughput
guarantees?

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

How many attempts to
acquire the resource

until a success?

What about
robustness
guarantees?

How well does
exponential backoff

deal with bursty
arrivals?

[Metcalfe and Boggs ‘76]

Are there any
throughput
guarantees?

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

How many attempts to
acquire the resource

until a success?

What about
robustness
guarantees?

How well does
exponential backoff

deal with bursty
arrivals?

[Metcalfe and Boggs ‘76]

Are there any
throughput
guarantees?

This talk: some answers to
these research questions.

I’m going to say something controversial.
Then I’ll try to convince you of it.

Exponential
backoff is broken
(scales poorly).

Exponential
backoff is broken
(scales poorly).

poor throughput

Exponential
backoff is broken
(scales poorly).

poor throughput

unstable at low
arrival rates

Exponential
backoff is broken
(scales poorly).

poor throughput

unstable at low
arrival rates

fragile/not
robust to
failures

Exponential
backoff is broken
(scales poorly).

poor throughput

unstable at low
arrival rates

fragile/not
robust to
failures

But it is used all over the place, often
hidden inside other protocols.

Exponential
backoff is broken
(scales poorly).

poor throughput

unstable at low
arrival rates

fragile/not
robust to
failures

But it is used all over the place, often
hidden inside other protocols.

This talk: some fixes to
exponential backoff.

And other backoff algorithms.

This talk

Act 1: Binary exponential backoff is broken.
• batch (single burst)
• dynamic arrivals

Act 2: TBD (three backoff dilemmas).
• how to maximize throughput,
• minimize # tries to access resource, and
• achieve robustness.

Act 3: How to fix exponential backoff.
• batch
• dynamic arrivals

Good pictures help convey intuition.

Good pictures help convey intuition.

So in preparing this talk, the first thing I did is
type “backoff” into Google.

What Google says about backoff is intuitive but off topic.

What Google says about backoff is intuitive but off topic.

What Google says about “randomized backoff” is on
topic but less algorithmic...

What Google says about “randomized backoff” is on
topic but less algorithmic...

I hope to convey
intuition about the asymptotic

analysis of randomized
backoff.

What Google says about “randomized backoff” is on
topic but less algorithmic...

TBD
(Three backoff dilemmas)

Part 1: binary exponential
backoff is broken

Analysis in two settings:
• batch (a single burst)
• dynamic arrivals

Backoff model: multiple-access channel

Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)
• Listen (sense the channel)

Backoff model: multiple-access channel

Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)
• Listen (sense the channel)

Results (known to every broadcaster/listener):
• If exactly one device broadcasts, then success.
• If two or more devices broadcast, then failure.
• If zero devices broadcast, then nothing.

success

Backoff model: multiple-access channel

Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)
• Listen (sense the channel)

Results (known to every broadcaster/listener):
• If exactly one device broadcasts, then success.
• If two or more devices broadcast, then failure.
• If zero devices broadcast, then nothing.

success failure

Backoff model: multiple-access channel

Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)
• Listen (sense the channel)

Results (known to every broadcaster/listener):
• If exactly one device broadcasts, then success.
• If two or more devices broadcast, then failure.
• If zero devices broadcast, then nothing.

success failure nothing

What’s this a picture of?

What’s this a picture of?

Me being defensive.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model. Perfectly synchronized
slots may be unrealistic.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

Unrealistic.
(But we don’t use.)

Perfectly synchronized
slots may be unrealistic.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

Unrealistic.
(But we don’t use.)

Acks are needed.
This talk isn’t about

how to implement acks.

Perfectly synchronized
slots may be unrealistic.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

Unrealistic.
(But we don’t use.)

Acks are needed.
This talk isn’t about

how to implement acks.

Perfectly synchronized
slots may be unrealistic.

We don’t consider
multi-hop networks.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

So....

Unrealistic.
(But we don’t use.)

