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Abstract

This paper introduces the teasar algorithm. teasar
is a tree-structure extraction algorithm delivering
skeletons that are accurate and robust. Volumet-
ric skeletons are needed for accurate measurements of
length along branching and winding structures. Skele-
tons are also required in automatic virtual navigation,
such as traveling through human organs (e.g., the colon)
to control movement and orientation of the virtual cam-
era. We introduce a concise but general de�nition of a
skeleton, and provide an algorithm that �nds the skele-
ton accurately and rapidly. Our solution is fully auto-
matic, which frees the user from having to engage in
data preprocessing. We present the accurate skeletons
computed on a number of test datasets. The algorithm
is further eÆcient as demonstrated by the running times
which were all below �ve minutes.

1 Motivation

The essential geometry of complicated 3D objects is well
understood and manipulated by reducing the shapes to
their 1D skeletons. For example, automatic virtual nav-
igation through a human colon [7] uses the colon skele-
ton, its centerline, to control the movement and orien-
tation of the virtual camera. Similarly, accurate length
measurements and navigation through other human or-
gans, such as the aorta, require skeleton computations.
In addition, in the �elds of virtual engineering and ar-
chitectural design, the problem of �nding an optimal
path through hollow structures, where this path should
have minimum collision-probability [6], poses the same
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skeleton �nding problem.

In this paper we �nd skeletons in binary discretized
3D occupancy maps of tree-like structures. We use seg-
mented medical CT and MRI scans as our input data.
However, our techniques are general and may be readily
applied to other domains, because our assumptions are
not speci�c to the source of the data.

2 Overview of Skeleton Algorithms

The intuitive notion of a skeleton of a 3D object is the
central tree spanning that object. It is challenging to
construct a formalmathematical de�nition of a skeleton.
There has been extensive work on this topic. We sum-
marize here traditional skeleton algorithms along with
their concepts of what a skeleton should be.

All compared skeleton algorithms assume that the
data is presented as a 3D rectilinear grid called a vol-
ume [8] of volumetric sample points called voxels [8].
Two voxels are 6-connected if at most one of their 3D
coordinates di�ers by 1, 18-connected if at most two co-
ordinates di�er by 1, and 26-connected if all three coor-
dinates are allowed to di�er. A 6/18/26-connected path
through this data is a sequence of 6/18/26-connected
voxels. A discrete skeleton is a tree composed of such
paths.

This paper extends our previous work [1] on �nding
centerlines. In contrast to a skeleton, the centerline is
a central simple path that spans the object. Our new
approach is a substantial improvement that is focussed
on more general tree-structure skeletons.



2.1 DSF and Dijkstra Shortest Path

Many algorithms that restrict the skeleton to be a sim-
ple path use the Dijkstra shortest path graph algo-
rithm [3] as an intermediate step. The Dijkstra algo-
rithm provably �nds the global minimal weight path
in a (directed or undirected) weighted graph with non-
negative weights. The algorithm has two phases. The
�rst phase creates a distance from source field (DSF)
by labeling all graph vertices with the shortest distance
from a single source to those vertices. The second phase
creates the shortest path by tracing back to the source
node. Note that this back-trace is not the same as the
steepest descent in the DSF. In order to apply the Dijk-
stra algorithm as a sub-step of our skeleton algorithm,
the volume data has to be transformed into a graph.
We implicitly map the voxels to graph vertices and the
voxel neighbor relations to graph edges (for more details
see Section 3 and Figure 1a).

The centerline algorithms using steepest descent or
Dijkstra's method di�er in how they assign the weights
corresponding to orthogonal, 2D-diagonal, and 3D-
diagonal vertex neighbor relations. The algorithms em-
ploy the 1-0-0 Manhattan metric [12], the 1-2-3 met-
ric [13], the 3-4-5 Chamfer metric [4], or the 10-14-17
metric [2]. These metrics are sorted by decreasing error
when compared with the Euclidian distance between the
voxel positions. It is most accurate to use a 1-
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Euclidian metric for isotropic volumes and a metric with
axis speci�c corrections for anisotropic volumes. This is
the approach adopted in this paper.

Independent of the choice of the metric, the resulting
shortest path visits vertices of the graph, and is there-
fore guaranteed to reside inside the segmented shape.
Unfortunately, this path tends to cut the corners and
travel along boundary voxels on the inside of sharp
turns. Hence, this path generally does not qualify as
centered.

