
Data Structures and Algorithms for
Big Databases

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

Important and universal problem.
Hot topic. 2

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

For on-disk data, one sees funny tradeoffs in the speeds
of data ingestion, query speed, and freshness of data.

Important and universal problem.
Hot topic. 2

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.

• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

3

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.

• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

4

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.

• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

5

This tutorial
• Better data

structures
significantly mitigate
the insert/query/
freshness tradeoff.

• These structures
scale to much larger
sizes while efficiently
using the memory-
hierarchy.

Fractal-tree®
index

LSM
tree

Bɛ-tree

6

Don’t Thrash: How to Cache Your Hash in Flash

What we mean by Big Data

We don’t define Big Data in terms of TB, PB, EB.
By Big Data, we mean

• The data is too big to fit in main memory.
• We need data structures on the data.
• Words like “index” or “metadata” suggest that there are

underlying data structures.
• These data structures are also too big to fit in main

memory.

7

Don’t Thrash: How to Cache Your Hash in Flash8

In this tutorial we study the
underlying data structures for

managing big data.

File systems
NewSQL

SQL
NoSQL

But enough about
databases...

... more
about us.

Don’t Thrash: How to Cache Your Hash in Flash

Tokutek

A few years ago we started working together on
I/O-efficient and cache-oblivious data structures.

Along the way, we started Tokutek to commercialize
our research.

Michael Martin Bradley

10

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

11

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

11

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

TokuDB also has a Berkeley DB API and can
be used independent of MySQL.

11

Don’t Thrash: How to Cache Your Hash in Flash

Storage engines in MySQL

Tokutek sells TokuDB, an ACID compliant,
closed-source storage engine for MySQL.

File System

MySQL Database
SQL Processing,

Query Optimization…

Application

TokuDB also has a Berkeley DB API and can
be used independent of MySQL.

11

Many of the data structures ideas in this
tutorial were used in developing TokuDB.

But this tutorial is about data structures and
algorithms, not TokuDB or any other

platform.

Don’t Thrash: How to Cache Your Hash in Flash

Our Mindset

• This tutorial is self contained.
• We want to teach.
• If something we say isn’t clear to you, please ask

questions or ask us to clarify/repeat something.
• You should be comfortable using math.
• You should want to listen to data structures for an

afternoon.

12

Don’t Thrash: How to Cache Your Hash in Flash

Topics and Outline for this Tutorial

I/O model and cache-oblivious analysis.

Write-optimized data structures.

How write-optimized data structures can help file
systems.

Block-replacement algorithms.

Indexing strategies.

Log-structured merge trees.

Bloom filters.

13

Data Structures and Algorithms for Big Data

Module 1: I/O Model and Cache-
Oblivious Analysis

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

I/O models

Story for Module

• If we want to understand the performance of data
structures within databases we need algorithmic models
for modeling I/Os.

• There’s a long history of models for understanding the
memory hierarchy. Many are beautiful. Most have not
found practical use.

• Two approaches are very powerful.
• That’s what we’ll present here so we have a foundation

for the rest of the tutorial.

2

I/O models

How computation works:
• Data is transferred in blocks between RAM and disk.
• The # of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

Modeling I/O Using the Disk Access Model

DiskRAM

B

B

M

3

[Aggarwal+Vitter ’88]

I/O models

Question: How many I/Os to scan an array of
length N?

Example: Scanning an Array

4

B
N

I/O models

Question: How many I/Os to scan an array of
length N?
Answer: O(N/B) I/Os.

Example: Scanning an Array

4

B
N

I/O models

Question: How many I/Os to scan an array of
length N?
Answer: O(N/B) I/Os.

Example: Scanning an Array

4

B
N

 scan touches ≤ N/B+2 blocks

I/O models

Example: Searching in a B-tree

Question: How many I/Os for a point query or
insert into a B-tree with N elements?

O(logBN)

5

I/O models

Example: Searching in a B-tree

Question: How many I/Os for a point query or
insert into a B-tree with N elements?
Answer:

O(logBN)

5

O(logB N)

I/O models

Example: Searching in an Array

Question: How many I/Os to perform a binary
search into an array of size N?

6

N/B blocks

I/O models

Example: Searching in an Array

Question: How many I/Os to perform a binary
search into an array of size N?

Answer:

6

N/B blocks

O

✓
log2

N

B

◆
⇡ O(log2 N)

I/O models

Example: Searching in an Array Versus B-tree

Moral: B-tree searching is a factor of O(log2 B)
faster than binary searching.

7

O(logBN)

O(log2 N)

O(logB N) = O

✓
log2 N

log2 B

◆

I/O models

Example: I/O-Efficient Sorting

Imagine the following sorting problem:
• 1000 MB data
• 10 MB RAM
• 1 MB Disk Blocks

Here’s a sorting algorithm
• Read in 10MB at a time, sort it, and write it out, producing

100 10MB “runs”.
• Merge 10 10MB runs together to make a 100MB run.

Repeat 10x.
• Merge 10 100MB runs together to make a 1000MB run.

8

I/O models

I/O-Efficient Sorting in a Picture

9

1000 MB unsorted data

1000 MB sorted data

100MB sorted runs

10 MB sorted runs:

sort 10MB runs

merge 10MB runs into 100MB runs

merge 100MB runs into 1000MB runs

I/O models

I/O-Efficient Sorting in a Picture

10

1000 MB unsorted data

1000 MB sorted data

100MB sorted runs

10 MB sorted runs:

sort 10MB runs

merge 10MB runs into 100MB runs

merge 100MB runs into 1000MB runs

Why merge in two steps? We can only hold 10
blocks in main memory.