Acks are needed.
This talk isn’t about

how to implement acks.

Perfectly synchronized
slots may be unrealistic.

We don’t consider
multi-hop networks.

What’s this a picture of?

Me being defensive.

We know that
real wireless
networks deviate

from this model.

So....

Unrealistic.
(But we don’t use.)

Acks are needed.
This talk isn’t about

how to implement acks.

Perfectly synchronized
slots may be unrealistic.

We don’t consider
multi-hop networks.

I want to focus on backoff as a theory problem.

1. Throughput

successful slots
total number of slots

throughput = 4/12

(first backoff dilemma)

All n packets start at the same time t = 0.
Let T = running time
(= time when last request succeeds).
Throughput: n/T.

packet-play-device. be
consistent.

Next few slides: batch scenario

throughput = 4/12
0 T

Standard binary exponential backoff

Window size W = 2

Repeat until successful transmission:
•Randomly choose slot t in window.
•Try to broadcast at slot t.
•If collision, wait to end of W.
Then double W.

Why double?
What if the window size

changes by a different factor?

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off
slowly

back off
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off
slowly

back off
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off
slowly

back off
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off
slowly

back off
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

Approx. running time

exponential in n

O(n log n)

O(n log n)

O(n2)

O(n loglog n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

~

~

~

~

Comparison
Time

Number of requests

0"

100000"

200000"

300000"

400000"

500000"

600000"

700000"

0" 5000" 10000" 15000" 20000" 25000" 30000" 35000" 40000" 45000"

additive
exponential

log & loglog

[Gilbert 14]

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

What backoff rate is best for batches?

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

exponential in n

O(n log n)

O(n log n/loglog n)

O(n2/log n)

O(n loglog n / logloglog n)

Actual running time

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

What backoff rate is best for batches?

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

exponential in n

O(n log n)

O(n log n/loglog n)

O(n2/log n)

O(n loglog n / logloglog n)

Actual running time

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Optimal (monotonic):
O(n loglog n / logloglog n)

Moral of the story

Exponential backoff is disappointing
• Used everywhere.
• Poor throughput: < 1/polylog(n).
• Example experiment: n=100.
‣ About 10% of slots are used.
‣ About 90% of resource is wasted!

LogLog backoff is better
• In simple experiments, much better.
• It’s the best monotonic backoff for batch arrivals.

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Still, it cannot achieve constant throughput.

Moral of the story

Exponential backoff is disappointing
• Used everywhere.
• Poor throughput: < 1/polylog(n).
• Example experiment: n=100.
‣ About 10% of slots are used.
‣ About 90% of resource is wasted!

LogLog backoff is better
• In simple experiments, much better.
• It’s the best monotonic backoff for batch arrivals.

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Still, it cannot achieve constant throughput.

Next: explanation why....

Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

fixed-sized
windows

Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

running time = n lglg n + O(n)

fixed-sized
windows

Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

running time = n lglg n + O(n) ⇒ throughput = O(1/ lglg n)

fixed-sized
windows

Intuition for Fixed Backoff (size-n windows)

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

Collision probs square (decrease) in each round.

Intuition for Fixed Backoff (size-n windows)

(3) E[#packets remaining]≤n/16

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

Collision probs square (decrease) in each round.

 ⇒Pr[collision]≤1/4.

Intuition for Fixed Backoff (size-n windows)

(3) E[#packets remaining]≤n/16

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

(4) E[#packets remaining]≤n/256

Collision probs square (decrease) in each round.

 ⇒Pr[collision]≤1/4.

⇒Pr[collision]≤1/16.

Intuition for Fixed Backoff (size-n windows)

(3) E[#packets remaining]≤n/16

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

(4) E[#packets remaining]≤n/256

Collision probs square (decrease) in each round.

Good intuition, but
incorrect argument!

 ⇒Pr[collision]≤1/4.

⇒Pr[collision]≤1/16.

