
Asynchronous Shared-Memory
Mutual Exclusion in O(log2log n)

RMRs

Michael A. Bender
Stony Brook & Tokutek, Inc

Seth Gilbert
National University

of Singapore

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

2

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

3

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

3

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

How to share… efficiently

4

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

How to share… efficiently

5

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRsOne at a time!

Don’t Thrash: How to Cache Your Hash in Flash

How to share… efficiently

6

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRsOne at a time!

Don’t Thrash: How to Cache Your Hash in Flash7

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Objective: each process should pass through
the critical section exactly once.

n asynchronous
processes.

n is unknown.

Critical Section

Don’t Thrash: How to Cache Your Hash in Flash8

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

1. Trying: competing
for resource.

3. Remainder: helping to select
a successor, if necessary.

2. Critical section

Don’t Thrash: How to Cache Your Hash in Flash

 Even if the hardware is synchronous, there can be
asynchrony at the application level

 Even if the hardware is synchronous, there can
be asynchrony at the application level

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

An “adversary” determines schedule.
• Full-knowledge: knows all but future coin flips.
• Oblivious: Determines schedule in advance.

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

We don’t want deadlock.

11

Don’t Thrash: How to Cache Your Hash in Flash

Shared Memory

cachecache cache cache

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

12

Cache-coherent shared memory:
• System keeps caches consistent.

Cost model:
• Accessing local cache is effectively free.
• Accessing shared memory is expensive.

Don’t Thrash: How to Cache Your Hash in Flash

Shared Memory

cachecache cache cache

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

13

• Remote memory reference (atomic read/write): O(1).
• Spinning on a local variable is free,

but costs 1 each time the variable changes.
• Compare and swap (CAS): O(1).

[Golab et al.]. Uses atomic reads/writes + spinning.

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Naive Solution: O(n) RMRs per process.
• Protect the critical section with a lock

• Upon arrival: try to acquire (CAS) lock.
• Repeat:
‣Spin on lock until it becomes available.
‣ Try to acquire (CAS) lock.

14

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Better solution: O(log n) RMRs per process
• Maintain a tournament tree of locks.
• Processes compete to walk up tree.

15

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

➔O(log	 n)	 	 	 (determinis*c,	 *ght)
Yang	 and	 Anderson,	 “A	 fast,	 scalable	 mutual	 exclusion	 algorithm.”	 1995

➔Ω(log	 n)	 	 	 (determinis*c,	 *ght)
Fan	 and	 Lynch,	 “An	 Ω(n	 log	 n)	 lower	 bound	 on	 the	 cost	 of	 mutual	 exclusion.”	
2006
AHya,	 Hendler,	 Woelfel,	 “Tight	 RMR	 lower	 bounds	 for	 mutual	 exclusion	 and	
other	 problems.”	 2008

➔O(log	 n	 /	 loglog	 n)	 	 	 (randomized,	 *ght	 for	 adap*ve?)
Hendler	 and	 Woelfel,	 “Randomized	 mutual	 exclusion	 in	 O(log	 n	 /	 loglog	 n)	 RMR.”	
2009

16

Prior	 Results

Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in
O(log2log n) RMRs

Our Results
• New mutual exclusion algorithm with:
‣O(log2log n) RMRs.
‣Randomized, subject to an oblivious adversary.
‣Each process enters the critical section whp.

• Incomparable with previous results because:
‣Weaker adversary: oblivious, not adaptive.
‣ Liveness: guaranteed with high probability (instead of deterministic).

17

Don’t Thrash: How to Cache Your Hash in Flash

Upon arriving:
1.Increment a process counter.
2.Randomly grab a space in a (dense) waiting array.

3.Try to grab mutex lock.
4.Sleep until awakened.

High-level Idea: Mutex ≈ Contention Resolution

18

C=5

Θ(C)

Don’t Thrash: How to Cache Your Hash in Flash

High-level Idea: Mutex ≈ Contention Resolution

When departing:
1.Decrement the process counter.
2.Release the mutex lock.
3.Randomly pick a successor from the waiting array.

19

Θ(C)

C=4

Don’t Thrash: How to Cache Your Hash in Flash

Problems with High-level Idea
1.The array could be sparse if many procs

have “arrived” but not joined the array.
Sparse array ⇒ slow to find successor.