• 1000 MB data; 10 MB RAM;1 MB Disk Blocks

I/O models

Merge Sort in General

Example
• Produce 10MB runs.
• Merge 10 10MB runs for 100MB.
• Merge 10 100MB runs for 1000MB.

becomes in general:
• Produce runs the size of main memory (size=M).
• Construct a merge tree with fanout M/B, with runs at the

leaves.
• Repeatedly: pick a node that hasn’t been merged.

Merge the M/B children together to produce a bigger run.

11

I/O models

Merge Sort Analysis

Question: How many I/Os to sort N elements?
• First run takes N/B I/Os.
• Each level of the merge tree takes N/B I/Os.
• How deep is the merge tree?

12

O

✓
N

B
logM/B

N

B

◆

Cost to scan data # of scans of data

I/O models

Merge Sort Analysis

Question: How many I/Os to sort N elements?
• First run takes N/B I/Os.
• Each level of the merge tree takes N/B I/Os.
• How deep is the merge tree?

12

O

✓
N

B
logM/B

N

B

◆

Cost to scan data # of scans of data

This bound is the best possible.

I/O models

Merge Sort as Divide-and-Conquer

To sort an array of N objects
• If N fits in main memory, then just sort elements.
• Otherwise,

 -- divide the array into M/B pieces;
 -- sort each piece (recursively); and
 -- merge the M/B pieces.

This algorithm has the same I/O complexity.

13

Memory
(size M)

B

B

I/O models

Analysis of divide-and-conquer

Recurrence relation:

Solution:

14

T (N) =
N

B
when N < M

T (N) =
M

B
· T

✓
N

M/B

◆
+

N

B

of pieces
cost to sort each
piece recursively cost to merge

cost to sort something
that fits in memory

O

✓
N

B
logM/B

N

B

◆

Cost to scan data # of scans of data

I/O models

Ignore CPU costs

The Disk Access Machine (DAM) model
• ignores CPU costs and
• assumes that all block accesses have the same cost.

Is that a good performance model?

15

I/O models

The DAM Model is a Simplification

16

Disks are organized into
tracks of different sizes

Fixed-size blocks are fetched.

Tracks get prefetched into the disk
cache, which holds ~100 tracks.

I/O models

The DAM Model is a Simplification

2kB or 4kB is too small for the model.
• B-tree nodes in Berkeley DB & InnoDB have this size.
• Issue: sequential block accesses run 10x faster than

random block accesses, which doesn’t fit the model.

There is no single best block size.
• The best node size for a B-tree depends on the operation

(insert/delete/point query).

17

I/O models

Cache-oblivious analysis:
• Parameters B, M are unknown to the algorithm or coder.
• Performance bounds are parameterized by block size B,

memory size M, data size N.

Goal (as before): Minimize # of block transfer

Cache-Oblivious Analysis

DiskRAM

B=??

B=??

M=??

18

[Frigo, Leiserson, Prokop, Ramachandran ’99]

I/O models

• Cache-oblivious algorithms work for all B and M...
• ... and all levels of a multi-level hierarchy.

It’s better to optimize approximately for all B, M
than to pick the best B and M.

Cache-Oblivious Model

DiskRAM

B=??

B=??

M=??

19

[Frigo, Leiserson, Prokop, Ramachandran ’99]

I/O models

B-trees, k-way Merge Sort Aren’t Cache-Oblivious

Surprisingly, there are cache-oblivious B-trees
and cache-oblivious sorting algorithms.

20

B

M

B

Fan-out is a
function of B.

Fan-in is a function
of M and B.

[Frigo, Leiserson, Prokop, Ramachandran ’99] [Bender, Demaine, Farach-Colton ’00]
[Bender, Duan, Iacono, Wu ’02] [Brodal, Fagerberg, Jacob ’02] [Brodal, Fagerberg, Vinther ’04]

I/O models

B Small Big
4K 17.3ms 22.4ms
16K 13.9ms 22.1ms
32K 11.9ms 17.4ms
64K 12.9ms 17.6ms
128K 13.2ms 16.5ms
256K 18.5ms 14.4ms
512K 16.7ms

Time for 1000 Random Searches

There’s no best block
size.
The optimal block size
for inserts is very
different.

Small Big
CO B-

tree 12.3ms 13.8ms

[Bender, Farach-Colton,
Kuszmaul ’06]

I/O models

Summary

Algorithmic models of the memory hierarchy
explain how DB data structures scale.

• There’s a long history of models of the memory hierarchy.
Many are beautiful. Most haven’t seen practical use.

DAM and cache-oblivious analysis are powerful
• Parameterized by block size B and memory size M.
• In the CO model, B and M are unknown to the coder.

22

Data Structures and Algorithms for Big Data
Module 2: Write-Optimized Data

Structures
Michael A. Bender

Stony Brook & Tokutek
Bradley C. Kuszmaul

MIT & Tokutek

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

Important and universal problem.
Hot topic. 2

Big data problem

oy vey

???
???

???

data indexing query processor

queries + answers

???

365

42

data ingestion

For on-disk data, one sees funny tradeoffs in the speeds
of data ingestion, query speed, and freshness of data.

Important and universal problem.
Hot topic. 2

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

3

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like molasses, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

4

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “Select queries were slow until I added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

5

NSF Workshop on Research Directions in Principles of Parallel Computing

This module
• Write-optimized

structures
significantly mitigate
the insert/query/
freshness tradeoff.

• One can insert
10x-100x faster than
B-trees while
achieving similar
point query
performance.

