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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

Objective: each process should pass through 
the critical section exactly once. 

n asynchronous 
processes. 

n is unknown. 

Critical Section
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

1. Trying: competing 
for resource. 

3. Remainder: helping to select 
a successor, if necessary. 

2. Critical section
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

An “adversary” determines schedule. 
• Full-knowledge: knows all but future coin flips.  
• Oblivious: Determines schedule in advance. 

Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

We don’t want deadlock.

11
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Shared Memory

cachecache cache cache

Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

12

Cache-coherent shared memory:
• System keeps caches consistent.  

Cost model: 
• Accessing local cache is effectively free.
• Accessing shared memory is expensive.
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Shared Memory

cachecache cache cache

Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs
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• Remote memory reference (atomic read/write): O(1). 
• Spinning on a local variable is free, 

but costs 1 each time the variable changes. 
• Compare and swap (CAS): O(1). 

[Golab et al.]. Uses atomic reads/writes + spinning.
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

Naive Solution: O(n) RMRs per process. 
• Protect the critical section with a lock 

• Upon arrival: try to acquire (CAS) lock. 
• Repeat:
‣Spin on lock until it becomes available.
‣ Try to acquire (CAS) lock.

14
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

Better solution: O(log n) RMRs per process
• Maintain a tournament tree of locks. 
• Processes compete to walk up tree.

15



Don’t Thrash: How to Cache Your Hash in Flash

Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

➔O(log	  n)	  	  	  (determinis*c,	  *ght)
Yang	  and	  Anderson,	  “A	  fast,	  scalable	  mutual	  exclusion	  algorithm.”	  1995

➔Ω(log	  n)	  	  	  (determinis*c,	  *ght)
Fan	  and	  Lynch,	  “An	  Ω(n	  log	  n)	  lower	  bound	  on	  the	  cost	  of	  mutual	  exclusion.”	  
2006
AHya,	  Hendler,	  Woelfel,	  “Tight	  RMR	  lower	  bounds	  for	  mutual	  exclusion	  and	  
other	  problems.”	  2008

➔O(log	  n	  /	  loglog	  n)	  	  	  (randomized,	  *ght	  for	  adap*ve?)
Hendler	  and	  Woelfel,	  “Randomized	  mutual	  exclusion	  in	  O(log	  n	  /	  loglog	  n)	  RMR.”	  
2009

16

Prior	  Results
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Asynchronous Shared-Memory Mutual Exclusion in 
O(log2log n) RMRs

Our Results
• New mutual exclusion algorithm with: 
‣O(log2log n) RMRs.
‣Randomized, subject to an oblivious adversary.
‣Each process enters the critical section whp.

• Incomparable with previous results because:
‣Weaker adversary: oblivious, not adaptive.
‣ Liveness: guaranteed with high probability (instead of deterministic).

17
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Upon arriving:
1.Increment a process counter.
2.Randomly grab a space in a (dense) waiting array.

3.Try to grab mutex lock. 
4.Sleep until awakened.  

High-level Idea: Mutex ≈ Contention Resolution 

18

C=5

Θ(C)
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High-level Idea: Mutex ≈ Contention Resolution  

When departing:
1.Decrement the process counter.
2.Release the mutex lock.
3.Randomly pick a successor from the waiting array.

19

Θ(C)

C=4



Don’t Thrash: How to Cache Your Hash in Flash

Problems with High-level Idea 
1.The array could be sparse if many procs 

have “arrived” but not joined the array. 
Sparse array ⇒ slow to find successor.

2.Counting isn't cheap.
3.Fastest counters* increment (not decrement).

????

Θ(C)

C=5

* (that we knew about)
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(1) Dealing with Sparse Arrays

Upon arriving:
1.Increment process counter.
2.Randomly grab a space in a (dense) waiting array.
3.Increment array-join counter. 
4.Try to grab mutex lock and then sleep.

C1=5

C2=3Θ(C1)
array-join 
counter
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When departing:
1.Decrement both counters.
2.Release the mutex lock.
3.If C1>C2/2 then depart. 

Otherwise pick a successor and depart. 

(1) Dealing with Sparse Arrays

22
20

C1=4

C2=2
Θ(C)

array-join 
counter
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(2) Fast Approximate Counters
Approximate counting (standard trick):

• increment:
‣ Choose cnt with probability 1/2cnt

‣Write cnt to max-register 

• read:
‣ cnt = read-max-register
‣ return 2cnt.

• Example: 64 processes
‣With constant probability, at least one process chooses 6
‣With constant probability, no process chooses a value larger than 6
‣ => With constant probability, counter returns 64.
‣ => Constant factor approximation

23

max value = log(n)
Cost: O(loglog n) [AAC’09]
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(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register 

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

24
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(2) Fast Approximate Counters
Approximate counting (standard trick):

• Cost of [AAC’09] counter: O(log n*loglog n)
‣ One leaf per process

• Small tweak: 2log(n) leaves total
‣ On increment, choose a random leaf

25

0"

4"

1"

1"

1"0"

0"

0"

3"

2"

1"1"

1"

0"1"

2log(n)"

loglog(2n)"



Don’t Thrash: How to Cache Your Hash in Flash

(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register 

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

26

Cost: O(loglog n) 
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(2) Fast Approximate Counters
Approximate counting (standard trick):

• If (> log n) increments) then return value is a constant-
factor approximation with high probability.

• What about small values?
‣Use small-counter with max-value log(n).
‣ Increment small-counter and ...
‣Read both small-counter and ...