Analysis of exponential backoff

Exponential backoff still uses rounds.

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

2-exponential backoff (Wk+1=2Wk) has time.

Exponential backoff is exquisitely sensitive to constants.

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

Summary for batch arrivals
Exponential backoff backs off too quickly on
batches.

Backing off more slowly is opt for monotonic
backoff.

It is possible to get asymptotically optimal
backoff if we sometimes back off and
sometimes back on.

Queuing theory (with Poisson arrivals)
[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96] [Raghavan and
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]

• Goal: achieve stability with good arrival rates.
• Exponential backoff is not as stable as polynomial backoff.

Adversarial queuing theory arrivals
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus,
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

• Adversarial injections
• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals
(packets start at arbitrary times)

Queuing theory (with Poisson arrivals)
[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96] [Raghavan and
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]

• Goal: achieve stability with good arrival rates.
• Exponential backoff is not as stable as polynomial backoff.

Adversarial queuing theory arrivals
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus,
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

• Adversarial injections
• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals
(packets start at arbitrary times)

packet-centric versus
station-centric view of

backoff.

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time
superpolynomial in the size of the burst.

O(1) throughput O(1/mc) throughput
 (for a time superpolynomial in m)

packet arrivals

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

Exponential backoff and bursts

Broadcast probability
• A packet in the system for d time units broadcasts with

probability Θ(1/d).

Contention at time t
• The contention at time t is the sum of the broadcast

probabilities of all packets currently in the system.

Exponential backoff and bursts

Contention at time t
• The contention at time t is the sum of the access

probabilities of all jobs currently in the system.

contention c = O(1)
• prob(slot t is successful) = O(1)

contention c = Ω(1)
• prob(the slot is successful) = 2-Θ(c)

contention c = o(1)
• prob(slot is not empty) = Θ(c)

The success probability
is exponentially small in
the contention.

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time
superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time
superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time
superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time
superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

O(log m) contention

O(logm) = 1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson 05]

Summery Slide for Part 1

Summery Slide for Part 1

Binary exponential
backoff is broken
(doesn’t scale).

Summery Slide for Part 1

Binary exponential
backoff is broken
(doesn’t scale).

Batch arrivals
Exponential backoff backs off too quickly.

(Also with Poisson arrivals.)
Log log backoff is better.

Summery Slide for Part 1

Binary exponential
backoff is broken
(doesn’t scale).

Dynamic arrivals
Exponential backoff doesn’t

recover fast enough from bursts.

Batch arrivals
Exponential backoff backs off too quickly.

(Also with Poisson arrivals.)
Log log backoff is better.

TBD
(Three backoff dilemmas)

Part 2: TBD
Three Backoff Dilemmas

How to....
• maximize throughput,
• minimize # tries to access resource,
• achieve robustness.

1. Throughput

successful slots
total number of slots

throughput = 4/12

(We’ll need to generalize for dynamic arrivals.)

2. Minimize Effort / Attempts

Each broadcast (attempt to access resource) has a
cost.
• In a wireless network, this cost is energy.
• In transactional memory, this cost is processor cycles.

Goal: Minimize the number of broadcasts.
• Exponential backoff: O(log n) on average. (But poor

throughput.)
• Better: O(log2n) on average plus good throughput.

3. Cope with Failures / Disruption

Everything is unreliable

Broadcast channels fail
• wireless disruption
• adversarial jamming
• solar flares

Transactional memory fails
• guarantees are only best effort

Network links fails
• congestion
• router failures
• misconfiguration

3. Cope with Failures / Disruption

Failures can occur even without collisions.
• In a wireless network: noise and/or jamming.
• In transactional memory: best-effort hardware

3. Cope with Failures / Disruption

Failures can occur even without collisions.
• In a wireless network: noise and/or jamming.
• In transactional memory: best-effort hardware

Model: adversary can block slots arbitrarily.