Fractal-tree®
index

LSM
tree

Bɛ-tree

6

Don’t Thrash: How to Cache Your Hash in Flash

How computation works:
• Data is transferred in blocks between RAM and disk.
• The number of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
7

Don’t Thrash: How to Cache Your Hash in Flash

An algorithmic performance model
B-tree point queries: O(logB N) I/Os.

Binary search in array: O(log N/B)≈O(log N) I/Os.
Slower by a factor of O(log B)

O(logBN)

8

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

9

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

10

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

11

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

12

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

12

One way to Build Write-
Optimized Structures

(Other approaches later)

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

15

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes
An insert/delete costs amortized O((log N)/B) per
insert or delete

• A buffer flush costs O(1) & sends B elements down one
level

• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

16

Difficulty of Key Accesses

Difficulty of Key Accesses

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of point queries

To search:
• examine each buffer along a single root-to-leaf path.
• This costs O(log N).

18

Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N)
• This is the tree height.

Inserts cost O((logBN)/√B)
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

19

Don’t Thrash: How to Cache Your Hash in Flash

Cache-oblivious write-optimized structures

You can even make these data structures
cache-oblivious.

This means that the data structure can be made
platform independent (no knobs), i.e., works
simultaneously for all values of B and M.

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]

Random
accesses are
expensive.

You can be cache- and I/O-efficient with no
knobs or other memory-hierarchy

parameterization.

Don’t Thrash: How to Cache Your Hash in Flash

Cache-oblivious write-optimized structures

You can even make these data structures
cache-oblivious.

This means that the data structure can be made
platform independent (no knobs), i.e., works
simultaneously for all values of B and M.

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]

Random
accesses are
expensive.

You can be cache- and I/O-efficient with no
knobs or other memory-hierarchy

parameterization.

Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk.
• Point queries are necessarily slow: <200 high-entropy reads/

sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

Reading is hard.Writing is easier.

21

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data
ingestion

22

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate
queries. Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data
ingestion

22

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

23

Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

Write-optimized structures can significantly
mitigate the insert/query/freshness tradeoff. 3

23

Implementation Issues

Don’t Thrash: How to Cache Your Hash in Flash

Write optimization. ✔ What’s missing?

Optimal read-write tradeoff: Easy
Full featured: Hard

• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special cases of sequential inserts

and bulk loads
• Compression
• Backup

25

Don’t Thrash: How to Cache Your Hash in Flash

Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.
Example:

• return error when a duplicate key is inserted.
• return # elements removed on a delete.

These “cryptosearches” throttle insertions
down to the performance of B-trees.

26

Don’t Thrash: How to Cache Your Hash in Flash

Cryptosearches in uniqueness checking
Uniqueness checking has a hidden search:

In a B-tree uniqueness checking comes for free
• On insert, you fetch a leaf.
• Checking if key exists is no biggie.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

Don’t Thrash: How to Cache Your Hash in Flash

Cryptosearches in uniqueness checking
Uniqueness checking has a hidden search:

In a write-optimized structure, that crypto-
search can throttle performance

• Insertion messages are injected.
• These eventually get to “bottom” of structure.
• Insertion w/Uniqueness Checking 100x slower.
• Bloom filters, Cascade Filters, etc help.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

28

Don’t Thrash: How to Cache Your Hash in Flash

A simple implementation of pessimistic locking: maintain locks
in leaves

• Insert row t
• Search for row u
• Search for row v and put a cursor
• Increment cursor. Now cursor points to row w.

This scheme is inefficient for write-optimized structures
because there are cryptosearches on writes.

29

 v w t

writer lock

 u

reader lock reader range lock

A locking scheme with cryptosearches

Performance

Don’t Thrash: How to Cache Your Hash in Flash

iiBench Insertion Benchmark

31

Benchmarks vs. InnoDB

Links to the various benchmarks can be found here:

iiBench
Replication
Compression
SysBench
TPCC-like
Fast Loader
Hot Schema

Additional details on the software settings for each test can also be found in the Appendix at the end
of this page.

iiBench — Over 16x Faster Insertions back to top

iiBench is a popular open-source benchmark developed by Tokutek. It measures how fast a storage
engine can insert rows while maintaining secondary indexes. This is often a critical performance
measurement since maintaining the right indexes will dramatically improve query performance. The
schema consists of short rows that model a retail point-of-sale transaction system. The results below
show the insertion of 1 billion rows into a table while maintaining three multicolumn secondary
indexes. At the end of the test, TokuDB’s insertion rate remained at 17,028 inserts/second whereas
InnoDB had dropped to 1,050 inserts/second. That’s a difference of over 16x.

Platform: Ubuntu 10.10; 2x Xeon X5460; 16GB RAM; 8x 146GB 10k SAS in RAID10.

Don’t Thrash: How to Cache Your Hash in Flash

Compression

32

Platform: Ubuntu 11.04; Intel Corei7/920 @ 3.6Ghz; 12GB RAM; 2x 7.2k SATA.

SysBench — Up to 70% Faster back to top

This is a SysBench comparison of InnoDB 1.1.8 and TokuDB v6.0. Prior to the run we started the
database from a cold back-up (the cache is empty at the beginning of the 1 client thread run) and ran
for 1 hour at each number of client threads. The following graph shows a significant performance
improvement at all levels of concurrency. The values shown are the average transactions per second
for the final 15 minutes of the benchmark.

Don’t Thrash: How to Cache Your Hash in Flash

iiBench on SSD

TokuDB on rotating disk beats InnoDB on SSD.