A method for reducing this cutting of corners is to
replace the Dijkstra back-trace path with a path along
the centers of mass of clusters with similar DSF val-
ues [12]. This technique would work well if the \wave
fronts" formed by cluster of voxels of the same DSF
value were always perpendicular to the skeleton. Unfor-
tunately, near sharp turns the wave fronts tilt and can
be even parallel to the intuitive skeleton.

2.2 Distance from Boundary Field

A slight modi�cation to the �rst phase of Dijkstra's al-
gorithm is to replace the single source voxel with the
set of all boundary voxels. The result is a distance �eld
that stores for each voxel the length of its shortest dis-
crete path to the boundary. Again a variety of distance
metrics for edge weight assignments is possible.

This distance from boundary field (DBF) can be

used to improve the centrality of the skeleton by relo-
cating skeleton points in the plane perpendicular to the
skeleton at the maximal point of the DBF [2]. However,
a single correcting step does not yield an optimal skele-
ton and even iterating this method is not guaranteed to
�nd a global optimum.
A better approach is to relocate skeleton point can-

didates to the maximal DBF voxel within the \wave
front" of same DSF values [13]. However, this discon-
nects the candidate skeleton and stitching it back to-
gether is based on local heuristics.

2.3 Topological Thinning

The technique that is traditionally considered to pro-
vide high quality results is called topological thinning
or \onion peeling" [4, 5, 7, 9, 10]. In this general strat-
egy, one layer of voxels at a time is peeled o� the ob-
ject until just the skeleton remains. Multiple invariants
should be maintained to avoid errors. The branch end
voxels can not be removed and must remain part of the
same connected component, and the topology must be
preserved. No voxel can be removed that would cause
these constraints to be violated.
Unfortunately, onion peeling is computationally ex-

pensive. Additionally, there is no concise mathematical
formulation of what the onion-peeled skeleton should
look like.

3 Formal Skeleton De�nition

In this paper we introduce a concise but general de�ni-
tion of a skeleton. We then present an algorithm that
can accurately and rapidly produce such a skeleton. We
provide a fully automatic solution, which frees the user
from having to participate in the data preprocessing.
Our skeleton algorithm is designed to be provably ro-
bust . It is guaranteed to perform correctly even for a
winding, twisted structures.
We now describe some basic properties a skeleton

should have. Most importantly, the skeleton should be
tree-shaped and composed of simple voxel paths. The
skeleton should never leave the inside of the segmented
shape. More speci�cally, the skeleton should tend to
remain in the \center" of the shape. For winding and
bulging shapes, the concept of center may not be well
de�ned. Intuitively, the skeleton should be situated as
far from the boundary as possible. On the other hand,
it should also avoid too much winding because the skele-
ton should be as short as possible within all other con-
straints. This suggests that our algorithm should �nd
some kind of shortest path through the object, or a
union of shortest paths.
As pointed out in Section 2.1, the Dijkstra short-

est path algorithm requires volume data to be mapped
to graph vertices and graph edges. Figure 1a depicts



a straightforward implicit mapping. Edges represent
the 26-neighbor relations between voxels. As weights,
we use the exact Euclidian distances between the vox-
els that correspond to the graph vertices at both ends
of the edge. However, even when including correc-
tions for anisotropic volumes, an unembellished short-
est path through the object has the defect that when
it turns, it cuts the corners, instead of staying near the
center. Therefore, we enhance the implicit graph by
adding more edges and vertices as depicted in Figure 1b
to incorporate penalties for coming close to the object
boundary and to create a penalized distance from root
field (PDRF). There are now 27 vertices per voxel: one
center vertex and 26 penalty vertices that each share a
penalty edge with the center vertex. The penalty edges
have a weight equal to half the penalty associated with
including that voxel into the path. Neighbor relation
edges now always connect to penalty vertices. Since this
modi�cation results in a graph that is a singly connected
component with positive edge weights, it is guaranteed
that the Dijkstra algorithm �nds the globally minimal
shortest path. The cost along that shortest path is the
piecewise Euclidian distance of the path plus the sum of
the penalties of all penalty edges visited along the path.
We de�ne the skeleton to be the tree of short-

est paths found in the penalized distance �eld.