3. Cope with Failures / Disruption

Failures can occur even without collisions.
• In a wireless network: noise and/or jamming.
• In transactional memory: best-effort hardware

In any blocked slot:
• Every transmission attempt fails.
• Everyone senses that the slot is full.

Model: adversary can block slots arbitrarily.

3. Cope with Failures / Disruption

Goal: Constant throughput despite failures
• Waste at most a constant fraction of the slots

Examples
• Jamming Resistant MAC Protocols [Awerbuch, Richa, Scheideler ’08]

[Richa, Scheideler, Schmid, Zhang ‘10] [Richa, Scheideler, Schmid, Zhang 11] [Richa,
Scheideler, Schmid, Zhang ’12]

‣Adversary can jam O(1) fraction of the slots
‣fixed-station versus packet centric

• Resource-competitive analysis [King, Saia, Young ’11] [Gilbert, Young
’12] [Gilbert, King, Pettie, Porat, Saia, Young’14]

‣adversary can jam arbitrary, but there is a cost for this jamming.

TBD
(Three backoff dilemmas)

Part 3: how to fix binary
exponential backoff

Analysis in two settings:
• batch (a single burst)
• dynamic arrivals

Batch arrivals

maximize throughput
minimize effort

achieve robustness

successful slots

throughput = 4/12

TBD

Constant throughput for batches

Claim: When W=Θ(n), there are Θ(n) successes w.h.p..
Upshot: We can reduce W by a constant factor.
Corollary: All packets transmit in Θ(n) w.h.p..

[Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Constant throughput for batches

Claim: When W=Θ(n), there are Θ(n) successes w.h.p..
Upshot: We can reduce W by a constant factor.
Corollary: All packets transmit in Θ(n) w.h.p..

[Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Constant throughput for batches

Claim: When W=Θ(n), there are Θ(n) successes w.h.p..
Upshot: We can reduce W by a constant factor.
Corollary: All packets transmit in Θ(n) w.h.p..

[Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Guess a value of W = n.
Back on with window size W/2, W/4, W/8, …
Back off with W = 2n.

Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time ⇒ O(1) throughput
O(log2 n) attempts.

Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time ⇒ O(1) throughput
O(log2 n) attempts.

Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time ⇒ O(1) throughput
O(log2 n) attempts.

Robust to failures. (I’ll state a theorem later.)
But lousy with dynamic arrivals.

Dynamic arrivals

maximize throughput
minimize effort

achieve robustness

successful slots

throughput = 4/12

[Bender, Fineman, GIlbert, Young 14]

Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

packets arriving
here stay silent

until the 2nd batch

1st batch starts

... and ends

2nd batch starts

... and ends

3rd batch starts

... and ends

packets arriving
here stay silent

until the 3rd batch
...

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into batches.

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into batches.

One assumption: even/odd round parity is known.

We can simulate two channels on one.

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into batches.

One assumption: even/odd round parity is known.

We can simulate two channels on one.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal

When it hears
that the channel

is free....

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal

... it joins the
next batch
protocol...

When it hears
that the channel

is free....

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal

... it joins the
next batch
protocol...

When it hears
that the channel

is free....

... and
broadcasts a
busy signal.

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast
 (simulate control channel).

• In even rounds: run Sawtooth backoff
 (simulate data channel).

Theorem: For n requests that arrive dynamically,
 Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

[Bender, Fineman, GIlbert, Young 14]

Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast
 (simulate control channel).

• In even rounds: run Sawtooth backoff
 (simulate data channel).

Theorem: For n requests that arrive dynamically,
 Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

Packets broadcast every
other round.

O(n) attempts is expensive!

[Bender, Fineman, GIlbert, Young 14]

Dynamic arrivals

maximize throughput
minimize effort

achieve robustness

throughput = 4/12

[Bender, Fineman, GIlbert, Young 14]

Throughput in the presence of failures

Constant throughput = waste at most O(1) fraction
of slots.

wasted slots nonwasted slots

collision
(from high

contention)

empty slot
(from low
contention)

failuresuccessful
broadcast

(Recall: contention = sum of broadcast probabilities.)