33

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5e+07 1e+08 1.5e+08

In
s
e

rt
io

n
 R

a
te

Cummulative Insertions

RAID10
X25-E
FusionIO

InnoDB

TokuDB

RAID10

X25E

FusionIO

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization Can Help Schema Changes

34

Platform: CentOS 5.7; 2x Xeon L5520; 72GB RAM; 8x 300GB 10k SAS in RAID10.

Hot Schema – Schema Changes in Seconds, not Hours back to top

TokuDB v5.0 introduced Hot Column Addition (HCAD). You can add or delete columns from an
existing table with minimal downtime — just the time for MySQL itself to close and reopen the table.
The total downtime is seconds to minutes. We detailed an experiment that showed this in this blog.
TokuDB v5.0 also introduced Hot Indexing. You can add an index to an existing table with minimal
downtime. The total downtime is seconds to a few minutes, because when the index is finished being
built, MySQL closes and reopens the table. This means that the downtime occurs not when the
command is issued, but later on. Still, it is quite minimal, as we showed in this blog.

Platform: CentOS 5.5; 2x Xeon E5310; 4GB RAM; 4x 1TB 7.2k SATA in RAID0.

Appendix – Software Configuration Details back to top

I. iiBench

Don’t Thrash: How to Cache Your Hash in Flash

MongoDB with Fractal-Tree Index

35

!

Scaling into the Future

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022.
• log high-entropy data sequentially versus index data in

B-tree.

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022.
• log high-entropy data sequentially versus index data in

B-tree.

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

Year Size Bandwidth
Access
Time

Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

Time to fill using
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

* Projected times for fully multi-threaded version

38

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022.
• log high-entropy data sequentially versus index data in

B-tree.

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

Year Size Bandwidth
Access
Time

Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

Time to fill using
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s 200s

2010 3TB 150MB/s 10ms 5.5h 347d 36h

2022 220TB 1.05GB/s 10ms 2.4d 70y 23.3d

* Projected times for fully multi-threaded version

39

Don’t Thrash: How to Cache Your Hash in Flash

Summary of Module
Write-optimization can solve many problems.

• There is a provable point-query insert tradeoff. We can
insert 10x-100x faster without hurting point queries.

• We can avoid much of the funny tradeoff between data
ingestion, freshness, and query speed.

• We can avoid tuning knobs.

write-optimized

Data Structures and Algorithms for Big Data
Module 3: (Case Study)

TokuFS--How to Make a Write-
Optimized File System

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

Don’t Thrash: How to Cache Your Hash in Flash

Story for Module
Algorithms for Big Data apply to all storage
systems, not just databases.

Some big-data users store use a file system.

The problem with Big Data is Microdata...

2

HEC FSIO Grand Challenges

Store 1 trillion files

Create tens of thousands of files
per second

Traverse directory hierarchies
fast (ls -R)

B-trees would require at least
hundreds of disk drives.

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS
TokuFS

• A file-system prototype
• >20K file creates/sec
• very fast ls -R
• HEC grand challenges on a cheap disk

(except 1 trillion files)

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

TokuFS

TokuDB

XFS

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS
TokuFS

• A file-system prototype
• >20K file creates/sec
• very fast ls -R
• HEC grand challenges on a cheap disk

(except 1 trillion files)

• TokuFS offers orders-of-magnitude speedup
on microdata workloads.
‣ Aggregates microwrites while indexing.
‣ So it can be faster than the underlying file system.

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

TokuFS

TokuDB

XFS

Don’t Thrash: How to Cache Your Hash in Flash

Big speedups on microwrites
We ran microdata-intensive benchmarks

• Compared TokuFS to ext4, XFS, Btrfs, ZFS.

• Stressed metadata and file data.

• Used commodity hardware:

‣2 core AMD, 4GB RAM
‣Single 7200 RPM disk
‣Simple, cheap setup. No hardware tricks.

• In all tests, we observed orders of magnitude speed up.

6

Don’t Thrash: How to Cache Your Hash in Flash

Create 2 million 200-byte files in a shallow tree

Faster on small file creation

7

Don’t Thrash: How to Cache Your Hash in Flash

Create 2 million 200-byte files in a shallow tree

Faster on small file creation

Log
scale

7

Don’t Thrash: How to Cache Your Hash in Flash

Faster on metadata scan
Recursively scan directory tree for metadata

• Use the same 2 million files created before.
• Start on a cold cache to measure disk I/O efficiency

8

Don’t Thrash: How to Cache Your Hash in Flash

Faster on big directories
Create one million empty files in a directory

• Create files with random names, then read them back.
• Tests how well a single directory scales.

9

Don’t Thrash: How to Cache Your Hash in Flash

Faster on microwrites in a big file
Randomly write out a file in small, unaligned
pieces

10

TokuFS
Implementation

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS employs two indexes
Metadata index:

• The metadata index maps pathname to file metadata.
‣ /home/esmet ⟹ mode, file size, access times, ...

‣ /home/esmet/tokufs.c ⟹ mode, file size, access times, ...

Data index:
• The data index maps pathname, blocknum to bytes.
‣ /home/esmet/tokufs.c, 0 ⟹ [block of bytes]

‣ /home/esmet/tokufs.c, 1 ⟹ [block of bytes]

• Block size is a compile-time constant: 512.
‣ good performance on small files, moderate on large files

12

Don’t Thrash: How to Cache Your Hash in Flash

Common queries exhibit locality
Metadata index keys: full path as string

• All the children of a directory are contiguous in the
index

• Reading a directory is simple and fast

Data block index keys:【full path, blocknum】
• So all the blocks for a file are contiguous in the index
• Reading a file is simple and fast

13

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS compresses indexes
Reduces overhead from full path keys

• Pathnames are highly “prefix redundant”
• They compress very, very well in practice

Reduces overhead from zero-valued padding
• Uninitialized bytes in a block are set to zero
• Good portions of the metadata struct are set to zero

Compression between 7-15x on real data
• For example, a full MySQL source tree

14

Don’t Thrash: How to Cache Your Hash in Flash

TokuFS is fully functional
TokuFS is a prototype, but fully functional.

