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Abstract

We study the problem of sorting binary sequences and permutations by length-weighted reversals.

We consider a wide class of cost functions, namely f(`) = `α for all α ≥ 0, where ` is the length of the

reversed subsequence. We present tight or nearly tight upper and lower bounds on the worst-case cost

of sorting by reversals. Then we develop algorithms to approximate the optimal cost to sort a given

input. Furthermore, we give polynomial-time algorithms to determine the optimal reversal sequence for

a restricted but interesting class of sequences and cost functions. Our results have direct application in

computational biology to the field of comparative genomics.

1 Introduction

In the problem of sorting by reversals (SBR) we are given as input a permutation to sort. Our only allowed

operation is a reversal of a segment of contiguous elements by which we inverse their sequential order. The

problem of sorting by reversals arises in comparative genomics, where the elements of the permutation are

genes and reversal (or inversion) mutations occur frequently in the evolution of chromosomes. The minimum-

cost reversal distance1 is a useful measure for reconstructing the evolutionary history of an organism because

the most parsimonious series2 of reversals transforming one sequence to another corresponds to a possible

evolutionary path between the two organisms. This analysis has been applied, for example, to drosophila [13,

27], plants [3, 21], viruses [14], and mammals [12, 23].

Traditionally [5, 19], such analysis assumes that each reversal has unit cost independent of the length

of the fragment reversed. However, the mechanics of genome rearrangements suggest that the frequencies

of reversals can be dependent on fragment length [25]. Preliminary results on genome rearrangements that

assign a length-dependent cost to reversals appear in [9], and these results indicate that length indeed plays

an important role in biasing certain rearrangement patterns.
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1The problems of sorting a given permutation by reversals and finding the reversal distance between two given permutations

are equivalent: simply relabel the elements of the target permutation to be the identity and use the same relabeling for the

source permutation.
2i.e., the series requiring least evolutionary efforts.
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In this paper we consider the problem of sorting by reversals, where the cost of a reversal is a function

f(`) of its length `. Our objective is to minimize the total cost of the reversals performed during the sort.

We analyze two classes of problems:

• Worst-Case Sorting — We give upper and lower bounds on the cost to sort permutations of length n.

• Input-Specific Sorting — We give exact and approximation algorithms to determine the minimum cost

to sort a given permutation.

Pinter and Skiena [24] were the first to study worst-case and input-specific sorting by length-weighted

costs. Specifically, they consider costs given by linear weight function f(`) = `. They give an O(n lg2 n)

bound for sorting and an O(lg2 n)-approximation algorithm for sorting a given permutation.

1.1 Results

In this paper we consider the problem of sorting by reversals, generalizing to a wide class of cost functions,

namely f(`) = `α for α ≥ 0. In addition to permutations, we also consider 0/1 sequences as inputs.

Permutations are relevant for genome-rearrangement studies, where orthologous3 genes in a pair of organisms

are represented as a permutation. Algorithms for 0/1 sequences, intrinsically interesting on their own, are

used as subroutines in the algorithms for input permutations.

The family of cost functions is general enough to include unit costs (α = 0), additive costs, where

f(x) + f(y) = f(x + y) (α = 1), subadditive costs, where f(x) + f(y) > f(x + y) (α < 1), and superadditive

costs, where f(x) + f(y) < f(x + y) (α > 1).

We present the following results, which are summarized in Table 1:

• We prove an Ω(n lg n) lower bound on sorting for additive cost functions. This is the first non-trivial

lower bound on sorting by length-weighted reversals, and it holds and is tight even for 0/1 sequences.

• More generally, we prove tight or near-tight bounds on sorting for all α ≥ 0, as summarized in Table 1.

Specifically, we give lower bounds for all α ≥ 0 and show that one algorithm matches or nearly matches

these bounds.

• We give approximation algorithms for all α ≥ 0, also summarized in Table 1. In contrast to the sorting

bounds, different algorithms are needed to achieve approximation guarantees for each of the additive,

subadditive, and superadditive cases.

• For linear cost functions, we give a polynomial-time algorithm for optimally sorting a 0/1 sequence.

We use this result to give an O(lg n) approximation algorithm for sorting permutations, improving the

O(lg2 n) result from [24].

1.2 Previous Work

The problem of computing the reversal distance between two permutations and its applications to com-

parative genomics have received extensive attention over the last decade. There are two variants of the

problem: the unsigned case, in which we disregard the orientation of the elements throughout the reversal

process, and the signed case, where the directions of the elements do matter. Both measures have merit in

terms of the underlying biology. Moreover, the existence of circular genomes (e.g., prokaryotic) as well as

non-circular genomes (e.g., mammalian) motivates developing algorithms for handling both cases. In this

paper we focus on the non-circular unsigned case. Extensions of these results to other configurations were

3Orthologous genes evolved from the same ancestral gene, and so induce a one-to-one mapping.
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α Value Lower Bounds Upper Bounds Approximation Ratio

Permutations 0/1’s Permutations 0/1’s

0 ≤ α < 1 Ω(n) O(n lg n) Θ(n) O(1)

α = 1 Ω(n lgn) O(n lg2 n) Θ(n lg n) O(lgn) 1

1 < α < 2 Ω(nα) Θ(nα) Θ(nα) O(lgn) O(1)

α ≥ 2 Ω(n2) Θ(n2) Θ(n2) 2 1

Table 1: Sorting Bounds (Lower and Upper) and Approximation Ratios for 0/1 sequences and integer permutations.

considered in [28]. Note, however, that the low-cost of single-element reversals means that our solutions

apply to the signed case when α ≥ 1 — see [28].

For the case of unit-cost (α = 0), unsigned reversals, the problem of computing the reversal distance has

been shown to be NP-complete by Caprara [10]; our problem, in which the cost depends on the length of the

subsequence being reversed, inherits hardness for α = 0 from this result. Kececloglu and Sankoff [19] give

approximation algorithms on reversal distance that guarantee a ratio at most 2 times optimal, which Bafna

and Pevzner [5] improved to a factor of 7/4 approximation; recently, Berman, Hannenhalli, and Karpinski [8]

reduced this factor even further, to 1.375. Kececloglu and Sankoff [20] report on the success of heuristics

and search in determining the reversal distance for chromosomes.

In a celebrated result Hannenhalli and Pevzner [16] gave a polynomial-time algorithm for the case of

unit-cost, signed reversals. An elementary exposition of the Hannenhalli-Pevzner theory appears in [7].

Recently, Siepel [26] gave an efficient algorithm for constructing/enumerating all minimum-length reversal

sequences. The huge number of such sequences implies that other criteria must be employed to have hope

of reconstructing the true evolutionary history. Ajana et al. [1] developed algorithms for users of a (signed)

reversal algorithm to choose one or several possible solutions based on different criteria, including additive

reversal costs; this flexibility was shown to be useful for testing certain reversal hypotheses.

Minimum-cost unsigned reversal sorting has also been studied from the other end of the cost spectrum,

under models where the cost increases so dramatically with length that only length-2 reversals can be

afforded. Hence, each reversal simply transposes adjacent elements. Bubble-sort and insertion sort [22] both

sort any permutation π using exactly one transposition for each inversion in π, thus minimizing the number

of reversals.

Outline. The rest of the paper is organized as follows. In Section 2 we define the notation used throughout

the paper. Section 3 presents upper and lower bounds for the problem of sorting any permutation and any

0/1 sequence. In Section 4 we give polynomial-time algorithms to optimally sort a given 0/1 sequence when

α = 1 and in Section 5 we prove their correctness. Section 6 provides algorithms for sorting a specific

permutation or a specific 0/1 sequence for 0 ≤ α ≤ 2. In Section 6.4 we handle the case of 2 < α. We

conclude in Section 7 with a summary and open problems.

2 Notation

We refer to the permutation version of sorting by reversals as PSBR (Permutation Sorting By Reversals),

and we refer to sorting 0/1 sequences by reversals as BSBR (Binary Sorting By Reversals). In the following

we present notation and terminology used in the discussion of these two versions.
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2.1 Notation for 0/1 Sequences

Consider a sequence T = t1, . . . , tn, for ti ∈ {0, 1}. Refer to T as a 0/1 bit sequence. Denote the length of

T by |T | (i.e |T | = n). The sequence T is called sorted if it consists of a single consecutive 0’s subsequence

followed by a single consecutive 1’s subsequence.

A reversal ρ = ρ (i, j), for i < j, transforms a bit sequence

T = t1, t2, . . . , ti−1, ti, ti+1, . . . , tj−1, tj, tj+1, . . . , tn

to a bit sequence

T · ρ (i, j) = t1, t2, . . . , ti−1, tj, tj−1, . . . , ti+1, ti, tj+1, . . . , tn.

A reversal series ρ1, . . . , ρm is called a sorting reversal series of a 0/1 bit sequence T , if T · ρ1 · · ·ρm is a

sorted 0/1 bit sequence.

Given an arbitrary cost function f : R
+ → R

+, the cost of a reversal ρ (i, j) equals the function applied to

the reversal’s length. We overload the notation and denote the cost of a reversal ρ by f (ρ) = f (j − i + 1).

The cost of a reversal series % = ρ1, . . . , ρm equals the sum of the costs of all reversals, that is f(%) =

f (ρ1, . . . , ρm) =
∑m

i=1 f (ρi). Our goal is to find a sorting reversal series having the minimum cost, i.e., a

minimum sorting series. We denote the minimum cost by opt(·).

Given a bit sequence T , a reversal ρ affecting it, and a subsequence T1 of T , we denote the restriction of

ρ to T1 by ρ|T1. The cost of the restriction is denoted by f(ρ|T1).

Given a bit sequence T = t1, . . . , tn, refer to a maximal contiguous subsequence of only 1’s or only 0’s as

a block. The weight of a block is the number of bits in it. To standardize the representation of sequences, we

assume that the leading block in a sequence is a 0-block and that the closing block in a sequence is a 1-block.

Both the leading and the closing blocks might have a 0-weight. Thus, a bit sequence T with g + 1 blocks of

0’s and g + 1 blocks of 1’s can be represented as a sequence of blocks b = b(T ) = 0w01w10w2 · · ·0w2g1w2g+1

(the block sequence) or as a sequence of weights w = w(T ) = w0, . . . , w2g+1 (the weighted sequence); see

Figure 1.

T = 000 11 0000000 111111 0000 11111

b = 03 12 07 16 04 15

w = 3 2 7 6 4 5

Figure 1: An example of a bit sequence and the corresponding block and weighted representations.

Each weighted sequence w = w0, . . . , w2g+1 is naturally associated with a bit sequence, which we denote

by T = T (w). The weighted sequence w is called sorted if its associated bit sequence T (w) is sorted, which

only happens if g = 0.

Let tp, . . . , tq be a subsequence of T and let ui, wi+1, . . . , wj−1, uj, for 0 < ui ≤ wi and 0 < uj ≤ wj,

be the subsequence of weights corresponding to it. The effect of a reversal ρ affecting the subsequence of

weights on w is defined by mimicking it on the bit sequence, i.e., w ·ρ = w(T (w) ·ρ′), where ρ′ = ρ|tp, . . . , tq.

If ui = wi and uj = wj , we call wi, . . . , wj a segment of w. A reversal affecting the segment wi, . . . , wj is

denoted by ρ(i, j); see Figure 2.

For i, j ∈ N, write i ≡ j if i ≡ j ( mod 2). Note that if i ≡ 0, then wi corresponds to a 0-block and vice

versa.

2.2 Notation for Permutations

Given a permutation π, denote its median by s. If all elements smaller (greater) than the median are

located to its left (right), we call the permutation separated. Given a permutation π that is not separated,

we refer to a reversal series % that separates π, i.e., π · % is separated, as a separating series.
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b = 03 12 [07 16] 04 15

b · ρ(2, 3) = 03 18 011 15

(a)

w = 3 2 [7 6] 4 5

w · ρ(2, 3) = 3 8 11 5

(b)

Figure 2: A reversal affecting the 0/1 sequence from Figure 1. The reversal is indicated by brackets [ , ]. (a)

The reversal’s effect on the block representation of the sequence. (b) The reversal’s effect on the weighted

representation of the sequence.