This de�nition has the following concrete advantages:
It is precise, rapidly computable, and suggests a prov-
ably correct algorithm. It does not require any speci�c
geometry in order to run correctly. Naturally, there is
a range of penalties that may be applied to the penalty
edges, and the range of penalty functions de�nes a fam-
ily of continuously varying skeletons. In Section 4.5 we
suggest a choice of penalty function that yields a tree of

DSF PDEF(a) (b)

penalty edge :neighbor edge :

Figure 1: 2D top view of the implicit mapping of the
voxel grid and neighbor relations to an undirected graph
on which the Dijkstra algorithm can be applied. (a) A
region of a \plain" distance �eld with a part of a short-
est path. (b) The same region, but now with penalties.
Solid neighbor edges have weights equal to the distance
between the voxels. Dashed penalty edges have a weight
equal to half the penalty assigned to the associated voxel.

high-quality, centered branches.

4 TEASAR Algorithm

The teasar algorithmworks for any tree-shaped struc-
ture. Examples of such structures are pipes, tunnels,
blood vessels, lungs and ribs. In fact, the algorithm
is so robust that it even handles arbitrary connected
shapes (that may have holes) but always produces a
tree-shaped skeleton. The algorithm consists of nine
logical steps :

1. Read binary segmented voxels inside the object

2. Crop to volume to just the object

3. DBF: Compute the distance from boundary field

4. DAF: Compute the distance from any voxel field

5. PDRF: Compute the penalized distance from root
voxel field

6. Find the farthest PDRF voxel labeled as inside

7. Extract the shortest path from that voxel to the
root

8. Label all voxels near the path as \used to be inside"

9. Repeat the last three steps until no inside voxels
remain

We now describe these steps in detail.

4.1 Binary Segmented Object

The input for our teasar algorithm is a binary mask,
which labels the voxels belonging to the shape's interior
and wall as \inside". No restrictions are imposed con-
cerning genus, folding, or touching. We merely require
the structure to be a single connected component.

4.2 Crop Volume to Just the Object

One advantage of teasar is that it is computationally
eÆcient. Thus, in each step we strive to minimize the
number of voxels that have to be processed. The �rst
step in reducing the number of relevant voxels is to crop
the volume automatically to enclose just the bounding
box of the voxels labeled as inside. For medical scans,
this typically reduces the volume size by 30%-50%.

4.3 DBF: Compute Distance from Bound-

ary Field

The Euclidian distance between an inside voxel and the
object boundary is recorded at each voxel. This forms
the distance from boundary field (DBF) as shown in
Figure 2. We use a four pass algorithm by Saito and



Toriwaki [11], whose running time is linear in the num-
ber of voxels, to compute the real Euclidian DBF accu-
rately.

4.4 DAF: Compute Distance from Any
Voxel Field

The following three teasar steps are an adaptation of
the Dijkstra shortest path graph algorithm as outlined
in Sections 2.1 and 3. This �rst step computes the
distance from any inside voxel field (DAF) with the
anisotropically correct Euclidian distance as the weights
in the implicit graph of Figure 1a. Independently of the
choice of inside voxel to be used as the starting point,
the farthest voxel is one of the extremal points of the
shape and thus can be used as the root for our skeleton
tree. Figure 3a shows the resulting DAF.

4.5 PDRF: Compute Penalized Distance
from Root Voxel Field

Repeating the search for the farthest voxel from the
root voxel found in the previous step, we discover the
other extremal voxels in the object. However, during
this second search we extend the volume-data-to-graph
mapping to incorporate penalties for coming close to the
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Figure 2: (a) Explicit DBF values (rounded to integers).
(b) Aorta DBF visualized through a rainbow color map.

(a) (b)

Figure 3: (a) Aorta DAF visualized through color rain-
bow mapping showing \wave fronts" of same distances.
(b) Aorta PDRF visualized with the same rainbow map-
ping showing \wave fronts" of same cost progressing
most rapidly in the center of the aorta.

object boundary as illustrated in Section 3 and depicted
in Figure 3b.
The penalty at a voxel v is assigned based on the DBF

value at that voxel v and a global upper bound of all
DBF values (M > max(DBF )). Let the penalty p be

p(v) = 5000 � [1�
DBF (v)

M
]16:

Note that DBF (v)
M

is always in the range of [0,1]. Thus

[1� DBF (v)
M

]16 is in the same range, but with the maxi-
mal values for voxels close to the boundary. The factor
5000 is needed to ensure that the penalty overpowers the
advantages of choosing a straight path. Choosing 5000
is a heuristic, that allows skeleton segments to be at
least 3000 voxels long without exceeding oating point
precision.
For our implementation we did not need to store ex-

plicitly all 26 penalty vertices and edges depicted in
Figure 1b, because the only way to incorporate a cen-
ter vertex in the path is to travel through two of its
penalty vertices, and thus along the two penalty edges
of equal penalty weight. Therefore, we can actually keep
the implicit edges and vertices from the DAF generation
method, but add the penalty directly to the computa-
tion of the accumulated distance d at each voxel v:

d(vk) = d(vk�1) + d(vk; vk�1) + p(vk):

4.6 Find Farthest Voxel

Find the voxel that is labeled as inside and has the
largest PDRF value and assign it to be the starting
voxel.