• Implements files, directories, metadata, etc.
• Interfaces with applications via shared library, header.

We wrote a FUSE implementation, too.
• FUSE lets you implement filesystems in user space.
• But there’s overhead, so performance isn’t optimal.
• The best way to run is through our POSIX-like file API.

15

Microdata is the Problem

Data Structures and Algorithms for Big Data
Module 4: Paging

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

This Module

2

The algorithmics of
cache-management.

This will help us
understand I/O- and

cache-efficient
algorithms.

Goal: minimize # block transfers.
• Data is transferred in blocks between RAM and disk.
• Performance bounds are parameterized by B, M, N.

When a block is cached, the access cost is 0.
Otherwise it’s 1.

Recall Disk Access Model

DiskRAM

BM

3

[Aggarwal+Vitter ’88]

Disk Access Model (DAM Model):
• Performance bounds are parameterized by B, M, N.

Goal: Minimize # of block transfers.
Beautiful restriction:

• Parameters B, M are unknown to the algorithm or coder.

Recall Cache-Oblivious Analysis

DiskRAM

B=??M=??

4

[Frigo, Leiserson, Prokop, Ramachandran ’99]

CO analysis applies to unknown multilevel hierarchies:
• Cache-oblivious algorithms work for all B and M...
• ... and all levels of a multi-level hierarchy.

Moral:
• It’s better to optimize approximately for all B, M rather than to try

to pick the best B and M.

Recall Cache-Oblivious Analysis

DiskRAM

B=??M=??

5

[Frigo, Leiserson, Prokop, Ramachandran ’99]

Cache-Replacement in Cache-Oblivious Algorithms

Which blocks are currently cached in RAM?
• The system performs its own caching/paging.
• If we knew B and M we could explicitly manage I/O.

(But even then, what should we do?)

6

DiskRAM

B=??M=??

Cache-Replacement in Cache-Oblivious Algorithms

Which blocks are currently cached in RAM?
• The system performs its own caching/paging.
• If we knew B and M we could explicitly manage I/O.

(But even then, what should we do?)

But systems may use different mechanisms, so what
can we actually assume?

6

DiskRAM

B=??M=??

This Module: Cache-Management Strategies

With cache-oblivious analysis, we can assume
a memory system with optimal replacement.

Even though the system manages memory, we
can assume all the advantages of explicit
memory management.

7

DiskRAM

B=??M=??

This Module: Cache-Management Strategies

An LRU-based system with memory M performs cache-management
< 2x worse than the optimal, prescient policy with memory M/2.

Achieving optimal cache-management is hard because predicting
the future is hard.

But LRU with (1+ɛ)M memory is almost as good (or better), than the
optimal strategy with M memory.

8

DiskOPT

M

[Sleator, Tarjan 85]

DiskLRU

(1+ɛ) M
LRU with (1+ɛ) more memory is

nearly as good or better... ... than OPT.

The paging/caching problem

A program is just sequence of block requests:

Cost of request rj

Algorithmic question:

• Which block should be ejected when block rj is
brought into cache?

9

r1, r2, r3, . . .

cost(rj) =

⇢
0 block rj is already cached,

1 block rj is brought into cache.

The paging/caching problem

RAM holds only k=M/B blocks.

Which block should be ejected when block rj is
brought into cache?

10

DiskRAM

M

rj

???

Paging Algorithms

LRU (least recently used)
• Discard block whose most recent access is earliest.

FIFO (first in, first out)
• Discard the block brought in longest ago.

LFU (least frequently used)
• Discard the least popular block.

Random
• Discard a random block.

LFD (longest forward distance)=OPT
• Discard block whose next access is farthest in the future.

11

[Belady 69]

LFD (Longest Forward Distance) [Belady ’69]:
• Discard the block requested farthest in the future.

Cons: Who knows the Future?!

Pros: LFD can be viewed as a point of
comparison with online strategies.

12

Page 5348 shall be
requested tomorrow

at 2:00 pm

Optimal Page Replacement

LFD (Longest Forward Distance) [Belady ’69]:
• Discard the block requested farthest in the future.

Cons: Who knows the Future?!

Pros: LFD can be viewed as a point of
comparison with online strategies.

13

Page 5348 shall be
requested tomorrow

at 2:00 pm

Optimal Page Replacement

LFD (Longest Forward Distance) [Belady ’69]:
• Discard the block requested farthest in the future.

Cons: Who knows the Future?!

Pros: LFD can be viewed as a point of
comparison with online strategies.

14

Page 5348 shall be
requested tomorrow

at 2:00 pm

Optimal Page Replacement

Competitive Analysis

An online algorithm A is k-competitive, if for
every request sequence R:

Idea of competitive analysis:
• The optimal (prescient) algorithm is a yardstick we use

to compare online algorithms.

15

costA(R) k cost
opt

(R)

LRU is no better than k-competitive

Memory holds 3 blocks

The program accesses 4 different blocks

The request stream is

16

M/B = k = 4

M/B = k = 3

rj 2 {1, 2, 3, 4}

1, 2, 3, 4, 1, 2, 3, 4, · · ·

LRU is no better than k-competitive

17

requests

blocks in
memory

There’s a block transfer at every step because
LRU ejects the block that’s requested in the next step.