2.Counting isn't cheap.
3.Fastest counters* increment (not decrement).

????

Θ(C)

C=5

* (that we knew about)

Don’t Thrash: How to Cache Your Hash in Flash

(1) Dealing with Sparse Arrays

Upon arriving:
1.Increment process counter.
2.Randomly grab a space in a (dense) waiting array.
3.Increment array-join counter.
4.Try to grab mutex lock and then sleep.

C1=5

C2=3Θ(C1)
array-join
counter

Don’t Thrash: How to Cache Your Hash in Flash

When departing:
1.Decrement both counters.
2.Release the mutex lock.
3.If C1>C2/2 then depart.

Otherwise pick a successor and depart.

(1) Dealing with Sparse Arrays

22
20

C1=4

C2=2
Θ(C)

array-join
counter

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• increment:
‣ Choose cnt with probability 1/2cnt

‣Write cnt to max-register

• read:
‣ cnt = read-max-register
‣ return 2cnt.

• Example: 64 processes
‣With constant probability, at least one process chooses 6
‣With constant probability, no process chooses a value larger than 6
‣ => With constant probability, counter returns 64.
‣ => Constant factor approximation

23

max value = log(n)
Cost: O(loglog n) [AAC’09]

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

24

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• Cost of [AAC’09] counter: O(log n*loglog n)
‣ One leaf per process

• Small tweak: 2log(n) leaves total
‣ On increment, choose a random leaf

25

0"

4"

1"

1"

1"0"

0"

0"

3"

2"

1"1"

1"

0"1"

2log(n)"

loglog(2n)"

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

26

Cost: O(loglog n)

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• If (> log n) increments) then return value is a constant-
factor approximation with high probability.

• What about small values?
‣Use small-counter with max-value log(n).
‣ Increment small-counter and ...
‣Read both small-counter and ...

27

Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

28

Constant-factor approximation, whp

Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement
Replace process counter with two counters.

Problem: Does this still work, since we use approximate counters?

29

process counter arrival counter
(increments)

departure counter
(decrements)

≈ -

-≈?
arrival counter

(approx after log n)
departure counter

(exact)
approx process counter

Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement
Replace process counter with two counters.

Problem: Does this still work, since we use approximate counters?

30

process counter arrival counter
(increments)

departure counter
(decrements)

≈ -

-≈?
arrival counter

(approx after poylog n)
departure counter

(exact)
approx process counter

Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.

31

approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave

Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.

32

approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave

Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.

33

approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave

Don’t Thrash: How to Cache Your Hash in Flash

x x xxx

Computation Proceeds in Epochs

Each epoch uses a new copy of the data structure.
• An O(1)-fraction of procs finish in each epoch.
• The remaining procs are kicked out of the waiting array.

These join the waiting array of next epoch.

Don’t Thrash: How to Cache Your Hash in Flash

x x xxx

Computation Proceeds in Epochs

Each epoch uses a new copy of the data structure.
• An O(1)-fraction of procs finish in each epoch.
• The remaining procs are kicked out of the waiting array.

These join the waiting array of next epoch.

Don’t Thrash: How to Cache Your Hash in Flash

x x xxx

Computation Proceeds in Epochs

The cost to rejoin a waiting array is amortized
against the procs that complete in the epoch.

• An O(1)-fraction of procs finish in each epoch.
• The remaining procs are kicked out of the waiting array.

These join the waiting array of next epoch.

Don’t Thrash: How to Cache Your Hash in Flash

How Does a Process Determine Which Epoch to Join?

An epoch counter.

3723

x x xxx

Don’t Thrash: How to Cache Your Hash in Flash

How Does a Process Determine Which Epoch to Join?

So a process arrives, reads, the
counter, and joins current epoch.

What’s wrong with this approach?

3823

x x xxx

Don’t Thrash: How to Cache Your Hash in Flash

How Does a Process Determine Which Epoch to Join?

So a process arrives, reads, the
counter, and joins current epoch.

What’s wrong with this approach?

3923

x x xxx

Don’t Thrash: How to Cache Your Hash in Flash

How Does a Process Determine Which Epoch to Join?