3 Sorting Bounds

Pinter and Skiena [24] proved that O(n lgn) is an upper bound for BSBR when the cost function is linear.

Based on this result they showed that O(n lg2 n) is an upper bound for PSBR when the cost function is

linear.

In this section, we generalize their results to a wide range of cost functions, namely, f(`) = `α, for α ≥ 0.

In addition, we show that the upper bounds are tight or nearly tight for the whole range. Formally, let

CT (n) = max{opt(T ) : |T | = n} and Cπ(n) = max{opt(π) : |π| = n} denote the worst-case cost for sorting a

0/1 sequence T and a permutation π of length n. We give lower and upper bounds for the functions CT (n)

and Cπ(n).

3.1 Upper Bounds for 0 ≤ α < 2

We first give a divide-and-conquer algorithm for the BSBR problem. We then use this algorithm as a

subroutine in an algorithm for the PSBR problem. We analyze both algorithms for all 0 ≤ α < 2.

To sort a 0/1 sequence, recursively sort its left and right halves. This step results in a sequence with

block representation 0k1i0j1l. To complete the sort, perform one more reversal of the subsequence 1i0j. See

Algorithm 1 (ZerOneSort DivideConquer) for the pseudocode.

To sort a permutation π, first separate it. Then recursively separate the left (elements smaller than the

median) and the right (rest of elements) halves of the permutation. To perform the separation, let s be the

median of π, and map π = π1 · · · πn to a 0/1 sequence T = t1, . . . , tn, such that for all i = 1 . . .n,

ti =

{

0, if πi < s,

1, otherwise .

See Algorithm 2 (permTo01) for the pseudocode. Let % be the sorting series resulting from applying Algo-

rithm 1 to T . To separate π, perform % on it. See Algorithm 3 (PermutationSort DivideConquer) for the

pseudocode.

Algorithm 1 ZerOneSort DivideConquer (T )

1: if T is sorted then

2: return 0

3: else

4: c1 ← ZerOneSort DivideConquer (t1, . . . , tbn/2c)

5: c2 ← ZerOneSort DivideConquer (tbn/2c+1, . . . , tn)

6: i← #1(t1, . . . , tbn/2c)

7: j ← #0(tbn/2c+1, . . . , tn)

8: return c1 + c2 + f(i + j)

9: end if
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Theorem 1. The following upper bounds hold for CT (n) and Cπ(n) under the cost functions f(`) = `α, for

0 ≤ α < 2.

CT (n) =







O(n), 0 ≤ α < 1,

O(n lgn), α = 1,

O(nα), 1 < α < 2,

(1)

and

Cπ(n) =







O(n lgn), 0 ≤ α < 1,

O(n lg2 n), α = 1,

O(nα), 1 < α < 2.

(2)

Proof. The algorithms ZerOneSort DivideConquer and PermutationSort DivideConquer imply the fol-

lowing recurrences for CT (n) and for Cπ(n):

CT (n) ≤ 2CT (n/2) + O(nα)

Cπ(n) ≤ 2Cπ(n/2) + CT (n) .

Solving these recurrences, we achieve the stated bounds.

Algorithm 2 permTo01(π)

1: s← median of π

2: for i = 1 to |π| do

3: if πi < s then

4: Ti ← 0

5: else

6: Ti ← 1

7: end if

8: end for

9: return T

Algorithm 3 PermutationSort DivideConquer (π)

1: T ← permTo01(π)

2: c← ZerOneSort DivideConquer (T ), with separating series %

3: π← π · %

4: p1 ← PermutationSort DivideConquer (π1, . . . , πbn/2c)

5: p2 ← PermutationSort DivideConquer (πbn/2c+1, . . . , πn)

6: return c + p1 + p2

3.2 Lower Bounds for 0 ≤ α < 2

We show that the upper bounds for BSBR are tight. To do so, we introduce potential functions and prove

that they are lower bounds on the sorting cost (we use different potential functions for each α-subrange).

Then we find hard BSBR instances to establish the lower bounds. Since CT (n) ≤ Cπ(n), the lower bounds

of BSBR hold as well for PSBR.
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Lower Bound for α = 1

We show that the cost to sort n elements by reversals with a linear cost function (α = 1) is Ω(n lgn),

even when all elements are zeros and ones.

Theorem 2. For linear cost function f(`) = ` both CT (n) and Cπ(n) are in Ω(n lg n).

We use the potential-function argument to prove the lower bound on the cost to sort the sequence

T = 0101 · · ·01 by reversals.

Before the sorting begins, we match the ith 0 with the ith 1. Throughout the algorithm we keep this

matching, and we let di be the current distance between the ith 0 and ith 1 after some reversals. The

potential function is

P (T ) =

n/2
∑

i=1

lg di.

Lemma 3. The initial value of the potential function for the sequence T = 0101 · · ·01 is 0, and the final

value is Ω(n lgn).

Proof. Initially di = 1 for all i, which implies that the potential function is 0.

To give the lower bound on the final value, consider the n/4 0’s at the left end of the sorted sequence

0n/21n/2. The distance di between each of these 0’s and its partner 1’s is at least n/4. So the value of the

potential function P (T ) for the final sequence 0n/21n/2 is at least (n/4) lg(n/4), establishing the bound.

We show how a reversal affects the value of di in the potential function by considering the ith 0/1-pair.

Observation 4. The distance di only changes when one element of the ith 0/1-pair is inside the reversal

and the other is outside it.

. .. . .. . .. . .. .. . .. . .. . . . . . .. . .. . . . . . .0 0 0 11 1 1 1 1

. . . . . . . . . . . . . .. . . . . .. .. .. . ... . . . .. . .0 1 1001111

reversald
′

less than ` + di

di

reversald
′

Figure 3: The sequence before and after one reversal.

Lemma 5. A reversal of length ` increases the potential function P (T ) by at most 4`.

Proof. Suppose that for a reversal of length `, one element of the ith 0/1-pair is inside the reversal and the

other one is outside it, so that di is affected by the reversal. The new distance between those two elements

can increase to at most di + ` because each element in the reversal is moved at most the distance `.

Without loss of generality, assume that the 0 is outside the reversed sequence and the 1 is inside it.

Suppose that the distance from the 0 to the beginning of the reversed sequence is d′; see Figure 3. Then

the contribution of the distance of this pair di to the potential function is less than lg(` + di) − lg di =

7



lg(1 + `/di) ≤ lg(1 + `/d′). The distance d′ must be a natural number, and the same value of d′ occurs at

most twice in one reversal, once on the left and once on the right side of the reversed sequence.

By Observation 4, there are at most ` such pairs increasing the value of the potential function. Therefore,

the value increases by at most

2

`/2
∑

j=1

lg(1 + `/j) ≤ 2

`/2
∑

j=1

(1 + lg(`/j))

≤ ` + 2
∑̀

j=1

lg(`/j)

= ` + 2 lg(``/`!).

By Stirling’s formula, ``/`! ≤ e` for ` ≥ 1. Therefore lg(``/`!) ≤ ` lg e ≤ 3
2`. So the value of the potential

function increases by at most ` + 3` = 4`.

By combining Lemmas 3 and 5, we establish Theorem 2.

Lower Bound for 1 < α < 2

We now give a lower bound of Ω(nα) on BSBR and PSBR for 1 < α < 2.

Theorem 6. For cost functions f(`) = `α, where 1 < α < 2, both CT (n) and Cπ(n) are in Ω(nα).

The proof follows a potential-function argument and is similar to the proof of Theorem 2. Specifically,

we show that sorting the sequence 0101 · · ·01 of length n requires cost Ω(nα).

Before the sorting begins, we match the ith 0 with the ith 1. Throughout the algorithm we keep this

matching and we let di be the current distance between the ith 0 and ith 1 after some reversals. We define

the potential function to be

P (T ) =

n/2
∑

i=1

d α−1
i .

Lemma 7. The initial value of the potential function is Θ(n). The final value of the potential function is

Ω(nα).

Proof. Initially di = 1, which implies that the potential function is Θ(n). To bound the final value, consider

the first half of the 0’s at the left side of the final sequence. The distance between each of these 0’s and its

partner 1’s is at least n/4. So the value of the potential function P (T ) for the final sequence 0n/21n/2 is at

least (n/4)(n/4)α−1, thus establishing the bound.

We now show how a reversal affects the value of the potential function.

Lemma 8. A reversal of length ` increases the potential function by at most 2`α.

Proof. Suppose that for a reversal of length `, one element of the ith 0/1-pair is inside the reversal and the

other one is outside, so that di is affected by the reversal. The new distance between those two elements can

increase to at most di + ` because each element in the reversal is moved at most the distance `.

Without loss of generality, assume that the 0 is outside the reversed sequence and the 1 is inside it.

Suppose that the distance from the 0 to the beginning of the reversed sequence is d′; see Figure 3. Then the

contribution of the distance of this pair di to the potential function is at most (` + d′)α−1 − (d′)α−1.

Note that the function xα−2 is a decreasing function if α < 2. By the Intermediate-Value Theorem, we

obtain

(` + d′)α−1 − (d′)α−1 = (α− 1)`(d′ + ξ`)α−2 ≤ (α− 1)` (d′)α−2,
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where ξ ∈ [0, 1].

The distance d′ must be a natural number, and the same value of d′ can occur at most twice, once for

the left side and once for the right side of the reversed sequence. By Observation 4, there are at most ` such

pairs increasing the value of the potential function.

Therefore the value of the potential function increases by at most 2
`/2∑

j=1
(α− 1)` jα−2. We bound the sum

by an integral and evaluate the integral:

2

`/2
∑

j=1

(α− 1)` jα−2 ≤ 2`

∫ `/2+1

x=0

dx (α− 1)xα−2

= 2`(`/2 + 1)α−1 ≤ 2` · `α−1 = 2 `α,

that is, the value of potential function increases by at most 2`α.

We obtain the following corollary directly by noting that the cost to reverse a sequence of length ` is `α.

Corollary 9. If a given reversal increases the potential function by ∆, then the cost of the reversal is at

least ∆/2.

Proof. Assume that the reversal’s length is `. Then its cost is f(`) = `α, and from Lemma 8, this reversal

increases the potential function by at most 2`α.

Theorem 6 follows directly from Corollary 9.

Lower Bound for 0 ≤ α < 1

The lower bound is Ω(n) on both BSBR and PSBR when 0 ≤ α < 1. Our results are tight for 0/1

sequences, but there is a logarithmic gap for permutations:

Theorem 10. For cost functions f(`) = `α, where 0 ≤ α < 1, both CT (n) and Cπ(n) are in Ω(n).

Proof. As before, we provide a lower bound on the cost to sort the sequence T = t1, t2, · · · , tn = 0101 · · ·01

of length n.

We use a potential-function argument. We define the potential function

P (T ) =

n−1∑

i =1

| ti − ti+1 |.

The initial value of the potential function P is n − 1, and after sorting, the its final value is 1. Moreover,

each reversal can change its value by at most 2. Thus, we need at least n/2 − 1 reversals, each of length

greater or equal to 2, to sort T . Therefore the sorting cost is at least Ω(2αn) = Ω(n).

3.3 Lower and Upper Bounds for α ≥ 2

Sorting by reversals is straightforward when α ≥ 2 because the problem can be solved asymptotically

optimally using bubble sort; it is never worth reversing sequences of length greater than 2. Thus, we have

the following theorem for α ≥ 2:

Theorem 11. For cost functions f(`) = `α, where α ≥ 2, CT (n) = Cπ(n) = Θ(n2).
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Proof. Bubble-Sort immediately gives an O(n2) upper bound on the sorting cost. The Ω(n2) lower bound

follows a potential-function argument. Consider a 0/1 sequence T = t1, t2, . . . , tn. For any two elements ti
and tj, we say that they are in correct order if ti ≤ tj and i < j. We define an order function X(i, j) over

pairs of elements (ti, tj) to be

X(i, j) =

{

0, ti ≤ tj and i < j,

1, otherwise.

We define the potential function to be the number of out-of-order pairs:

P (T ) =
∑

1≤i<j≤n

X(i, j).

Consider the sequence 1010 · · ·10 of length n. For this sequence, the initial value of the potential is

n(2 + n)/8, and the sorted sequence is 000 · · ·0111 · · ·1 with the potential value 0.