1 2 3 4 1 2 3 4 1 2

1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3
 4 4 4 4 4 4

LRU is no better than k-competitive

18

requests

blocks in
memory

LFD (longest forward distance) has a
block transfer every k=3 steps.

1 2 3 4 1 2 3 4 1 2

1 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2
 3 3 3 3 3
 4 4 4 4 4 4 4

LRU is k-competitive

In fact, LRU is k=M/B-competitive.
• I.e., LRU has k=M/B times more transfers than OPT.
• A depressing result because k is huge so k . OPT is

nothing to write home about.

LFU and FIFO are also k-competitive.
• This is a depressing result because FIFO is empirically

worse than LRU, and this isn’t captured in the math.

19

 [Sleator, Tarjan 85]

On the other hand, the LRU bad example is fragile

20

requests

blocks in
memory

If k=M/B=4, not 3, then both LRU and OPT do well.
If k=M/B=2, not 3, then neither LRU nor OPT does well.

1 2 3 4 1 2 3 4 1 2

1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2
 3 3 3 3 3 3
 4 4 4 4 4 4

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU
has twice the memory.

In general, LRU is nearly as good as OPT when
LRU has a little more memory than OPT.

21

LRU|cache|=k(R) 2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU
has twice the memory.

In general, LRU is nearly as good as OPT when
LRU has a little more memory than OPT.

21

LRU|cache|=k(R) 2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]

LRU has more memory, but OPT=LFD can see the future.

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU
has twice the memory.

In general, LRU is nearly as good as OPT when
LRU has a little more memory than OPT.

21

LRU|cache|=k(R) 2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]

LRU has more memory, but OPT=LFD can see the future.

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU
has twice the memory.

In general, LRU is nearly as good as OPT when
LRU has a little more memory than OPT.

21

LRU|cache|=k(R) 2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]

(These bounds don’t apply to FIFO, distinguishing LRU from FIFO).

LRU has more memory, but OPT=LFD can see the future.

Divide LRU into phases, each with k faults.

LRU Performance Proof

22

r1, r2, . . . , ri, ri+1, . . . , rj , rj+1, . . . , r`, r`+1, . . .

Divide LRU into phases, each with k faults.

OPT[k] must have ≥ 1 fault in each phase.
• Case analysis proof.
• LRU is k-competitive.

LRU Performance Proof

22

r1, r2, . . . , ri, ri+1, . . . , rj , rj+1, . . . , r`, r`+1, . . .

Divide LRU into phases, each with k faults.

OPT[k] must have ≥ 1 fault in each phase.
• Case analysis proof.
• LRU is k-competitive.

OPT[k/2] must have ≥ k/2 faults in each phase.
• Main idea: each phase must touch k different pages.
• LRU is 2-competitive.

LRU Performance Proof

22

r1, r2, . . . , ri, ri+1, . . . , rj , rj+1, . . . , r`, r`+1, . . .

Under the hood of cache-oblivious analysis

Moral: with cache-oblivious analysis, we can
analyze based on a memory system with optimal,
omniscient replacement.

• Technically, an optimal cache-oblivious algorithm is
asymptotically optimal versus any algorithm on a memory
system that is slightly smaller.

• Empirically, this is just a technicality.

23

DiskOPT

M

DiskLRU

(1+ɛ) M
This is almost as good or better... ... than this.

Ramifications for New Cache-Replacement Policies

Moral: There’s not much performance on the
table for new cache-replacement policies.

• Bad instances for LRU versus LFD are fragile and very
sensitive to k=M/B.

There are still research questions:
• What if blocks have different sizes [Irani 02][Young 02]?
• There’s a write-back cost? (Complexity unknown.)
• LRU may be too costly to implement (clock algorithm).

24

Data Structures and Algorithms for Big Data
Module 5: What to Index

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

Don’t Thrash: How to Cache Your Hash in Flash

Story of this module

This module explores indexing.
Traditionally, (with B-trees), indexing speeds
queries, but cripples insert.
But now we know that maintaining indexes is
cheap. So what should you index?

2

Don’t Thrash: How to Cache Your Hash in Flash

An Indexing Testimonial

This is a graph from a real user, who added
some indexes, and reduced the I/O load on
their server. (They couldn’t maintain the
indexes with B-trees.)

3

I/O
 L

oa
d

Add selective indexes.

What is an Index?

To understand what to index, we need to get on
the same page for what an index is.

Row, Index, and Table

Row
• Key,value pair
• key = a, value = b,c

Index
• Ordering of rows by key

(dictionary)
• Used to make queries fast

Table
• Set of indexes

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

create table foo (a int, b int, c int,
primary key(a));

An index is a dictionary

Dictionary API: maintain a set S subject to
• insert(x): S ← S ∪ {x}
• delete(x): S ← S - {x}
• search(x): is x ∊ S?

• successor(x): return min y > x s.t. y ∊ S

• predecessor(y): return max y < x s.t. y ∊ S

We assume that these operations perform as
well as a B-tree. For example, the successor
operation usually doesn’t require an I/O.

A table is a set of indexes

A table is a set of indexes with operations:
• Add index: add key(f1,f2,...);
• Drop index: drop key(f1,f2,...);
• Add column: adds a field to primary key value.
• Remove column: removes a field and drops all indexes

where field is part of key.
• Change field type
• ...

Subject to index correctness constraints.
We want table operations to be fast too.

Next: how to use indexes to improve queries.

