
Michael A. Bender

Stony Brook and TokutekR, Inc

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Insertion sort
is O(N logN).

Insertion sort
is O(N logN).

Anybody who has spent time in a library knows
that insertions are cheaper than linear time.

 LibrarySort [Bender,Farach-Colton,Mosteiro 04] :

 O(N logN) sorting for average-case insertions.

How is LibrarySort like a library?

•  Leave gaps on shelves so shelving is fast

•  Putting books randomly on shelves with gaps:
At most O(logN) books need to be moved with
high probability* to make room for a new book.

* Probability >1-1/poly(N), N=#books.

But what if Library buys 10 copies of….

•  The Three Musketeers (Dumas)

•  20 Years After (Dumas)

•  The Count of Monte Cristo, Vol. 1,2,3 (Dumas)

•  The Vicomte of Bragelonne, Vol. 1,2,3 (Dumas)

•  All other books by Dumas

•  Now there’s a bolus of books on in one place.
Can we still maintain tiny shelving costs?

… …

But what if Library buys 10 copies of….

•  The Three Musketeers (Dumas)

•  20 Years After (Dumas)

•  The Count of Monte Cristo, Vol. 1,2,3 (Dumas)

•  The Vicomte of Bragelonne, Vol. 1,2,3 (Dumas)

•  All other books by Dumas

•  Now there’s a bolus of books on in one place.
Can we still maintain tiny shelving costs?

… …

But what if Library buys 10 copies of….

•  The Three Musketeers (Dumas)

•  20 Years After (Dumas)

•  The Count of Monte Cristo, Vol. 1,2,3 (Dumas)

•  The Vicomte of Bragelonne, Vol. 1,2,3 (Dumas)

•  All other books by Dumas

•  Now there’s a bolus of books on in one place.
Can we still maintain tiny shelving costs?

… …

But what if Library buys 10 copies of….

•  The Three Musketeers (Dumas)

•  20 Years After (Dumas)

•  The Count of Monte Cristo, Vol. 1,2,3 (Dumas)

•  The Vicomte of Bragelonne, Vol. 1,2,3 (Dumas)

•  All other books by Dumas

•  Now there’s a bolus of books on in one place.
Can we still maintain tiny shelving costs?

… …

Insertions into Array with Gaps

•  Dynamically maintain elements sorted in
memory/on disk in a -sized array

•  Objective: Minimize amortized (technical
form of ave) # of elts moved per update.

•  Idea: rearrange elements & gaps to accommodate
future insertions

Actually Two Objectives

•  Minimize # elements moved per insert.

•  Minimize # block transfers per insert.

•  Disk Access Model (DAM) of Computer
–  Two levels of memory

–  Two parameters:
 block size B, memory size M.

•  Cache-Oblivious Model (CO) :
–  Similar to DAM, but parameters B and M are

unknown to the algorithm or coder.

–  (Of course, used in proofs.)

=?

=?

•  Disk Access Model (DAM)
–  Two levels of memory

–  Two parameters:
 block size B, memory size M.

•  (Worst-case) Inserts/Deletes:
–  O(log2N) amortized element moves
–  O(1+(log2N)/B) amortized memory transfers

•  Scans of k elements after given element:
–  O(1+k/B) memory transfers

Head insert:
O(log2N)

Random
insertion

Problem: a worst case for PMA is sequential inserts, but this
is a common case for databases. Industrial data structures
(Oracle, TokuDB) are optimized for sequential inserts.

An Adaptive PMA
[Bender, Hu 2007]

•  Same guarantees as PMA:
 O(log2N) element moves per insert/delete
 O(1+(log2N)/B) memory transfers

•  Optimized for common insertion patterns:
 insert-at-head (sequential inserts)
 random inserts
 bulk inserts (repeatedly insert O(N b) elements in

 random position, 0≤b ≤1)

Guarantees:
 O(logN) element moves
 O(1+(logN)/B) mem transfers

Sequential Inserts

Inserts “hammer” on one part of the array.