The cost of a reversal of length ` is at least `2. However, such a reversal decreases the potential value

by at most `(` − 1)/2, because there are exactly `(` − 1)/2 pairs in the reverse sequence, and the reversal

can only change the orientation of pairs of elements included in the reversed sequence. Therefore, Ω(n2) is

a lower bound.

4 Polynomial-Time Algorithms for 0/1 Sorting for α = 1

In this section we give an exact algorithm for solving the BSBR problem when α = 1. The idea is

based on restricting the set of candidate solutions by characterizing the properties of optimal ones. Then a

search is performed on the restricted set by means of dynamic-programming in polynomial-time. The four

characterizing properties are introduced in this section. The proofs of the corresponding lemmas are given

in Section 5. After introducing the properties, we give a näıve O(n4) algorithm then improve its running

time to O(n3).

Throughout this section, unless mentioned otherwise, the cost function f is linear.

4.1 Basic Properties

We now introduce the properties required for proving the correctness of the algorithms. For sake of

simplicity, we introduce the properties in terms of bit sequences. Equivalent definitions by means of weighted

sequences can be easily derived and are used in the sequel.

A reversal ρ = ρ(i, j) acting on a 0/1 bit sequence T = t1, . . . , tn is said to affect an element tk of T if

i ≤ k ≤ j. The reversal ρ is said to affect a subsequence or a block of T , if it affects all their elements.

Definition 12 (Trivial Reversal). Let ρ = ρ(i, j) be a reversal acting on a 0/1 bit sequence T = t1, . . . , tn.

The reversal ρ is called trivial if it affects the block of leading 0’s or the block of closing 1’s in T .

For example, the reversal 0

ρ
︷︸︸︷

0111001100011 affects the leading 0’s block and is thus trivial.

Definition 13 (Useless Reversal). Let ρ = ρ(i, j) be a reversal acting on a 0/1 bit sequence T = t1, . . . , tn.

The reversal ρ is called useless if ti = tj .

For example, the reveral 001110

ρ
︷︸︸︷

01100011 affects a subsequence starting and ending with a 0 and is thus

useless.

Definition 14 (Cutting Reversal). Let ρ = ρ(i, j) be a reversal acting on a 0/1 bit sequence T = t1, . . . , tn.

The reversal ρ is called cutting if either i ≥ 2 and ti−1 = ti or j ≤ n− 1 and tj = tj+1.
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For example, the reversal 001110

ρ
︷︸︸︷

011 00011 cuts through a block of 0’s and is thus cutting.

Definition 15 (Complex Reversal). Let ρ = ρ(i, j) be a reversal acting on a 0/1 bit sequence. The

reversal ρ is called complex if ρ affects more than 2 blocks. Otherwise ρ is called simple.

For example, the reversal 00111

ρ
︷ ︸︸ ︷

001100011 affects four blocks and is hence complex. On the other hand

the reversal 00111

ρ′

︷︸︸︷

001100011 affects exactly 2 blocks and is thus simple. In addition, notice that ρ′ is neither

trivial, useless, nor cutting. We refer to such a reversal as a good reversal.

Definition 16 (Good Reversal). Let ρ = ρ(i, j) be a reversal acting on a 0/1 bit sequence. The reversal

ρ is called good if ρ is neither trivial, useless, cutting, nor complex.

In Section 5 we show that a reversal in an optimal reversal series is neither trivial, useless, nor cutting

(Lemmas 25, 27 and 28). In addition, we show that there exists an optimal series containing no complex

reversals (Lemma 37). Thus, we get the following theorem.

Theorem 17. There exists an optimal reversal series in which all reversals are good.

The proofs of the above lemmas and the discussion in this section are based on a characterization of the

sorting cost by means of reversal counts, i.e., the number of reversals in which each element of the bit series

takes part.

Definition 18 (Reversal Count). Given a reversal series ρ1, . . . , ρm acting on a 0/1 bit sequence T =

t1, . . . , tn, denote the number of reversals in which element ti participates by N (ti) (notice that the element

ti might change its location while applying the reversal series). We call N (ti) the reversal count of ti. If the

series ρ1, . . . , ρm does not cut a subsequence ti, . . . , tj of T , we define the reversal count of the subsequence

as the number of reversals in which the subsequence takes part and denote it by N (ti, . . . , tj).

The following equation (applying for linear cost functions — α = 1) relating the reversal counts to the

reversal series cost says that we can measure the cost per reversal or per bit in the sequence:

m∑

i=1

f(ρi) =

n∑

j=1

f(N (tj)) . (3)

Given a weighted sequence w0, . . . , w2g+1 and a reversal series ρ1, . . . , ρm define wk = w · ρ1 · · ·ρk for

1 ≤ k ≤ m to be the result of applying the first k reversals on w; thus w0 = w.

4.2 A Polynomial-Time Algorithm

Given a 0/1 weighted sequence w = w0, . . . , w2g+1, denote the set of all sorting series that contains only

good reversals by S . By Theorem 17, the set S contains a minimum sorting series. We show here that it

is possible to find such a series in polynomial-time.

The following lemmas characterize the sorting process under good reversals. They are used for calculating

the optimal cost in polynomial-time as well as for proving that a minimum reversal series containing no

complex reversals exists (see Section 5.2). In the discussion to come, given a weighted sequence w =

w0, . . . , w2g+1 and a reversal series % containing no cutting reversals, we define ci to be the number of

reversals in which wi takes part, i.e., ci = N (wi).

Lemma 19. Let w = w0, . . . , w2g+1 be a weighted sequence and let ρ1, . . . , ρm be a good sorting series. Then

each weight of wk for 0 ≤ k ≤ m contains a weight of w that takes part during ρ1, . . . , ρk in zero reversals.
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Proof. By induction on k. Base case: the claim is trivial for k = 0. Induction step: suppose each weight of

wk contains a weight of w that takes part during ρ1, . . . , ρk in zero reversals. We need to prove that each

weight of wk+1 contains a weight of w that takes part during ρ1, . . . , ρk+1 in zero reversals. Since ρk+1 is

good, it must be of the form ρ (i − 1, i) for some i, 2 ≤ i ≤ 2gk, where wk = w0, . . . , w2gk+1. Thus, it unifies

wk
i with wk

i−2, and wk
i−1 with wk

i+1. By the induction assumption, wk
i−2 contains a weight of w, denote it v,

that is not affected by ρ1, . . . , ρk. Since ρk+1 does not affect the weight wk
i−2, the same weight v of w is not

affected by ρ1, . . . , ρk+1. Thus, the unification of wk
i with wk

i−2 contains a weight of w (i.e., v) that is not

affected by ρ1, . . . , ρk+1. A similar argument holds for the union of wk
i−1 with wk

i+1. The other weights of wk

are not affected by ρk+1, and therefore they contain by the induction assumption a weight of w that takes

part during ρ1, . . . , ρk in zero reversals. The same weight takes part during ρ1, . . . , ρk+1 in zero reversals as

well.

Lemma 20. Let w = w0, . . . , w2g+1 be a weighted sequence and let % = ρ1, . . . , ρm be a good sorting series.

There exist indices i and j such that j ≡ 0, i ≡ 1, ci = cj = 1, and i < j.

Proof. Consider wm−1 = w · ρ1 · · ·ρm−1 = wm−1
0 , wm−1

1 , wm−1
2 , wm−1

3 . The sequence wm−1 must contain

four weights since ρm sorts it. Furthermore, ρm must affect wm−1
1 and wm−1

2 . By Lemma 19 each of wm−1
1

and wm−1
2 contains a weight of w that takes part during ρ1, . . . , ρm−1 in zero reversals. Denote the indices

of these weights in w by i and j, respectively. Thus we get i ≡ 1, j ≡ 0, and ci = cj = 1. In addition, since

wi and wj take part during ρ1, . . . , ρm−1 in zero reversals, the weights in which wi and wj are contained in

wm−1, that is wm−1
1 and wm−1

2 respectively, have a relative order identical to that of wi and wj in w. Hence,

we get i < j.

Lemma 21. Let w, %, i, and j be as in Lemma 20, and let wm−1 = w·ρ1 · · ·ρm−1 = wm−1
0 , wm−1

1 , wm−1
2 , wm−1

3 .

Then ρm = ρ (1, 2) and wm−1
1 =

∑

k∈{1,3,...,j−1} wk and wm−1
2 =

∑

r∈{i+1,i+3,...,2g} wr.

Proof. For each k ∈ {1, 3, . . . , j − 1}, the weight wk can change its relative order to the weight wj only

when ρm is performed, because wj takes part only in that reversal. A similar claim holds for wr where

r ∈ {i + 1, i + 3, . . . , 2g} and wi. Hence, the reversal ρm must affect all these blocks to change their relative

order.

Lemma 21 provides a way for finding a sorting series having the minimum cost in S : For all pairs (i, j),

such that i < j, i ≡ 1, and j ≡ 0, consider the optimal sorting cost in which ci = cj = 1 and take the

minimum over all (i, j) pairs.

Finding the optimal sorting cost in which ci = cj = 1 can be done with dynamic programming. Define

a dynamic programming matrix A (i, j, b) as follows: cell A (i, j, b) contains the optimal value of separating

the segment (i, j) of w with polarity b, where b = 0 corresponds to a positive polarity (i.e., 0’s before 1’s),

and b = 1 to a negative one (i.e., 1’s before 0’s). The cells A (i, j, b) fulfilling i < j and i ≡ j + 1 are of

interest. These cells are filled using the following recursive rule, assuming A (i, j, b) = 0 when i > j:

A (i, j, b) =







0

f(wi + wj)

A (i + 1, j − 1, b)

j = i + 1 and b ≡ i

j = i + 1 and b ≡ i + 1

j > i + 1 and b ≡ i

(4)

If none of the above conditions holds, namely j > i + 1 and b ≡ i + 1, the rule is4:

4Notice that when t = i and k = j the equation assumes the cell A (i, j, 1 − b) has a known value. Hence, when filling the

matrix, A (i, j, i mod 2) should be computed before A (i, j, j mod 2).
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Algorithm 4 zerOneSort (w)

1: calculate v(w)

2: for i = 0 to 2g + 1 do

3: for j = 0 to 2g + 1 do

4: for b = 0 to 1 do

5: A(i, j, b)← 0

6: end for

7: end for

8: end for

9: for j = 1 to 2g in steps of 1 do

10: for i = j − 1 to 1 in steps of 2 do

11: fill A(i, j, i mod 2) according to (4)

12: fill A(i, j, j mod 2) according to (4) or (6)

13: end for

14: end for

15: output A(1, 2g, 0)

A (i, j, b) = min







A (i, t− 1, b) + A (t, k, 1− b) +

A (k + 1, j, b)+

f
(
∑k−1

r=i,r≡t wr +
∑j

q=t+1,q≡k wq

) :

i ≤ t < k ≤ j,

t ≡ i, and

k ≡ j







(5)

Calculating the sums in (5) when filling each cell increases the time complexity. To overcome this problem,

we define a new representation of a 0/1 sequence, the cumulative weighted representation. Given a sequence

w = w0, . . . , w2g+1, define a new sequence v = v(w) = v0, . . . , v2g+1, such that vi =
∑i

r=0,r≡i wr. We can

rewrite (5) using the cumulative representation as follows:

A (i, j, b) = min







A (i, t− 1, b) + A (t, k, 1− b) +

A (k + 1, j, b)+

f (vk−1 − vi + wi + vj − vt+1 + wt+1)

:

i ≤ t < k ≤ j,

t ≡ i, and

k ≡ j







(6)

The algorithm zerOneSort (Algorithm 4) uses (4) and (6) to calculate the minimum sorting cost of a

0/1 sequence.

Lemma 22. The algorithm zerOneSort has time complexity in O(g4) and space complexity in O(g2).

Proof. The space complexity of the matrix A is in O(g2), and so is the algorithm’s space complexity.

Calculating the minimum in (6) requires O(g2) time. Therefore, the loop at line 9 dominates the time

complexity and makes it in O(g4).

Theorem 23. The algorithm zerOneSort finds the minimum sorting cost of a given weighted sequence with

time complexity in O(g4) and space complexity in O(g2).