Indexes provide query performance

1. Indexes can reduce the amount of retrieved
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval

work
• Indexing can help get rid of this work

Indexes provide query performance

1. Indexes can reduce the amount of retrieved
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval

work
• Indexing can help get rid of this work

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

An index can select needed rows

count (*) where a<120;

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

100 5 45
101 92 2

An index can select needed rows

100 5 45
101 92 2

2

}

count (*) where a<120;

No good index means slow table scans

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

No good index means slow table scans

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

101 92 2
156 56 45

256 56 2

0123

You can add an index

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b);

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

A selective index speeds up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

A selective index speeds up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

3

}56 156
56 256
92 101

56 156
56 256
92 101

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

sum(c) where b>50;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198 Se

le
ct

in
g

on
 b

: f
as

t

sum(c) where b>50;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

156

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

256

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45
256 56 2

156 56 45

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45
256 56 2

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45
256 56 2

198 202 56

156 56 45
101 92 2

Selective indexes can still be slow

56 156
56 256
92 101
202 198

156 56 45
256 56 2
101 92 2
198 202 56

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

45
2
2
56Po

or
 d

at
a

lo
ca

lit
y

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45
256 56 2

198 202 56

156 56 45
101 92 2

Selective indexes can still be slow

56 156
56 256
92 101
202 198

105

156 56 45
256 56 2
101 92 2
198 202 56

Fe
tc

hi
ng

 in
fo

 fo
r

su
m

m
in

g
c:

sl
ow

Se
le

ct
in

g
on

 b
: f

as
t

sum(c) where b>50;

45
2
2
56Po

or
 d

at
a

lo
ca

lit
y

Indexes provide query performance

1. Indexes can reduce the amount of retrieved
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval

work
• Indexing can help get rid of this work

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b,c);

sum(c) where b>50;

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

56,2 256
56,45 156
92,2 101

202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

56,2 256
56,45 156
92,2 101

202,56 198

105

alter table foo add key(b,c);

sum(c) where b>50;

56,2 256
56,45 156
92,2 101

202,56 198

Indexes provide query performance

1. Indexes can reduce the amount of retrieved
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval

work
• Indexing can help get rid of this work

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

Indexes can avoid post-selection sorts

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

select b, sum(c) group by b;

sum(c) where b>50;

b sum(c)
5 45
6 2
23 252
43 45
56 47
92 2
202 56

Data Structures and Algorithms for Big Data
Module 6: Log Structured Merge Trees

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

1

Log Structured Merge Trees

Log structured merge trees are write-optimized data
structures developed in the 90s.

Over the past 5 years, LSM trees have become
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase,
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosql-database.org lists 122 NoSQL
databases. Many of them are LSM trees.

2

[O'Neil, Cheng,
Gawlick, O'Neil 96]

http://nosql-database.org
http://nosql-database.org

Don’t Thrash: How to Cache Your Hash in Flash

Recall Optimal Search-Insert Tradeoff [Brodal,
Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ=0...1)
O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

3

LSM trees don’t lie on the optimal search-insert
tradeoff curve.
But they’re not far off.
We’ll show how to move them back onto the
optimal curve.

Log Structured Merge Tree

An LSM tree is a cascade of B-trees.
Each tree Tj has a target size |Tj | .
The target sizes are exponentially increasing.
Typically, target size |Tj+1| = 10 |Tj |.

4

[O'Neil, Cheng,
Gawlick, O'Neil 96]

T0 T1 T2 T3 T4

LSM Tree Operations

Point queries:

5

T0 T1 T2 T3 T4

LSM Tree Operations

Point queries:

Range queries:

5

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

LSM Tree Operations

Insertions:
• Always insert element into the smallest B-tree T0.

• When a B-tree Tj fills up, flush into Tj+1 .

6

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert

flush

LSM Tree Operations

Deletes are like inserts:
• Instead of deleting an

element directly, insert
tombstones.

• A tombstone knocks out a
“real” element when it lands
in the same tree.

7

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert tombstone
 messages

Static-to-Dynamic Transformation
An LSM Tree is an example of a “static-to-
dynamic” transformation .

• An LSM tree can be built out of static B-trees.
• When T3 flushes into T4, T4 is rebuilt from scratch.

8

[Bentley, Saxe ’80]

T0 T1 T2 T3 T4

flush

This Module

9

Let’s analyze LSM trees.

BM

I/O models

Recall: Searching in an Array Versus B-tree

Recall the cost of searching in an array versus
a B-tree.

10

O(logBN)

O(logB N) = O

✓
log2 N

log2 B

◆

I/O models

Recall: Searching in an Array Versus B-tree

Recall the cost of searching in an array versus
a B-tree.

10

O(logBN)

O(logB N) = O

✓
log2 N

log2 B

◆
O

✓
log2

N

B

◆
⇡ O(log2 N)

Analysis of point queries
Search cost:

11

T0 T1 T2 T3 T
logN

...

logB N + logB N/2 + logB N/4 + · · ·+ logB B

= O(logN logB N)

=

1

logB
(logN + logN � 1 + logN � 2 + logN � 3 + · · ·+ 1)

Insert Analysis
The cost to flush a tree Tj of size X is O(X/B).

• Flushing and rebuilding a tree is just a linear scan.

The cost per element to flush Tj is O(1/B).
The # times each element is moved is ≤ log N.

The insert cost is O((log N)/B) amortized
memory transfers.

12

Tj has size X.

A flush costs O(1/B) per element.

Tj+1 has size ϴ(X).