 Random Inserts

Insertions are after random elements.

 Bulk Inserts

Repeatedly insert O(N b) elements after a
random element (0≤b ≤1).

Sample Applications

Maintain data physically in order on disk

•  Traditional and “cache-oblivious” B-trees
–  Core of all databases and file systems

•  My startup Tokutek

•  Even an online dating website

Sorted Arrays with Gaps are Used in
Several External Memory Dictionaries

[Bender, Demaine, Farach-Colton 00]
[Rahman, Cole, Raman 01]
[Brodal, Fagerberg, Jacob 02]
[Bender, Duan, Iacono, Wu 02,04]
[Bender,Farach-Colton, Kuszmaul, 06]

CO index
into array

Cache-oblivious B-tree Locality-preserving B-tree

[Raman 99]

•  Try to insert in log N –sized interval.

•  If interval already full, rebalance smallest
 enclosing interval within thresholds.

•  Try to insert in leaf interval.

•  If interval full, rebalance smallest enclosing
 interval within thresholds.

Analysis Idea: O(log2N) amortized
element moves per insert

•  O(logN) amort. moves to insert into interval
–  Amortized analysis: Charge rebalance of interval u to

inserts into child interval v

•  Insert in O(logN) intervals for insert in PMA

Analysis Summary

•  Charge rebalance cost of u to inserts into v
–  After rebalance v within threshold of parent u

•  Amortized cost of O(logN) to insert into u

•  But each insert is into O(logN) intervals

•  Total: O(log2N) amortized moves

Analysis Summary

•  Charge rebalance cost of u to inserts into v
–  After rebalance v within threshold of parent u

•  Amortized cost of O(logN) to insert into u

•  But each insert is into O(logN) intervals

•  Total: O(log2N) amortized moves

Idea of Adaptive PMA

⇒ But no working-set property of the “right” predicto
•  Adaptively remember elements that have many

recent inserts nearby.
•  Rebalance unevenly.

Add extra space near these volatile elements.

•  This strategy overcomes a !(log2N) lower bound
[Dietz, Sieferas, Zhang 94] for “smooth” rebalances

Why O(log2N) Can Be Improved in
the Common Case.

To guarantee O(log2N), we only need….

 Rebalance Property: After a rebalance involving v,
v is within parent u ’s density threshold.

Summary: As long as v is within u ’s threshold, it can
be sparser or denser than t ’s density thresholds.

Sequential Insert: O(logN)
Amortized moves

•  Rebalance unevenly, but maintain rebalance
property.

•  If hot elements are in front of array, push
elements to end as far right as allowed.

Only large rebalances have lots of slop.
(Surprising to me that APMA works, since most
rebalances are small.)

How to Remember Hot
Elements Adaptively

•  Maintain an O(logN)-sized predictor, which
keeps track of PMA regions with recent inserts
–  O(logN) counters, each up to O(logN).
–  Remembers up to O(logN) hotspot elements.
–  Tolerates “random noise” in inputs.

⇒ Good for many distributions.
⇒ But no working-set property of the “right” predictor. •  (Generalization of how to find majority element in
an array with a single counter.)

•  Rebalance to even out weight of counters,
while maintaining rebalance property.

O(log log N) Even Rebalances
Trigger a Larger Even Rebalance

O(1) Uneven Rebalances Trigger a
Larger Uneven Rebalance

Summary

•  Insertion sort with gaps

–  LibrarySort [Bender,Farach,Colton,Mosteiro ‘04] (+ Wikipedia entry)

•  Worst-possible inserts
–  PMA [Bender,Demaine,Farach-Colton ’00,’05]

–  Cache-oblivious B-trees and other data structures

•  Adapt to common distributions
–  APMA [Bender,Demaine,Farach-Colton ’00,’05]

•  Implementation of cache-oblivious data structures
–  Tokutek

•  Is it practical to keep data physically
in order in memory/on disk?

Speaking for B-trees…
I believe yes.