Proof. By Lemma 22, the time complexity of zerOneSort is in O(g4) and its space complexity is in O(g2).

The optimality of the algorithm is guaranteed since the set S contains a minimum sorting series.

4.3 A Faster Implementation

Using the additivity of the cost function, one can rewrite (5) to improve the algorithm’s running time.

Define a new matrix B(x, y, d), for x < y, x ≡ y + 1, and d ≡ x + 1 as follows:
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Algorithm 5 fastZerOneSort (w)

1: calculate v(w)

2: for i = 0 to 2g + 1 do

3: for j = 0 to 2g + 1 do

4: for b = 0 to 1 do

5: A(i, j, b)← 0

6: B(i, j, b)← 0

7: end for

8: end for

9: end for

10: for j = 1 to 2g in steps of 1 do

11: for i = j − 1 to 1 in steps of 2 do

12: fill A(i, j, i mod 2) according to (4)

13: fill A(i, j, j mod 2) according to (4) or (8)

14: fill B(i, j, j mod 2) according to (7)

15: end for

16: end for

17: output A(1, 2g, 0)

B (x, y, d) = min
x<z≤y,z≡y

{
A (x, z, 1− d) + A (z + 1, y, d)+

f
(
∑z

r=x,r≡x wr +
∑y

q=x+1,q≡y wq

)

}

(7)

The value of the cell B(x, y, d) corresponds to the optimal cost of separating the subsequence wx, . . . , wy

under the condition cx = 1.

Using the matrix B, we can simplify (5) as follows:

A (i, j, b) = min
i≤t≤j,t≡i

{

A (i, t− 1, b) + f
(
∑t−1

r=i,r≡t wr

)

+ B(t, j, b)
}

(8)

To avoid calculating the sum each time, (7) and (8) can be rewritten using v(w). These equations

reduce the running time of the algorithm by a factor of g, since each minimum can be calculated with time

complexity in O(g). The algorithm fastZerOneSort (Algorithm 5) implements this improvement.

Theorem 24. The algorithm fastZerOneSort finds the minimum sorting cost of a given weighted sequence

with time complexity in O(g3) and space complexity in O(g2).

5 Properties of Optimal 0/1 Sorting when α = 1

Here, we give proofs of the four properties introduced in Section 4.1. Throughout the proofs we use the

weighted representation of 0/1 sequences. The proofs of the first three properties, in addition to a resulting

exhaustive search algorithm are given first. The proof of the complex property is more elaborate and hence

is given in its own subsection.

5.1 Trivial, Useless, and Cutting Reversals

The proofs of the trivial, useless, and cutting properties enable us to characterize the number of reversals

in an optimal series. This characterization in turn enables us to introduce an efficient, though exponential,
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algorithm for finding the optimal cost. In this section we prove the properties and give the resulting algorithm.

The following notation is convenient for the proofs.

Given a 0/1 bit sequence T = t1, . . . , tn corresponding to a weighted sequence w = w(T ) = w0, . . . , w2g+1,

map a block ti, . . . , tj in T to the pair (k, u) in w, such that u = j − i + 1 (the block’s weight) and k = i

(the block’s starting point). Let wr be the weight in w to which k belongs, that is either r = 0 if k ≤ w0 or

r fulfills
∑r−1

q=0 wq < k ≤
∑r

q=0 wq. We refer to u as a subweight of wr. We drop the starting point k when

there is no ambiguity in determining the location of the subweight u in wr. If a reversal series % does not

cut the subsequence ti, . . . , tj, define the reversal count of the subweight u by N (u) = N (ti, . . . , tj).

Lemma 25 (No Trivial Reversals). A reversal series containing a trivial reversal cannot be optimal.

Proof. The proof is by contradiction. Let % = ρ1, . . . , ρm be a minimum sorting series acting on a weighted

sequence w = w0, . . . , w2g+1, and containing a trivial reversal ρk. If ρk affects a subweight of wk−1
0 or

wk−1
|wk−1|−1

, exclude them from ρk and all subsequent reversals. The modified reversal series sorts w with a

smaller cost. A contradiction.

Lemma 25 enables us to pad a 0/1 sequence with a leading 0-block, and a closing 1-block.

Corollary 26. Changing the values of the weights w0 and w2g+1 does not affect the minimum sorting cost

of a weighted sequence.

Lemma 27 (No Useless Reversals). A reversal series containing a useless reversal cannot be optimal.

Proof. The proof is by contradiction. Let % = ρ1, . . . , ρm be a minimum sorting series acting on a weighted

sequence w = w0, . . . , w2g+1, and containing a useless reversal ρk. Denote the weights affected by ρk by

ui, wi+1, . . . , wj−1, uj for 0 < ui ≤ wi and 0 < uj ≤ wj. By Definition 13, since ρk is useless, we have i ≡ j.

First, assume that ui ≥ uj . Consider a modified reversal affecting the weights ui − uj, wi+1, . . . , wj. This

modified reversal has a smaller cost than ρk, while the 0/1 sequence that it produces is identical to the 0/1

sequence that ρk produces. Therefore, the original reversal sequence cannot be optimal. The remaining case

ui < uj is handled similarly.

Lemma 28 (No Cutting Reversals). A reversal series containing a cutting reversal cannot be optimal.

Proof. The proof is by contradiction. Let % = ρ1, . . . , ρm be a minimum sorting series. By Lemma 27, the se-

ries % contains no useless reversals. Consider the last cutting reversal ρk affecting weights ui, wi+1, . . . , wj−1, uj

for 0 < ui ≤ wi and 0 < uj ≤ wj. Assume that ρk cut the weight wi, that is ui < wi (the case uj < wj is

handled similarly). Notice that N (ui) and N (wi − ui) are well defined under ρk, . . . , ρm, since ρk is the last

cutting reversal in the reversal series.

First, assume that N (wi − ui) ≤ N (ui). Exclude ui from the cutting reversal, and include it in all

reversals in which wi − ui takes part. Hence, the weight wi moves as a unit through the reversals affecting

wi − ui.

Since the cutting reversal is not useless, we have i + 1 ≡ j. Excluding ui from ρk makes it a useless

reversal. By Lemma 27 the modified series cannot be optimal.

The reversal counts of the elements of the 0/1 sequence do not increase by this modification. By (3), the

modified reversal series has a cost less than or equal to the original one. Thus, the original series cannot be

optimal.

The case N (wi − ui) > N (ui) is handled similarly.

Corollary 29. Let w = w0, . . . , w2g+1 be a weighted sequence. An optimal sorting series contains exactly g

reversals.
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Algorithm 6 exhaustiveZerOneSort (w)

1: if g = 0 then

2: output 0

3: else

4: opt←∞

5: for i← 1 to 2g − 1 in steps of 1 do

6: for j ← i + 1 to 2g in steps of 2 do

7: w← w · ρ(i, j)

8: tmp← exhaustiveZerOneSort(w) + f (ρ(i, j))

9: if tmp < opt then

10: opt← tmp

11: end if

12: end for

13: end for

14: output opt

15: end if

Proof. By definition, each reversal can reduce the length of a weighted sequence by at most two. Therefore,

at least g reversals are required to sort w. By Lemmas 25, 27, and 28, an optimal sorting series contains

no trivial, useless or cutting reversals. Thus, in an optimal solution, each reversal reduces the length of w

exactly by two.

Corollary 29 implies that all optimal solutions are contained in the set of sorting series of length g. This

set can be exhaustively searched for an optimal solution by a recursive algorithm. Given a 0/1 sequence

w = w0, . . . , w2g+1, choose a reversal ρ(i, j), affecting the subsequence wi, . . . , wj, such that 1 ≤ i < j ≤ 2g

and i + 1 ≡ j. The reversal ρ(i, j) is not trivial, useless, or cutting. We refer to such a reversal as a legal

reversal. Perform ρ(i, j) on w, sort w · ρ(i, j) recursively, and output the best result over all indices i and j.

See Algorithm 6 (exhaustiveZerOneSort) for the pseudocode.

Lemma 30. The time complexity of the algorithm exhaustiveZerOneSort is less than (g!)2.

Proof. There are less than g2 legal reversals acting on a weighted 0/1 sequence of length 2g + 2. Each legal

reversal reduces the sequence’ length by 2. Therefore, the number of nodes in the recursive tree is bounded

by g2 · (g − 1)2 · · ·22 = (g!)2.

Lemma 30 and Corollary 29 establish Theorem 31.

Theorem 31. The algorithm exhaustiveZerOneSort sorts optimally a 0/1 sequence of length 2g + 2 with

time complexity smaller than (g!)2.

5.2 Complex Reversals

We show here that a minimum reversal series containing no complex reversals exists. This fact enables

us to calculate the minimum cost in polynomial-time.

Let w = w0, . . . , w2g+1 be a weighted sequence. Recall that sg = wi, . . . , wj, or for short (i, j), is defined

to be a segment of w. Let sgk = wik
, . . . , wjk

for k ∈ {1, 2} be two segments of w. We say that sg1 is

a sub-segment of sg2, or contained in sg2, if i2 ≤ i1 < j1 ≤ j2. We say that sg1 is disjoint to sg2 if the

intersection between the intervals (i1, j1) and (i2, j2) is empty.
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Given two reversals ρ = ρ(i1, j1) and η = η(i2, j2), we say that ρ contains η or that ρ is disjoint to η if

the segment (i1, j1) contains or is disjoint to the segment (i2, j2), respectively.

Given a reversal ρ = ρ (i, j) acting on a weighted sequence w = w0, . . . , w2g+1, we say that ρ unifies wi

with wj+1, and wj with wi−1 if i ≡ j + 1. The reversal ρ is called a unifying reversal. In addition, we say

that the weight w′
i−1 of w′ = w · ρ = w′

1, . . . , w
′
2g−2 contains the weights wi−1 and wj of w. Similarly we say

that the weight w′
j−1 of w′ contains the weights wj+1 and wi of w.

A reversal series % = ρ1, . . . , ρm acting on w separates a segment sg = (i, j) of w, if % unifies all the 0-

and 1-weights of sg. The reversal series % separates the segment sg positively or with positive polarity, if %

unifies all weights of the segment into two weights w′
i′ and w′

j′ of w′ = w · ρ1 · · ·ρm, such that i′ ≡ 0, j′ ≡ 1,

and i′ < j′. The reversal series % separates the segment sg negatively or with negative polarity if i′ > j′. If

a reversal series % separates positively the segment (0, 2g + 1) of w, then % sorts w.

The polarity of a two-block segment sg = (i, i+1) is positive if i ≡ 0 and negative otherwise. The polarity

of a simple reversal ρ equals the polarity of the two-block segment that ρ affects.

Proposition 32. Let % be a reversal series that separates a segment sg of a 0/1 sequence w. Then, the

reversal series % separates each sub-segment sg′ of sg. Furthermore, the restriction of % to sg′ separates sg′.

Proof. Since sg′ is contained in sg, if sg′ is not separated, sg cannot be separated. Furthermore, if the

restriction of % to sg′ does not separate sg′, % cannot separate sg′.

In the sorting process, the essence of a reversal is not directly connected to the coordinates (i, j) that

define the reversal, but is designated by the weights that the reversal affects. This essence plays a crucial

rule when defining commutative reversals.

Given a reversal ρ acting on w and a reversal η acting on w · ρ, we say that η commutes with ρ if two

reversals η′ and ρ′ exist such that w · ρ · η = w · η′ · ρ′, where η′ and ρ′ affect the same weights of w that η

and ρ affected respectively (in the following we drop the primes).

The following proposition characterizes commutative reversals.

Proposition 33. Let w be a weighted series, ρ be a reversal acting on it, and η be a reversal acting on w ·ρ.

The three following conditions are equivalent:

1. The reversal η commutes with ρ.

2. The weights that η affects in w · ρ are contiguous in w.

3. The reversals ρ and η are either contained one in the other or disjoint to each other.

Let % be a reversal series separating a segment sg of w. We refer to the maximal5 segment that contains

sg and is separated by % as msg.