Samples from LSM Tradeoff Curve

sizes grow by B
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O

✓
logN

B

◆
sizes double

(ɛ=0)

O

✓
log1+B" N

B1�"

◆
O
�
(logB N)(log1+B" N

�
)

point query

tradeoff
(function of ɛ)

insert

O ((logB N)(logN))

O ((logB N)(logB N))

O ((logB N)(logB N))

13

sizes grow by B1/2

(ɛ=1/2)

How to improve LSM-tree point queries?
Looking in all those trees is expensive, but can
be improved by

• caching,

• Bloom filters, and

• fractional cascading.

14

T0 T1 T2 T3 T4

Caching in LSM trees
When the cache is warm, small trees are
cached.

15

T0 T1 T2 T3 T4

When the cache is warm,
these trees are cached.

Bloom filters in LSM trees
Bloom filters can avoid point queries for
elements that are not in a particular B-tree.
We’ll see how Bloom filters work later.

16

T0 T1 T2 T3 T4

Fractional cascading reduces the cost in each tree

Instead of avoiding searches in trees, we can use a
technique called fractional cascading to reduce the
cost of searching each B-tree to O(1).

17

T0 T1 T2 T3 T4

Idea: We’re looking for a key, and we already
know where it should have been in T3, try to
use that information to search T4.

Searching one tree helps in the next
Looking up c, in Ti we know it’s between b, and e.

18

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

1

Showing only the bottom level of each B-tree.

Forwarding pointers
If we add forwarding pointers to the first tree, we
can jump straight to the node in the second tree, to
find c.

19

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

2

Remove redundant forwarding pointers
We need only one forwarding pointer for each block
in the next tree. Remove the redundant ones.

20

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

3

Ghost pointers
We need a forwarding pointer for every block in the
next tree, even if there are no corresponding
pointers in this tree. Add ghosts.

21

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

ghosts

h m

4

LSM tree + forward + ghost = fast queries
With forward pointers and ghosts, LSM trees require
only one I/O per tree, and point queries cost only
 .

22

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

ghosts

h m

4

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

O(logR N)

LSM tree + forward + ghost = COLA
This data structure no longer uses the internal nodes
of the B-trees, and each of the trees can be
implemented by an array.

23

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

Ti+ 1

Ti

b e v w

m n p qh i j k t u y za c d f

ghosts

h m

5

Text

Data Structures and Algorithms for Big Data
Module 7: Bloom Filters

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

1

Approximate Set Membership Problem
We need a space-efficient in-memory data
structure to represent a set S to which we can
add elements. We want to answer membership
queries approximately:

• If x is in S then we want query(x,S) to return true.
• Otherwise we want query(x,S) to usually return false.

Bloom filters are a simple data structure to
solve this problem.

2

How do approximate queries help?
Recall for LSM trees (without fractional
cascading), we wanted to avoid looking in a
tree if we knew a key wasn’t there.
Bloom filters allow us to usually avoid the
lookup.

3

T0 T1 T2 T3 T4

Bloom filters don’t seem to help with
range queries, however.

Simplified Bloom Filter
Using hashing, but instead of storing elements
we simply use one bit to keep track of whether
an element is in the set.

• Array A[m] bits.
• Uniform hash function h: S --> [0,m).
• To insert s: Set A[h(s)] = 1;
• To check s: Check if A[h(s)]=1.

4

Example using Simplified Bloom Filter
Use an array of length 6. Insert

• insert a, where h(a)=3;
• b, where h(b)=5.

Look up
• a: h(a)=3 Answer is yes. Maybe a is there. (And it is).
• b: h(b)=5 Answer is yes. Maybe b is there. (And it is).
• c: h(c)=2 Answer is no. Definitely c is not there.
• d: h(d)=3 Answer is yes. Maybe d is there. (Nope.)

5

0 0 0 1 0 1

0 1 2 3 4 5

Analysis of Simplified Bloom Filter
If n items are in an array of size m, then the
chances of getting a YES answer on an element
that is not there is .

If you fill the array about 30% full, you get about
a 50% odds of a false positive. Each object
requires about 3 bits.
How do you get the odds to be 1% false
positive?

6

⇡ 1� e�n/m

Smaller False Positive
One way would be to fill the array only 1% full.
Not space efficient.
Another way would be to use 7 arrays, with 7
hash functions. False positive rate becomes
1/128.
Space is 21 bits per object.

7

Bloom filter
Idea: Don’t use 7 separate arrays, use one array
that’s 7 times bigger, and store the 7 hashed
bits.
For a 1% false positive rate, it takes about 10
bits per object.

8

Other Bloom Filters
Counting bloom filters [Fan, Cao, Almeida, Broder 2000]
allow deletions by maintaining a 4-bit counter
instead of a single bit per object.
Buffered Bloom Filters [Canin, Mihaila, Bhattacharhee, and

Ross, 2010] employ hash localization to direct all the
hashes of a single insertion to the same block.
Cascade Filters [Bender, Farach-Colton, Johnson, Kraner, Kuszmaul,

Medjedovic, Montes, Shetty, Spillane, Zadok 2011] support
deletions, exhibit locality for queries, insert
quickly, and are cache-oblivious.

9

Closing Words

10

We want to feel your pain.
We are interested in hearing about other scaling
problems.

Come to talk to us.

bender@cs.stonybrook.edu
bradley@mit.edu

11

mailto:bender@cs.stonybrook.edu
mailto:bender@cs.stonybrook.edu
mailto:bradley@mit.edu
mailto:bradley@mit.edu

Big Data Epigrams
The problem with big data is microdata.
Sometimes the right read optimization is a
write-optimization.
As data becomes bigger, the asymptotics
become more important.
Life is too short for old white-board markers
and bad sushi.

12