Resolving TBD

Theorem (for finite case):
Let f be the number of failed slots.
Let n be the number of (adversarially scheduled) packets.
We can achieve
• Θ(1) throughput in expectation,

i.e., algorithm runs in time O(n+f).
• O(log2(n+f)) broadcasts in expectation.

[Bender, Fineman,
GIlbert, Young 14]

Resolving TBD

Theorem (for finite case):
Let f be the number of failed slots.
Let n be the number of (adversarially scheduled) packets.
We can achieve
• Θ(1) throughput in expectation,

i.e., algorithm runs in time O(n+f).
• O(log2(n+f)) broadcasts in expectation.

There’s a similar theorem for the infinite case.

[Bender, Fineman,
GIlbert, Young 14]

It’s all about contention

Constant throughput = waste O(1) fraction of slots.

Goal: achieve Θ(1) contention on a constant fraction
of all slots.

wasted slots nonwasted slots

collision
(from high

contention)

empty slot
(from low
contention)

failuresuccessful
broadcast

(Recall: contention = sum of broadcast probabilities.)

Batches based upon contention

Group packets into synchronized batches.

packets arriving
here stay silent
until batch ends

Start a batch
when there’s no

busy signal. End a batch when
the contention
gets too low.

Batches based upon contention

Group packets into synchronized batches.

packets arriving
here stay silent
until batch ends

Start a batch
when there’s no

busy signal. End a batch when
the contention
gets too low.

Only now, we will be unable to
avoid overlapping batches.

Managing Contention depends on age structure
of packets

How contention changes depends on the age
structure of the packets.

young packets:
• create a lot of contention,
• but their contention reduces quickly as they age.

1 → 1/2 → 1/3 → 1/4 → 1/5 ...

old packets:
• create little contention,
• but their contention reduces slowly as they age.

1/1000 → 1/1001 → 1/1002 → 1/1003 → 1/1004 ...

Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Cheap probabilistic
busy signal.

Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

Fault-tolerant
measure of low

contention.
A batch ends when

O(1) fraction of
packets finished.

Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

Fault-tolerant
measure of low

contention.
A batch ends when

O(1) fraction of
packets finished.

Start a new batch.
(There may still be older
batches in the system.)

What makes this analysis irritating fun irritating fun

Batches now overlap.
• Many batches are running simultaneously with different

start times.

We can’t use w.h.p. analysis on each batch.
Contention is a slippery parameter.
• How contention changes depends on the age structure

of the packet.

Summery Slide for Part 3

Summery Slide for Part 3

Batches:
Sawtooth is a robust algorithm

(resolves TBD).

Summery Slide for Part 3

Dynamic arrivals:
Batched sawtooth is good for throughput

(but lousy for other dillemmas).

Batches:
Sawtooth is a robust algorithm

(resolves TBD).

Summery Slide for Part 3

Dynamic arrivals:
There is a backoff protocol that is

robust for all TBD
(throughput, # attempts, robustness).

Dynamic arrivals:
Batched sawtooth is good for throughput

(but lousy for other dillemmas).

Batches:
Sawtooth is a robust algorithm

(resolves TBD).

Strive for backoff protocols that scale

Exponential backoff is broken (but ubiquitous)
• batch--backs off too quickly
• dynamic arrivals--doesn’t deal well with bursts.

TBD
• minimize throughput
• maximize # attempts to access channel
• achieve robustness

Fixing exp backoff
• batch--sawtooth backoff resolves the TBDs.
• dynamic arrivals--sawtooth + busy tone has good throughput
• dynamic arrivals--cheap busytone + exponential backoff + delayed

reset + lots of analysis resolves the TBDs.
‣ Not complicated algorithm. complicated analysis.