Given a weighted sequence w and a minimum sorting series % = ρ1, . . . , ρm, let ρj be the complex reversal

having the greatest index . The reversal ρj affects a segment s2 of wj−1. Let k be the smallest index such

that ρj , . . . , ρk separates s2
6, and let msg be the maximal segment of wj−1 containing s2 that ρj , . . . , ρk

separates. Denote the segment to the left of s2 in msg by s1, and the segment to the right of s2 in msg by

s3
7.

wj−1 = wj−1
0 , . . . , wj−1

q ,

msg
︷ ︸︸ ︷

s1

︷ ︸︸ ︷

. . . , wj−1
q+|s1|

,

s2

︷ ︸︸ ︷

. . . , wj−1
q+|s1|+|s2|

︸ ︷︷ ︸

ρj

,

s3

︷ ︸︸ ︷

. . . , wj−1
q+|s1|+|s2|+|s3|

, . . . .

5With respect to the containment partial order on segments of w.
6The subseries ρj , . . . , ρm separates wj−1 . By Proposition 32 it separates s2 . Hence, k is well defined.
7The segments s1 and s3 might be empty.
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The following lemmas characterize the (simple) reversals performed after ρj .

Lemma 34. Let w, ρj , s2, k, msg, s1, and s3 be as above. Consider a reversal ρr for j < r ≤ k. If ρr

affects at least one mixed weight, i.e., a weight that contains weights from s1 and s2 or s2 and s3, then all

the weights that ρr affects become part of mixed weights.

Proof. By induction on r. Base case: consider the sequence wj. Since ρj is not trivial, useless, or cutting, it

unifies wj−1
q+|s1|

with wj−1
q+|s1|+|s2|

producing wj
q+|s1|

and wj−1
q+|s1|+1

with wj−1
q+|s1|+|s2|+1

producing wj
q+|s1|+|s2|−1

.

These weights are the only mixed weights in wj. If ρj+1 is to affect mixed weights, it must affect one of

them and a neighboring weight.

To see that all the weights that ρj+1 affects become part of mixed weights, assume that ρj+1 affects

weights wj
q+|s1|

and wj
q+|s1|+1 (the other cases are handled similarly). This act causes the mixed weight

wj
q+|s1|

to unite with wj
q+|s1|+2 resulting in a bigger mixed weight, while the weight wj

q+|s1 |+1 from s2 unites

with the weight wj
q+|s1 |−1 from s1 resulting in the formation of a new mixed weight on this edge of s2

8.

The induction step is established similarly.

Notice that since the subseries ρj+1, . . . , ρk contains no complex reversals, the mixed weights remain at

the edges of s2. This fact is helpful for proving the following lemma.

Lemma 35. Let w, ρj , s2, k, msg, s1, and s3 be as in Lemma 34 and let ρr for j < r ≤ k be the smallest

index reversal that does not affect mixed weights. Then ρr commutes with all the reversals ρq for j ≤ q < r.

Proof. By Lemma 34, since all the reversals ρq for j < q < r affect weights that turn to be part of mixed

weights, and since ρr affects no mixed weights, it is disjoint to ρq for j < q < r. By Proposition 33, ρr

commutes with ρq for j < q < r.

Since the reversal ρr does not affect mixed weights, it is either contained in or disjoint to s2. In either

case, by Proposition 33, ρr commutes with ρj .

Corollary 36. Let w, ρj , s2, k, msg, s1, and s3 be as in Lemma 35. We can rearrange the reversal series

so that all the reversals ρr for j < r ≤ k affect mixed weights.

Proof. By induction on the number of reversals ρr for j < r ≤ k that do not affect mixed weights and

Lemma 35.

By Corollary 36, the reversals ρr for j < r ≤ k affect mixed weights. In addition, since the reversals ρr

for j < r ≤ m are good, they fulfill Lemma 20. These two properties are helpful for proving that there exists

an optimal series containing no complex reversals.

Lemma 37. There exists an optimal reversal series containing no complex reversals.

Proof. By induction on the length of the weighted sequence. Base case: let w be a sequence of length four.

By Corollary 29, an optimal series sorting w must be of length one. A single complex reversal, however,

cannot sort w. Therefore, all optimal sorting series do not contain a complex reversal. Induction step:

assume the claim holds for all sequences of length smaller than or equal to a, where a ≥ 4. We need to

prove the claim for a + 2. Let w be a weighted sequence of length a + 2, and assume the claim does not

hold. Consider an optimal sorting series % = ρ1, . . . , ρm having the minimum number of complex reversals,

and let ρj be the complex reversal with the greatest index. Let s2, k, msg, s1, and s3 be as in Corollary 36

and let ρr for j < r ≤ k be the outcome of the corollary, i.e., all these reversals affect mixed weights. The

reversal ρj remains a complex reversal. Otherwise, we get a minimum sorting series having a smaller number

of complex reversals. Since the reversals ρr for j < r ≤ m are good, by Lemma 20, there exist indices i′ ≡ 0

8There can be two different mixed weights at each edge of s2: a 0-mixed weight and a 1-mixed weight.
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and p′ ≡ 1 in wj, such that i′ > p′ and ci′ = cp′ = 1. Notice that each of the weights wj
i′ and wj

p′ could be

present as a unit in wj−1 or could result from the unification of two weights of wj−1. In the former case,

pick the weight in wj−1 corresponding to wj
i′ or wj

p′ , respectively. In the latter, notice that the unification

occurs between a weight from s2 and a weight from either s1 or s3. Choose the the weight not belonging to

s2. Denote the indices of the chosen weights in wj−1 by i and p, respectively; see Figure 4.

wj−1 = 2 8 4 [15

i
︷︸︸︷

2

p
︷︸︸︷

4 7] 5

wj = 2 8 11 4
︸︷︷︸

p′

2
︸︷︷︸

i′

20

(a)

wj−1 = 2 8

p
︷︸︸︷

4 [15

i
︷︸︸︷

2 4 7] 5

wj = 2 8 11
︸︷︷︸

p′

4 2
︸︷︷︸

i′

20

(b)

Figure 4: The process of choosing the weights wj−1
i and wj−1

p . (a) If the weights corresponding to i′ and p′

in wj are not mixed, i.e., were not unified by ρj , choose the corresponding blocks in wj−1. (b) If one of the

chosen weights in wj is unified (p′), choose the corresponding weight in wj−1 that was not affected by the

reversal.

According to the position of the indices i and p we divide the analysis into three cases:

1. The indices i and p do not belong to s2. The segment s2 can be located between i and p, can be located

to the left of p, or can be located to the right of i; see Figure. Here, we handle the first case; the other

two cases are handled similarly. Denote the segment between i and p by sg. Notice that ρj , . . . , ρm

separates sg. Let k′ be the smallest index such that ρj , . . . , ρk′ separates sg. Since s2 is a subsegment

of sg, by Proposition 32 it is separated as well. Therefore, k ≤ k′ and msg is a subsegment of sg.

Without loss of generality, all the reversals ρr for j < r ≤ k′ affect sg. Since sg is of length less than

a + 2, and by the induction assumption, we can replace ρj , . . . , ρk′ by a minimum cost reversal series

having no complex reversals9. This modification yields a minimum sorting series of w having a smaller

number of complex reversals than % has. A contradiction.

← s1 → ←− s2 −→ ← s3 →

ρj 2 5

p
︷︸︸︷

3 [2 7 6 4]

i
︷︸︸︷

5 10 12

(a)

← s1 → ←− s2 −→ ← s3 →

ρj 2 5 3 [2 7 6 4]

p
︷︸︸︷

5

i
︷︸︸︷

10 12

(b)

← s1 → ←− s2 −→ ← s3 →

ρj 2

p
︷︸︸︷

5

i
︷︸︸︷

3 [2 7 6 4] 5 10 12

(c)

Figure 5: The different options in case 1 of the proof of Lemma 37. In all three cases the complex reversal

can be eliminated by the induction assumption (see text). (a) The segment s2 is located between i and p.

(b) The segment s2 is located to the left of p. (c) The segment s2 is locate to the right of i.

2. The indices i and p belong to s2. In this case s2 is separated only when wj is sorted, that is msg = wj

and k = m. Furthermore, we have |i − p| = 1, since otherwise the reversals acting on the weights

between i and p during the separation of s2 commute with ρj . Notice that s1 and s3 are positively

separated under ρr for j < r < m, because ρj does not affect them and ρm affects only the 1’s of s1

and the 0’s of s3. Moreover, the reversals ρr for j < r ≤ m separates s2 negatively, since ρj affects all

9In case of negative separation, flip the segment sg to get a positive separation, replace ρj , . . . , ρk′ with a minimum sorting

series having no complex reversals, and reflip the segment sg.
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the weights in s2 and hence changes only the orientation of the separation. Skip ρj and perform the

reversals ρr for j < r < m restricted to each of s1, s2, and s3, and perform ρm restricted to s2. Thus,

the segments s1 and s3 get positively separated, while s2 gets negatively separated. Therefore, the bit

sequence corresponding to the weighted sequence gets the form: T =

s1

︷ ︸︸ ︷

0+1+

s2

︷ ︸︸ ︷

1+0+

s3

︷ ︸︸ ︷

0+1+. Here, 0+

(1+) corresponds to a maximal contiguous block of 0’s (1’s). Since ρj is not performed in the modified

series, all elements in s2 have reversal counts at least smaller by one than the original series. We say

that s2’s elements have one available reversal. Similarly, since ρm is not performed on s1 and s3, the

1-block of s1 and the 0-block of s3 have one available reversal. Perform an additional reversal on T

(reversal indicated by brackets [, ]):

s1

︷ ︸︸ ︷

0+[1+

s2

︷ ︸︸ ︷

1+0+

s3

︷ ︸︸ ︷

0+]1+. This additional reversal sorts the sequence.

The reversal counts of the elements in the modified series are not greater than the reversal counts in

the original one. By (3) the modified series cost is not greater than the original one. However, the

modified series has less complex reversals than the original one. A contradiction. Figure 6 gives an

example illustrating the modification.

Counts 0 2 1 2 2 2 2 1 2 0

← s1 → ←− s2 −→ ← s3 →

ρj 2 5 3 [2

i
︷︸︸︷

7

p
︷︸︸︷

6 4] 5 10 12

ρj+1 2 [5 7]

p′

︷︸︸︷

6

i′

︷︸︸︷

7 7 10 12

ρj+2 9 11 7 [7 10] 12

ρm 9 [11 17] 19

sorted 26 30

(a)

Counts 0 2 1 2 2 2 2 1 2 0

←− s1 −→ ←− s2 −→ ← s3 →

skip ρj 2 5 3 2

i
︷︸︸︷

7

p
︷︸︸︷

6 4 5 10 12

ρj+1|s2, ρj+1|s1 2 [5 3] 2

i
︷︸︸︷

7

p
︷︸︸︷

6 [4] 5 10 12

ρj+2|s2, ρj+2|s3 5 5 + [2] 7 6 4 [5 10] 12

ρm|s2 5 7 [7 6] 14 17

add. reversal 5 [13 21] 17

sorted 26 30

(b)

Figure 6: An example illustrating the modification described in case 2 of the proof of Lemma 37. The

reversal counts for each scenario are given at the top. (a) The original reversal series starting with the last

complex reversal ρj . (b) The modification suggested in case 2 of the proof of Lemma 37. Restrictions of

reversals from (a) are given in parallel. The additional reversal is indicated as “add. reversal” (see case 2

in the proof of Lemma 37). Notice that the modification results in the same reversal counts as the original

series. However, the modification does not contain any complex reversals.

3. One of the indices is contained in s2, while the other is not. Here, again, s2 is separated only when w

is sorted, that is msg = w and k = m. We handle the case in which i is contained in s2 and p in s1.

To handle the other case, flip the sequence and rename the 0’s and the 1’s to get the former case.

Since k = m, all the reversals performed after ρj affect mixed weights. Therefore, we must have p = 1,

or else the reversals affecting the weights to the left of p cannot affect mixed weights.

Perform the reversals ρr for j < r < m restricted to each of s1, s2, and s3 in wj−1. The bit sequence

gets the following form (assuming w0 = 0).

T =

s1

︷ ︸︸ ︷

1+
︸︷︷︸

Block p=1

1+0+

s2

︷ ︸︸ ︷

1+0+ 0+
︸︷︷︸

Block i

0+1+

s3

︷ ︸︸ ︷

0+1+ .