Problem: what amortizes cost to read counter?
• Θ(n) procs may read the counter in each epoch.
‣ Proc reads epoch counter. Falls asleep.
‣ Discovers the epoch has changed.
‣ Reads the counter again. Falls asleep again.
‣ Etc

x x xxxx x x

Don’t Thrash: How to Cache Your Hash in Flash

Problem: what amortizes cost to read counter?
• Θ(n) procs may read the counter in each epoch.
‣ Proc reads epoch counter. Falls asleep.
‣ Discovers the epoch has changed.
‣ Reads the counter again. Falls asleep again.
‣ Etc

How Does a Process Determine Which Epoch to Join?

x x xxxx x x

Don’t Thrash: How to Cache Your Hash in Flash

Which comes first?
• Read the epoch number.

But this read isn’t amortized.
• Increment some process counter.

But which one? We don’t know the epoch.

Chicken-and-Egg Problem with Epoch Counter

x x xxxx x xxx

Don’t Thrash: How to Cache Your Hash in Flash

Chicken-and-Egg Problem with Epoch Counter

Chickens are fairly recent. E.g., 10s of millions
of years. Eggs have been around for >400
Million years.

43

Don’t Thrash: How to Cache Your Hash in Flash

When a process arrives, its first operation
must be a write.

• Proc must write even without knowing epoch #.
• The write must be visible to other procs in the

epoch.

Chicken-and-Egg Problem with Epoch Counter

x x xxxx x xxx

Don’t Thrash: How to Cache Your Hash in Flash

Chicken/Egg Problem Resolved
A process’s first operation must be a write.
This write must increment the population count.
Idea: there isn’t one arrival counter per phase.
There are only 3. These are reused.

45

For epochs
1,4,7,10,....

For epochs
2,5,8,11,....

For epochs
3,6,9,12,....

Don’t Thrash: How to Cache Your Hash in Flash

Chicken/Egg Problem Resolved
A process’s first operation must be a write.
This write must increment the population count.
Idea: there isn’t one arrival counter per phase.
There are only 3. These are reused.

46

For epochs
1,4,7,10,....

For epochs
2,5,8,11,....

For epochs
3,6,9,12,....

Don’t Thrash: How to Cache Your Hash in Flash

Chicken/Egg Problem Resolved
Which counter should the proc increment?
Answer: choose one randomly.
Recall:

• writing one bit in a random (not uniform) location is enough to record one’s
presence.

• Once this bit is written, the procs can read the epoch counter and proceed as
before.....

47

For epochs
1,4,7,10,....

For epochs
2,5,8,11,....

For epochs
3,6,9,12,....

Don’t Thrash: How to Cache Your Hash in Flash

Chicken/Egg Problem Resolved
Resetting the counter.

• When the phase ends, reset the counter.
• This reset is not atomic (cannot use pointer swings).

48

For epochs
1,4,7,10,....

For epochs
2,5,8,11,....

For epochs
3,6,9,12,....

Don’t Thrash: How to Cache Your Hash in Flash

Conclusion
Trend: a distributed realization that many classic
problems have sublogarithmic solutions.

• O(log n/loglog n) mutex [Hendler and Woelfel 09]
• O(log* n) test ‘n’ set (George’s talk)
• O(loglog n) consensus (Jim’s talk)
• O(polyloglog) mutual exclusion (this talk)

We are collectively discovering what can/can’t
be done in sublogarithmic time.

• Most of these results have oblivious adversaries.
• Yes: approximate counting, leader election.
• No: exact counting, random sampling.

49

Don’t Thrash: How to Cache Your Hash in Flash

Conclusion
Our algorithm is composed of building blocks.

• Counters, approximate counters, max registers, arrays,
CAS, etc.

Alas, most of these aren’t strongly linearizable.
• Even when they are (e.g., CAS), it’s not not relevant to

an oblivious adversaries.

Result:
• Inelegant proofs.
• Lisa, Philipp, Wojciech, George, please hurry up :-)

50

Don’t Thrash: How to Cache Your Hash in Flash

Open Questions
Stronger adversary?
Adaptive to number of participants?

• This paper: running time depends on n.

Monte Carlo vs. Las Vegas?
• This paper: No deadlock with high probability

Lower bounds?
Alternative constructions that are simpler?

51