4.7 Shortest Path

We run the Dijkstra algorithm rooted at the starting
voxel chosen in the previous step. Because of our inclu-
sion of strong penalties into the PDRF, the algorithm
�nds a global minimumpath between the extreme point
voxel and the root voxel that is optimally centered, and
also follows maximal values of the DBF. This path be-
comes a branch of our discrete skeleton tree as de�ned
in Section 3 and depicted in Figure 4a.

4.8 Label Voxels Near the Skeleton

After extraction of the shortest path we \roll an adap-
tive sphere down that path". We say that the sphere
is adaptive because the radius r is computed for each
voxel on the path to be r(v) = DBF (v) � scale+ const.
Speci�cally, we label all voxels that are inside voxels and
within the radius r(v) to become \used to be inside"
voxels. The combination of scale and const determines
the minimum feature size that has its own skeleton tree
branch. For a centerline of a human colon we can choose



scale = 3 and const = 50 which result in the �rst path
already labeling all colon voxels and thus producing only
a single centerline. For objects such as the aorta, the
values of scale = 1:1 and const = 10 result in �nding
all blood vessel branches.

4.9 Repeat Farthest Voxel, Shortest Path
and Labeling

We repeat the last three steps until the labeling proce-
dure converts all inside voxel into an \used to be inside"
voxel. For each new branch, the shortest path extrac-
tion is stopped as soon as a voxel is reached that is
already part of the skeleton, because we never change
the values of the PDRF. The union of all shortest paths
is the desired teasar skeleton.

5 Results

We tested our teasar algorithm on CT scans of a lob-
ster, a human colon, a rib cage, and an aorta dataset.
Table 1 lists the details about the dataset sizes and the
number of processed voxels. In all cases the discrete
skeleton was placed right in the center according to vi-
sual inspection and according to mathematicalmeasures
such as the DBF.
Table 2 lists the timings of all teasar algorithm steps

for each test dataset. All running times were below 5
minutes and just 37 seconds for the lobster. Figure 5 de-
picts the �nal skeletons computed with their associated
volumes.

6 Conclusions

We introduced teasar | our tree-structure extraction
algorithm delivering skeletons that are accurate and ro-
bust. Teasar is based on a new, robust de�nition of a
skeleton. It computes the skeletons automatically and
regardless of the geometry of the connected object. The
skeleton branches are centrally located within their asso-
ciated object regions. We explained our teasar imple-

(a) (b) (c)

Figure 4: (a) Aorta with shortest path after one itera-
tion. (b) Aorta cut open to show regions labeled during
multiple iterations. (c) Complete aorta skeleton.

Table 1: Dataset sizes and the reduction of voxels that
have to be processed during the execution of the teasar
algorithm.

dataset Lobster Colon Aorta Ribs

original size X 256 514 256 512
original size Y 254 514 256 512
original size Z 57 363 211 247

cropped size X 242 416 193 351
cropped size Y 241 398 162 248
cropped size Z 37 363 211 247

all data voxels 96M 96M 13M 65M
cropped voxels 59M 59M 6.7M 22M
inside voxels 141K 3.2M 230K 1M

skeleton voxels 1639 1644 850 5251

Table 2: Time spent in each of the teasar algorithm
steps. All tests were done on an SGI Challenge running
IRIX 6.5 using a single R10000 CPU running at 194
MHz.

dataset Lobster Colon Aorta Ribs

cropping 1s 16s 15s 7s
DBF 3s 106s 13s 41s
DAF 3s 9s 4s 16s

PDRF 13s 74s 36s 118s
skeleton 17s 3s 9s 96s

total 37s 208s 77s 278s

mentation in detail and reported results that not only
empirically verify the correctness of the skeleton, but
also showed the superior speed of the teasar algorithm,
that is, less than 5 minutes for all our test datasets.
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