Checking the available reversal counts shows that the same technique used before cannot be applied

here. Therefore, a more careful analysis is needed. Denote the subblocks of s1 by s1,1 and s1,2
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respectively. Denote the left 1-subblock of s2 by s2,1, the right 1-subblock by s2,3, and the 0-subblock

by s2,2 . Thus, we have:

T =

s1

︷ ︸︸ ︷

1+
︸︷︷︸

Block p

1+

︸ ︷︷ ︸

s1,1

0+
︸︷︷︸

s1,2

s2

︷ ︸︸ ︷

1+
︸︷︷︸

s2,1

0+ 0+
︸︷︷︸

Block i

0+

︸ ︷︷ ︸

s2,2

1+
︸︷︷︸

s2,3

s3

︷ ︸︸ ︷

0+1+ .

Consider the sequence wj−1 and the neighborhood of the weight i in it. Denote the closest 1-block in

s2,1 to i by s2,1,0 and denote the next closest 1-block by s2,1,1. Denote the closest 1-block in s2,3 to i

by s2,3,0 and denote the next closest 1-block by s2,3,1:

T (wj−1) = · · ·

s2,1,1

︷︸︸︷

1+ 0+

s2,1,0

︷︸︸︷

1+

i
︷︸︸︷

0+

s2,3,0

︷︸︸︷

1+ 0+

s2,3,1

︷︸︸︷

1+ · · · .

In the general case, the blocks s2,1,1 and s2,3,1 might not exist. If s2,3,1 does not exist, we define

N (s2,3,1) = 0. Similarly, if s2,1,1 does not exist we define N (s2,1,1) = 0. Since in this case i cannot be

a block at the edge of s2 and since the reveral ρj is complex, s2,1,0 and s2,3,0 must always exist.

By Lemma 34 the block s2,1,0 is the last 1-block to join s2,1 in the original reversal series, and the block

s2,1,1 is its predecessor (see also Figure 7a). A similar claim holds for s2,3,0, s2,3,1, and s2,3. Denote

by s2,1/s2,1,0 all blocks belonging to s2,1 except s2,1,0. Define s2,3/s2,3,0 similarly. Recall that N (s2,3)

is defined to be the number of reversals in which s2,3 takes part as a contiguous block (for example,

ρj is not counted in it, but ρm is). Here, we start counting the reversal counts from ρj+1, i.e., we

omit ρj from the counts. In the following, we suggest a modified reversal series based on a comparison

between the reversal counts of s2,1, s2,1/s2,1,0, s2,3, and s2,3/s2,3,0 in the original reversal series. The

intuition behind the strategy of the modification is simple: If N (s2,1) > N (s2,3), then we can sort the

sequence by letting s2,1 participate in the reversals affecting s2,3 without violating its reversal counts.

On the other hand, the block s2,3 is “smuggled” to its original position relative to i and participates

in the reversals that affected it in the original series. In all modifications the complex reversal ρj is

not performed.

(a) If N (s2,1) ≥ N (s2,3).

i. If N (s2,1) ≥ N (s2,3/s2,3,0).

Perform the reversals restricted to s2 and s3. Perform reversals affecting s2,1 restricted to s3,

but not to s2. Perform the reversals restricted to s1 till reaching the reversal unifying s2,3,1

with s1,1. Let the block s2,1 participate in each reversal that s2,3,1 takes part in, till reaching

the reversal unifying s2,3,0 with s1,1.

By now, a part of s1,2 is unified with s2,2. We refer to this block as s′2,2. Perform the unifying

reversal restricted only to s2 to unify s2,3 and perform a reversal affecting s2,3 and s′2,2. Let

s2,3 take part in all the remaining reversals as in the original series.

To show that the modified series’s cost is not greater than the original one, consider the

reversal count of each of the sequence’s blocks. Notice that N (s2,3,0) ≤ N (s2,3) + 1 since

s2,3,0 might be affected by a reversal that unifies it with s2,3/s2,3,0 and after that the whole

block moves together as a unit. Similarly one gets N (s2,3,1) ≤ N (s2,3/s2,3,0) + 1. From

the assumptions for this case, we get N (s2,3,1) ≤ N (s2,1) + 1. Since ρj is not performed,

all elements of s2 have one available reversal. Thus, the number of reversals that s2,1, s2,2,

and s2,3 can take part in equals their original reversal counts plus 1, which implies that s2,1

can replace s2,3,1 while s2,3 can replace s2,3,0 without violating the available reversal counts.
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Original series Modified series

Reversals affecting s2 and s3 Restrict them to s2 and to s3. If a reversal affects s2,1, skip performing

the restriction to s2.

Reversals affecting s1 and s2 but

not unifying s2,3,1 with s1,1.

Restrict them to s1 and to s2.

The reversal unifying s2,3,1 with

s1,1.

Restrict it to s2 (to unify s2,3,1 with s2,3) and let s2,1 participate instead

of s2,3,1 in the reversal restricted to s1 and in all comming reversals.

Reversals affecting s1 and s2 but

not unifying s2,3,0 with s1,1.

Restrict them to s1 and to s2, with the modification regarding s2,1.

The reversal unifying s2,3,0 with

s1,1.

Restrict the reversal to s2 (to unify s2,3,0 with s2,3) and perform a

reversal affecting s2,3 and s′2,2 to unify s2,3 with s1,1.

Reversals affecting s1 and s2. Restrict them to s1 and to s2, with the modification regarding s2,1. In

addition, let s2,3 participate in all reversals as in the original series.

ρm Perform ρm with the modification regarding s2,1.

Table 2: A comparison between the original series and the modified one in case 3(a)i of the proof of Lemma 37. The

original series can be divided into three subseries (excluding ρj): reversals affecting s1 and s2, reversals affecting s2

and s3, and reversals affecting s1, s2, and s3 (only ρm). The modifications in the table are given in this order. Notice

that the first two subseries commute, since reversals beloging to them are disjoint (they affect different sides of i).

Notice that s2,2 takes part in an additional reversal (relative to the original series) when

unifying s2,3 with s1,1. That reversal is balanced by skipping ρj. It is easy to see that the

reversal counts of the rest of the elements in the sequence are not violated. Therefore, by (3)

the modified series’s cost is not greater than the original one. However, the modified series

has a smaller number of complex reversals. A contradiction. Table 2 summarizes the changes

discussed above and Figure 7 gives an example illustrating the modification.

ii. If N (s2,1) < N (s2,3/s2,3,0).

In this case, s2,1 cannot replace s2,3,1, but it can replace s2,3,0. Furthermore, s2,3/s2,3,0 can

replace s2,1,0. These replacements are done as follows: perform the reversals restricted to s2

except the reversal unifying s2,3,0 with s2,3. Instead, unify s2,3,0 with s2,1 by performing a

reversal affecting s2,3,0 and the parts already formed of s2,2 (the block containing weight i).

Refer to the unified block as s2,1 ∪ s2,3,0. Now, perform the reversals restricted to s1 and let

the reversals affecting s2,3,0 affect s2,1 ∪ s2,3,0 instead. Perform the reversals restricted to s3

and let the reversals affecting s2,1,0 affect s2,3/s2,3,0 instead.

A contradiction is established similarly to the previous case.

(b) If N (s2,1) < N (s2,3).

This case is symmetrical to the former and can be handled similarly.

Since we reached a contradiction in all cases, we proved the claim.

Notice that in case 3. of the proof, if we omit the leading 1-weight of wj−1 and the last reversal ρm, the

problem becomes equivalent to finding a minimum reversal series with no complex reversals transforming a

0/1 sequence to the form 1+0+1+. The same proof, with minor changes, applies to the latter claim, which is

useful for proving the complex property when dealing with circular 0/1 sequences (see [28] for more details).

Corollary 38. There exists a minimum reversal series containing no complex reversals transforming a 0/1

sequence to the form 1+0+1+.
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Counts 0 1 3 4 4 3 2 3 3 3 4 3 2 1 2 0

← s1 → ←− s2 −→ ← s3 →

ρj 0

p
︷︸︸︷

5 3 [

s2,1,1

︷︸︸︷

5 3

s2,1,0

︷︸︸︷

2

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4

s2,3,1

︷︸︸︷

5 10] 1 4 7 9 0

ρj+1 0

p
︷︸︸︷

5 [13 5] 4 6

i
︷︸︸︷

7

s2,1,0

︷︸︸︷

2 3 6 4 7 9 0

ρj+2 0

p
︷︸︸︷

10 17 6

i
︷︸︸︷

7

s2,1,0

︷︸︸︷

2 [3 6] 4 7 9 0

ρj+3 0

p
︷︸︸︷

10 [17 6]

i
︷︸︸︷

7

s′

2,1

︷︸︸︷

8 7 7 9 0

ρj+4 0

p
︷︸︸︷

16

i
︷︸︸︷

24 [

s′

2,1

︷︸︸︷

8 7] 7 9 0

ρj+5 0

p
︷︸︸︷

16

i
︷︸︸︷

31 [15 9] 0

ρm 0 [

p
︷︸︸︷

16

i
︷︸︸︷

40 ] 15

sorted 40 31

(a)

Counts 0 1 3 3 4 2 2 3 3 3 4 3 2 1 2 0

← s1 → ←− s2 −→ ← s3 →

skip ρj 0

p
︷︸︸︷

5 3

s2,1,1

︷︸︸︷

5 3

s2,1,0

︷︸︸︷

2

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4

s2,3,1

︷︸︸︷

5 10 1 4 7 9 0

ρj+2|s2, ρj+2|s3 0

p
︷︸︸︷

5 3 [

s2,1,1

︷︸︸︷

5 3]

s2,1,0

︷︸︸︷

2

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4

s2,3,1

︷︸︸︷

5 10 [1] 4 7 9 0

ρj+4|s2//////////, ρj+4|s3 0

p
︷︸︸︷

5 6

s2,1

︷︸︸︷

7

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4

s2,3,1

︷︸︸︷

5 10 [1 4] 7 9 0

ρj+5|s2//////////, ρj+5|s3 0

p
︷︸︸︷

5 6

s2,1

︷︸︸︷

7

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4

s2,3,1

︷︸︸︷

5 10 + 4 [8 9] 0

ρj+1 modified 0

p
︷︸︸︷

5 [6

s2,1

︷︸︸︷

7 ]

i
︷︸︸︷

7

s2,3,0

︷︸︸︷

6 4 [

s2,3,1

︷︸︸︷

5 10] + 13 8

ρj+3|s2 0

p
︷︸︸︷

12

i
︷︸︸︷

13 [

s2,3,0

︷︸︸︷

6 14]

s2,3,1

︷︸︸︷

5 13 8

reverse s2,3 + s′2,2 0

p
︷︸︸︷

12 [

i,s′

2,2

︷︸︸︷

27

s2,3

︷︸︸︷

11 ] 13 8

ρm modified 0 [23 40] 8

sorted 40 31

(b)

Figure 7: An example illustrating the modification suggested in case 3(a)i of the proof of Lemma 37. The reversal

counts for each scenario are given at the top. Note that the cost of the series in (b) is less than the cost of the series in

(b). (a) The original reversal series starting from the complex reversal ρj. Notice that N(s2,1) = 2, N(s2,3) = 1, and

N(s2,3/s2,3,0) = N(s2,3,1) = 2 (excluding ρj). Thus, the assumptions of case 3(a)i hold. s′2,1 denotes a weight that

includes s2,1. (b) The modification suggested in case 3(a)i of the proof of Lemma 37. The reversals restricted to s2

and s3 are performed first. Restrictions affecting s2,1 are skipped (striked like /////this). The reversal ρj+1 is modified to

unify s2,1 (instead of s2,3,1) with s1,1 (denoted here by p) and its restriction to s2 is performed as well. The reversal

ρj+3 (unifying s2,3,0 with s1,1) is performed restricted to s2 to unify s2,3, then s2,3 and s′2,2 are reversed to unify the

former with s1,1 (“reverse s2,3 + s′2,2”). From this point, s2,1 and s2,3 take part in all the reversals that affected s2,3

in the original series, e.g., in a modification of ρm.
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6 Approximation Algorithms When α ≥ 0

We now consider the problem of approximating the optimal cost to sort a given sequence. To achieve

good approximation ratios, we need different algorithms for the different ranges of α. In contrast, recall that

Section 3 presents a single divide-and-conquer algorithm that achieves optimal or nearly optimal sorting

bounds for all 0 ≤ α < 2.