27
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(2) Fast Approximate Counters
Approximate counting (standard trick):

• State:
‣ Bounded counters C[1], C[2], C[3], ..., C[log n]
‣ max-register: max-value log(n)

• increment:
‣ Choose cnt with probability 1/2cnt

‣ Increment counter C[cnt].
‣ If C[cnt] > log(n), then write cnt to max-register 

• read:
‣ cnt = read-max-register
‣ return log(n)*2cnt.

28

Constant-factor approximation, whp



Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement
Replace process counter with two counters.

Problem: Does this still work, since we use approximate counters? 

29

process counter arrival counter
(increments)

departure counter
(decrements)

≈ -

-≈?
arrival counter

(approx after log n)
departure counter

(exact)
approx process counter
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process counter arrival counter
(increments)

departure counter
(decrements)

≈ -

-≈?
arrival counter

(approx after poylog n)
departure counter

(exact)
approx process counter



Don’t Thrash: How to Cache Your Hash in Flash

(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.

31

approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave
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(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.
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approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave
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(3) Counters that Increment/Decrement

Good approximation when:
• Carrive > 2 Cleave.
• Carrive, Cleave = polylog n.

Poor approximation otherwise.
When the approximation gets bad... reset counter.
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approx arrival counter
(increments)

exact departure counter
(decrements)

-≈?
approx process counter

C Carrive Cleave
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x x xxx

Computation Proceeds in Epochs

Each epoch uses a new copy of the data structure.
• An O(1)-fraction of procs finish in each epoch.
• The remaining procs are kicked out of the waiting array.

These join the waiting array of next epoch. 
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x x xxx

Computation Proceeds in Epochs

The cost to rejoin a waiting array is amortized 
against the procs that complete in the epoch. 

• An O(1)-fraction of procs finish in each epoch.
• The remaining procs are kicked out of the waiting array.

These join the waiting array of next epoch. 
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How Does a Process Determine Which Epoch to Join?

An epoch counter. 

3723

x x xxx
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How Does a Process Determine Which Epoch to Join?

So a process arrives, reads, the 
counter, and joins current epoch. 

What’s wrong with this approach?

3823

x x xxx
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How Does a Process Determine Which Epoch to Join?

So a process arrives, reads, the 
counter, and joins current epoch. 

What’s wrong with this approach?

3923

x x xxx
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How Does a Process Determine Which Epoch to Join?

Problem: what amortizes cost to read counter?
• Θ(n) procs may read the counter in each epoch.
‣ Proc reads epoch counter. Falls asleep. 
‣ Discovers the epoch has changed. 
‣ Reads the counter again. Falls asleep again. 
‣ Etc

x x xxxx x x
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Problem: what amortizes cost to read counter?
• Θ(n) procs may read the counter in each epoch.
‣ Proc reads epoch counter. Falls asleep. 
‣ Discovers the epoch has changed. 
‣ Reads the counter again. Falls asleep again. 
‣ Etc
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x x xxxx x x
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Which comes first?
• Read the epoch number. 

But this read isn’t amortized. 
• Increment some process counter. 

But which one? We don’t know the epoch. 

Chicken-and-Egg Problem with Epoch Counter

x x xxxx x xxx
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Chicken-and-Egg Problem with Epoch Counter

Chickens are fairly recent. E.g., 10s of millions 
of years. Eggs have been around for >400 
Million years. 

43
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When a process arrives, its first operation 
must be a write.

• Proc must write even without knowing epoch #. 
• The write must be visible to other procs in the 

epoch. 

Chicken-and-Egg Problem with Epoch Counter

x x xxxx x xxx
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Chicken/Egg Problem Resolved
A process’s first operation must be a write. 
This write must increment the population count. 
Idea: there isn’t one arrival counter per phase. 
There are only 3. These are reused.

45

For epochs
1,4,7,10,....

For epochs
2,5,8,11,....

For epochs
3,6,9,12,....
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Chicken/Egg Problem Resolved
Which counter should the proc increment? 
Answer: choose one randomly.
Recall: 

• writing one bit in a random (not uniform) location is enough to record one’s 
presence. 

• Once this bit is written, the procs can read the epoch counter and proceed as 
before.....

47
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Chicken/Egg Problem Resolved
Resetting the counter. 

• When the phase ends, reset the counter. 
• This reset is not atomic (cannot use pointer swings).

48
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Conclusion
Trend: a distributed realization that many classic 
problems have sublogarithmic solutions. 

• O(log n/loglog n) mutex [Hendler and Woelfel 09]
• O(log* n) test ‘n’ set (George’s talk)
• O(loglog n) consensus (Jim’s talk)
• O(polyloglog) mutual exclusion (this talk)

We are collectively discovering what can/can’t 
be done in sublogarithmic time. 

• Most of these results have oblivious adversaries.
• Yes: approximate counting, leader election.
• No: exact counting, random sampling. 

49
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Conclusion
Our algorithm is composed of building blocks.

• Counters, approximate counters, max registers, arrays, 
CAS, etc. 

Alas, most of these aren’t strongly linearizable.
• Even when they are (e.g., CAS), it’s not not relevant to 

an oblivious adversaries. 

Result:
• Inelegant proofs. 
• Lisa, Philipp, Wojciech, George, please hurry up :-)

50
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Open Questions
Stronger adversary?
Adaptive to number of participants?

• This paper: running time depends on n.

Monte Carlo vs. Las Vegas?
• This paper: No deadlock with high probability

Lower bounds?
Alternative constructions that are simpler? 
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