6.1 Approximation Algorithm When 1 < α < 2

The sorting algorithm from Section 3.1 for 1 < α < 2 does not deliver a good approximation ratio.

To see why, consider the permutation π = n, 1, 2, 3, . . ., n − 1. The optimal solution (n − 1 reversals of

length 2) has cost Θ(n), whereas the sorting algorithm has cost Θ(nα). The moral is that an approximation

algorithm for α > 1 is different from one for α = 1, where sorting all out-of-order regions yields an O(lg2 n)

approximation [24].

We begin by explaining some properties of the cost function f(`) = `α when 1 < α < 2.

Observation 39. Let T1 and T2 be disjoint subsequences of bit sequence T (i.e., the subsequences may

interleave but have no common elements). Then for any reversal ρ in T and cost function f(`) = `α

(1 < α < 2), the cost of the reversal ρ is at least the cost of the reversal restricted to T1 plus the cost of the

reversal restricted to T2, that is,

f(ρ) ≥ f(ρ |T1) + f(ρ |T2).

Proof. Let the length of the reversal T be `, the length of ρ |T1 be `1, and the length of ρ |T2 be `2. Because

T1 and T2 are disjoint, we know that ` ≥ `1 + `2. Since α > 1,

f(ρ) = `α ≥ `α
1 + `α

2 = f(ρ |T1) + f(ρ |T2).

Corollary 40. Let T1 and T2 be disjoint subsequences of sequence T . Then the optimal cost to sort T is at

least the sum of the optimal costs to sort T1 and T2 for cost function f(`) = `α (1 < α < 2).

Proof. Assume that % = ρ1, . . . , ρm is the optimal reversal series to sort T . Then, %|T1 = ρ1|T1, . . . , ρm|T1

and %|T2 = ρ1|T2, . . . , ρm|T2 are reversal series to sort disjoint subsequences T1 and T2, which are greater

than the optimal for T1 and T2. From Observation 39, we have

f(%) =

m∑

i=1

f(ρi) ≥

m∑

i=1

(f(ρi|T1) + f(ρi |T2)) = f(%|T1) + f(%|T2).

BSBR: O(1) Approximation Algorithm When 1 < α < 2

We now give a divide-and-conquer approximation algorithm, kBasedDC (Algorithm 7), for sorting 0/1

sequences. We later use this algorithm as a subroutine for sorting permutations.

Suppose the sequence has k 0’s and n − k 1’s. Split the sequence at position k. This split means that

the sequence has k elements to its left and n− k elements to its right. Sort both left and right subsequences

recursively. This recursive step results in a sequence of the form 0 · · ·01110001 · · ·1; see Figure 8. To

complete the sorting, perform one more reversal of the first block of 1’s and the second block of 0’s.
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Algorithm 7 kBasedDC (T )

1: k← #0(T )

2: c1 ← kBasedDC (t1, . . . , tk)

3: c2 ← kBasedDC (tk+1, . . . , tn)

4: i← #1(t1, . . . , tk)

5: j ← #0(tk+1, . . . , tn)

6: T ← T · ρ(k − i + 1, k + j)

7: return c1 + c2 + f(i + j)

Theorem 41. The algorithm kBasedDC (Algorithm 7) is an O(1)-approximation algorithm for sorting 0/1

sequences when 1 < α < 2.

To prove Theorem 41, we first give a lower bound using a potential-function argument. Then, we prove

that the sorting cost of kBasedDC is within a constant factor of the initial potential value.

We now define a potential function W (T ) for any 0/1 sequence T .

Definition 42. For a 0/1 sequence T of length n and any integer 1 ≤ i ≤ n, define the number of wrong-sided

elements w(i, T ) for position i to be the number of extra 1’s in the first i elements in T plus the number

of extra 0’s in the last n− i elements in T when compared to the sorted sequence. We define the potential

function W (T ) as follows:

W (T ) =

n∑

i=1

w(i, T )α−1.

Lemma 43. A reversal ρ of length ` on bit sequence T decreases the value of the potential function W (T )

by at most `α, that is, W (T ) −W (T · ρ) ≤ `α.

Proof. For the reversal ρ and any integer 1 ≤ i ≤ n, the value of w(i, T ) is changed by the reversal ρ only

if the position i is inside ρ, which means that at most ` of the w(i, T ) terms change. Because the length

of the reversal is `, the value of w(i, T ) changes by at most `, that is, w(i, T ) − w(i, T · ρ) ≤ `. Because

0 < α− 1 < 1, we have w(i, T )α−1 − w(i, T · ρ)α−1 ≤ `α−1. Thus,

W (T ) −W (T · ρ) =
∑

i∈ρ

[
w(i, T )α−1 − w(i, T · ρ)α−1

]
≤ ` · `α−1 = `α.

We obtain the following corollary:

Corollary 44. The potential function W (T ) is a lower bound on the cost to sort the sequence T by reversals

when 1 < α < 2.

k

1 1 1 1 1 1 1 

n-k

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 . . . . . . . . .

reverse this

. . .. . .

Figure 8: An illustration of step 6 in Algorithm kBasedDC (Algorithm 7).
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Proof. The cost for a reversal of length ` is f(`) = `α and the value of W (T ) is 0 for the sorted sequence.

From Lemma 43, we know that each reversal decreases the potential value by at most `α. Thus, W (T ) is a

lower bound.

Now we prove that Algorithm 7 sorts using cost O(W (T )), which establishes an O(1)-approximation

ratio. We first prove a lemma about the number w(i, T ) of wrong-sided elements.

Lemma 45. If T is a bit sequence of length n and i is an integer 1 ≤ i ≤ n, and we add a 0 or 1 to either

the right or the left end of T to create a new sequence T ′, the value of w(i, T ) increases monotonically, i.e.,

w(i, T ′) ≥ w(i, T ).

Proof. If a 0 is added to the right end, then the extra number of 1’s on the left side of i and the extra

number of 0’s on the right side of i only increases. If a 1 is added to the right end, then the extra number

of 1’s on the left side of i and the extra number of 0’s on the right side of i do not change. The argument

is symmetric when a 0 or 1 is added to the left side of the sequence. Thus, w(i, T ) only increases when we

extend the sequence at either end.

Thus, we have the following corollary:

Corollary 46. If T is a bit sequence, TL is the subsequence of the left k elements, and TR is the subsequence

of the right n− k elements, then for any 1 ≤ i ≤ n,

w(i, T ) ≥

{

w(i, TL), 1 ≤ i ≤ k,

w(i− k, TR), k < i ≤ n.

Proof. The number of wrong-sided elements w(i, TL) is increased to w(i, T ) by adding TR of length n − k

to TL’s right end. The number of wrong-sided elements w(i− k, TR) is increased to w(i, T ) by adding TL of

length k to TR’s left end.

Lemma 47. The algorithm kBasedDC (Algorithm 7) sorts any sequence T with cost O(W (T )).

Proof. Recall that there are k 0’s, so the lengths of TL and TR are k and n − k, respectively. Define cost

C(T ) to be the cost of this algorithm to sort sequence T .

In the last “conquer” step of kBasedDC, we reverse w(k, T ) wrong-sided elements with respect to position

k for a cost of w(k, T )α. Thus, we have the following recurrence for C(T ):

C(T ) = C(TL) + C(TR) + w(k, T )α.

For future analysis, we now want to prove that

W (T ) −W (TL) −W (TR) ≥ c w(k, T )α,

for some constant c. To do so, we define

∆(i) =

{

[w(i, T )]
α−1
− [w(i, TL)]

α−1
, i ≤ k,

[w(i, T )]
α−1
− [w(i− k, TR)]

α−1
, i > k.

From Corollary 46, we know that ∆(i) ≥ 0. Therefore,

W (T )−W (TL)−W (TR) =
n∑

i=1
∆(i)

≥
k+w(k,T )/4∑

i=k−w(k,T )/4

∆(i).
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Because shifting the position i in the sequence to the left or right by 1 can change the number of wrong-

sided elements by at most 2, for any 1 ≤ j ≤ w(k, T )/4, w(k − j, T ) ≥ w(k, T ) − 2j and w(k + j, T ) ≥

w(k, T )− 2j.

Notice w(k, TL) = 0 and w(0, TR) = 0. For the same reason as above we know that for any 1 ≤ j ≤

w(k, T )/4, w(k − j, TL) ≤ w(k, TL) + 2j = 2j and w(j, TR) ≤ w(0, TR) + 2j = 2j.

Thus, since
[
w(k, T )− 2j

]α−1
≥ (2j)α−1 when 0 ≤ j ≤ w(k, T )/4, we have

W (T )−W (TL) −W (TR) ≥
k+w(k,T )/4∑

i=k−w(k,T )/4

∆(i)

≥

w(k,T )/4
∑

j=0

{[
w(k, T )− 2j

]α−1
− (2j)α−1

}

≥

w(k,T )/8
∑

j=0

{[
w(k, T )− 2j

]α−1
− (2j)α−1

}

≥
w(k, T )

8

[
(3/4)α−1 − (1/4)α−1

]
w(k, T )α−1

=
1

8

[
(3/4)α−1 − (1/4)α−1

]
w(k, T )α.

By induction on the length of T , we prove that W (T ) ≥ c C(T ), where

c = min

{
1

8

[
(3/4)α−1 − (1/4)α−1

]
,
1

2

}

.

Base case: if |T | = 2, then we have W (T ) = 2α−1 and C(T ) = 2α, and the inequality holds. Induction

step: assume the inequality holds for all sequences of length smaller than or equal to n. We need to prove

the inequality for sequences T of length n + 1. Since T is of length n + 1, the subsequences TL and TR are

of length smaller than or equal to n. Hence, by the induction step:

W (T ) ≥ W (TL) + W (TR) + cw(k, T )α ≥ c[C(TL) + C(TR) + w(k, T )α] = c C(T ).

PSBR: O(lg n) Approximation Algorithm When 1 < α < 2

We give an approximation algorithm for sorting a permutation π, which is a surprising enhancement

of the sorting Algorithm PermutationSort DivideConquer (Algorithm 3) from Section 3.1. We add one

intermediate step: after we divide the sequence π into two halves about the median and sort them as a 0/1

sequence using the Algorithm kBasedDC (Algorithm 7) with reversal series % = ρ1 · · ·ρm, we sort each half to

return the elements to the same order as in π. Let πL and πR be the left and right halves after performing

reversal series %. Then, πL · %
Tran|πL

and πR · %
Tran|πR

will return the elements in each half to their original

order, here %Tran = ρm · · ·ρ1 is the reversed order of %. After this step we recursively sort each half. At first

glance, this modification seems to increase the complexity, but, in fact the complexity is reduced enough to

approximate the optimal sorting cost to within a logarithmic factor.

Algorithm 8 reorderReversalSort has the following performance:

Theorem 48. The algorithm reorderReversalSort (Algorithm 8) is an O(lg n) approximation algorithm

when 1 < α < 2.

Proof. Let opt(π) be the optimal cost to sort permutation π. The cost for Step 2 is at most O(opt(π))

by Lemma 47. The cost for Step 3 is at most the cost of Step 2, and hence is at most O(opt(π)). This
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Algorithm 8 reorderReversalSort (π)

1: T ← permTo01(π)

2: kBasedDC (T ), with reversal series %

3: π′
L ← πL · %

Tran|πL
and π′

R ← πR · %
Tran|πR

4: reorderReversalSort (π′
L)

5: reorderReversalSort (π′
R)

follows from Observation 39, and because the inverse of a reversal is itself, and we are just doing the

inverse restricted permutation on left and right subsequences. We also know from Observation 39 that

opt(π′
L) + opt(π′

R) ≤ opt(π) because π′
L and π′

R are disjoint subsequences of the original sequence π. Thus,

the cost of Algorithm 8 is

C(π) = C(π′
L) + C(π′

R) + cost of Steps 2 and 3,

and with a simple induction we establish the O(lg n) approximation.

6.2 PSBR: O(lg n) Approximation Algorithm When α = 1

The Algorithm ReorderSortLinearF (Algorithm 9) for the case of α = 1 is modified from Algorithm

reorderReversalSort (Algorithm 8) by using the optimal 0/1 sorting algorithm designed for α = 1. Using

Algorithm 4 (zerOneSort) as a subroutine in Step 2 of Algorithm 9 (ReorderSortLinearF) guarantees a

logarithmic approximation ratio for α = 1. The proof uses similar ideas to those in Theorem 48.

Algorithm 9 ReorderSortLinearF (π)

1: T ← permTo01(π)

2: zerOneSort (T ) (Algorithm 4), with reversal series %

3: π′
L ← πL · %

Tran|πL
and π′

R ← πR · %
Tran|πR

4: ReorderSortLinearF (π′
L)

5: ReorderSortLinearF (π′
R)

Theorem 49. The Algorithm ReorderSortLinearF (Algorithm 9) is an O(lg n) approximation algorithm

when α = 1 .

Proof. In each recursive round, the Algorithm zerOneSort (Algorithm 4) costs less than the optimal per-

mutation sort, since sorting the permutation implies sorting the induced 0/1 sequence. The result follows

because we perform Θ (lg n) levels of recursive of Algorithm 4, zerOneSort.

6.3 Approximation Algorithms When 0 ≤ α < 1

We first give an O(lgn)-approximation algorithm for sorting 0/1 sequences. A 0/1 sequence can be viewed

as composed of zero blocks (0’s) and one blocks (1’s). Without loss of generality, suppose the sequence is

in this form: 1w10w2 · · ·1w2g−10w2g . By symmetry, all other cases can be reduced to this case. We have the

following lower bound:

Lemma 50. A lower bound on opt(T ) to sort a sequence T = 1w10w2 · · ·1w2g−10w2g by reversals when

0 ≤ α < 1 is

V (T ) =
1

2

2g
∑

i =1

|wi|
α.
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Proof. We prove by induction on j that if a solution uses exactly j reversals, then the cost is at least V (T ).

When j = 1, one reversal sorts the blocks. So the original sequence must be 1w10w2 . The cost is (|w1|+|w2|)
α,

which is greater than (|w1|
α + |w2|

α)/2.

Suppose for all integers less than j, the claim holds. Then for j + 1, assume the first reversal ρ of length

` in the optimal solution changes the sequence T to T ′, where T ′ has a solution with j reversals. We know

from the inductive assumption assumption that the cost opt(T ′) ≥ V (T ′). Because the optimal cost to sort

T is the cost to sort T ′ plus the cost of the reversal ρ,

opt(T ) = opt(T ′) + `α ≥ V (T ′) + `α.

We show V (T ′) + `α ≥ V (T ) in the following, thus proving that V (T ) is a lower bound.

Since 0 ≤ α < 1, for any positive integers x and y, we have xα + yα ≥ (x + y)α. Then we know, the

decrease of V (T ) by one reversal can only be caused by two blocks (or even sub-blocks generated by reversal

ρ’s edge splitting a block) merging into each other. Let two blocks B1 (out of reversal ρ) of length a and B2

(in reversal ρ, might be a sub-block from ρ) of length b merge each other at one side of reversal ρ, then the

decrease of V (T ) is [aα + bα − (a + b)α]/2, which is less than bα/2 ≤ `α/2. Note that a reversal can at most

merge two blocks at both sides, we know that the whole decrease of V (T ) is at most `α/2 + `α/2 = `α, which

means

V (T )− V (T ′) ≤ `α.

BSBR: O(lg n) Approximation Algorithm When 0 ≤ α < 1

The approximation algorithm is based on divide-and-conquer: Map each block of 0’s or 1’s to a single

element 0 or 1 in a new sequence T ′, ignoring the block of 0’s at the leftmost position and the block of 1’s

at the rightmost position if they exist. Use Algorithm 1 (ZerOneSort DivideConquer) from Section 3 to

determine the reversals to sort sequence T ′. Map back each element in T ′ onto a block in T , and map each

reversal back according to the same mapping. Algorithm 10 (BlockMapping) implements this mapping.

Algorithm 10 BlockMapping (T ′, ρ)

1: l← left end of ρ

2: r← right end of ρ

3: l′ ←
l−1∑

j=1
T ′

j .weight + 1

4: r′ ←
r∑

j=1

T ′
j .weight

5: return ρ′(l′, r′)

Algorithm 11 BlockDC (T )

1: scan T to find (w1, w2, . . . , w2g) such that T = 1w10w2 · · ·1w2g−10w2g

2: T ′ ← 1010 · · ·10 and T ′
i sup .weight = wi

3: ZerOneSort DivideConquer (T ′), with reversal series % = ρ1 · · ·ρm

4: for j = 1 to m do

5: ρT ← BlockMapping(T ′ · ρ1 · · ·ρj−1, ρj)

6: T ← T · ρT

7: end for

29



Thus, we just perform the standard divide-and-conquer algorithm from Section 3, but on the 0/1 blocks.

The performance guarantees are based on the following structural lemma:

Lemma 51. In algorithm BlockDC (Algorithm 11) each element takes part in at most lg n reversals.

Proof. For each recursive step, an element appears in at most one reversal. There are lg n recursive steps,

and thus each element appears in at most lg n reversals.

The above algorithm performs as follows:

Theorem 52. The algorithm BlockDC (Algorithm 11) is an O(lg n)-approximation algorithm when 0≤α<1.

Proof. Suppose reversal ρ of length ` contains blocks wp, wp+1, . . . , wq. Because when 0 ≤ α < 1, `α ≤
q∑

i=p

wα
i .

Thus, the total cost is at most the sum of cost for reversing each block times the number of reversals containing

the block, which is at most lg n times the total cost for reversing the blocks, which is 2V (T ). Because V (T )

is a lower bound on opt, we obtain an O(lgn)-approximation.

BSBR: O(1) Approximation Algorithm When 0 ≤ α < 1

We obtain a constant approximation by improving the splitting as follows: If there is any 0/1 block of

size at least n/3, perform a reversal of length at most n to move this block to the edge of the sequence (a 0

block moves to the front, and a 1 block moves to the back). Then remove this block from the sequence T

and sort the rest of sequence T ′ recursively. If there are no blocks of 0’s or 1’s of size at least n/3, then there

exists a block edge at a distance at least n/3 from both ends. Split the whole sequence T at this edge to

form left and right subsequences TL and TR. Sort TL and TR recursively, then perform a reversal of length

at most n = |TL|+ |TR|, and the sequence T is sorted.

Algorithm 12 ImprovedDC (T )

1: scan T to find (w1, w2, . . . , w2g) such that T = 1w10w2 · · ·1w2g−10w2g

2: if wi ≥ n/3 then

3: if i is odd then

4: T = 1w1 · · ·0wi−10w2g1w2g−1 · · ·0wi+1

5: else

6: T = 1wi−10wi−2 · · ·1w11wi+1 · · ·0w2g

7: end if

8: end if

9: find left half TL and right half TR such that |TL|, |TR| ≥ n/3

10: ImprovedDC (TL)

11: ImprovedDC (TR)

12: i← 1 + #0(TL)

13: j ← |TL|+ #0(TR)

14: perform one more reversal ρ(i, j) to finish sorting

Theorem 53. The algorithm ImprovedDC (Algorithm 12) is an O(1) approximation algorithm for sorting

0/1 sequences for α = 1.

Now we prove that this algorithm will sort any 0/1 sequence T with cost at most O(V (T )). Before we

begin the main proof, we need some definitions and lemmas:
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Definition 54. Define constant t is

t =
1

(1/3)α + (2/3)α
(< 1).

Define functions δ(T ) and β(T ) of sequence T recursively as follows:

• For a subsequence T ′ composed only of 0’s or only of 1’s with length b, δ(T ′) = β(T ′) = bα.

• If there is any 0/1 block B of size w ≥ n/3, we let δ(T ) = tδ(T ′) + wα and β(T ) = β(T ′) + wα, where

T ′ is the subsequence of T with the block B removed.

• If there is no 0/1 block of size at least n/3, then we can find a block B whose distances from one

end to both ends of the sequence T are bigger than n/3. We split the sequence T at this end to two

subsequence: left one TL and right one TR. Let δ(T ) = t[δ(TL) + δ(TR)] and β(T ) = β(TL) + β(TR) +

δ(T ).

Lemma 55. For
n

3
≤ x ≤ n, we have that g(x) , t(n− x)α + xα − nα ≥ 0.

Proof. First, because g′′(x) = α(α − 1)[ t(n − x)α−2 + xα−2] < 0, g(x) is upper concave. If we check the

value of g(x) at the boundary x = n/3, we have that

g(x) =

[
1

(1/3)α + (2/3)α
(2/3)α + (1/3)α

]

nα − nα ≥

[
(1/3)α + (2/3)α

(1/3)α + (2/3)α
− 1

]

nα = 0.

At the boundary x = n, g(x) = 0.

Thus, we have g(x) ≥ 0 for all n/3 ≤ x ≤ n. At the same time, if n/3 ≤ x ≤ 2n/3, then we get the

stronger inequality using the same method of proof:

t(n− x)α + txα − nα ≥ 0. (9)

Lemma 56. For any 0/1 block sequence T = 1w10w2 · · ·1w2g−10w2g , we have

β(T ) ≤
1

1− t

2g
∑

i=1

wα
i =

2

1− t
V (T ).

Proof. If we write down β(T ) in terms of wα
i , we observe that it is the sum of tj · wα

i , and each (i, j) pair

could appear at most once. Thus β(T ) is bounded above by the sum

2g
∑

i=1

∞∑

j=0

tjwα
i =

1

1− t

2g
∑

i=1

wα
i .

Lemma 57. For any sequence T of length n, we have δ(T ) ≥ nα.

Proof. We prove this by induction on r, the number of blocks in T . The base case is that the sequence is

just one 0/1 block. Then lemma holds trivially.

We now assume that the claim holds when the number of blocks is less than r. Then for r + 1 blocks,

there are two cases as follows:

If there is any 0/1 block B of size w at least n/3, from Lemma 55, we have

δ(T ) = tδ(T ′) + wα ≥ t(n− w)α + wα ≥ nα.
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If there is no 0/1 block of size at least n/3, then from (9), we have

δ(T ) = t[δ(TL) + δ(TR)] ≥ t(|TL|
α + |TR|

α) ≥ nα.

Define C(T ) to be the cost of sorting 0/1 sequence T using Algorithm 12 (ImprovedDC). The following

theorem will also establish Theorem 53.

Theorem 58. Let T be a 0/1 sequence of length n, composed of 0/1 blocks B1, B2, . . . , Br of sizes w1, w2, . . . , wr.

The sorting cost of Algorithm 12 when applied to T is less than 3αβ(T ) = O(V (T )).

Proof. The proof is by induction on the number of blocks r.

The base case is r = 1, i.e., the sequence is a single block. We can sort it with no cost, which is less than

β(T ).

For inductive step, assume that the assumption holds for all number of blocks at most r. Then for r + 1

blocks, there are two cases: one is that there is some block B of size w at least n/3; the other is that all

blocks have size less than n/3.

In the case one, we do a reversal of length at most n to move this block B to the edge of sequence T .

Let T ′ be the subsequence of T after removing the block B, then β(T ) = β(T ′) + wα. There are at most r

blocks in the sequence T ′, which means C(T ′) ≤ 3αβ(T ′). Now we have

C(T ) ≤ nα + C(T ′) ≤ (3w)α + 3αβ(T ′) = 3αβ(T ).

In the case two, if TL and TR are the left and right subsequences in the algorithm, then β(T ) = β(TL) +

β(TR) + δ(T ). Because we can sort the sequence T by sorting TL and TR recursively and one more reversal

with length at most n across the median, then we have that

C(T ) ≤ C(TL) + C(TR) + nα ≤ 3αβ(TL) + 3αβ(TR) + δ(T ) ≤ 3αβ(T ).

6.4 Approximation and Exact Algorithms for Large α

We now give exact and approximate algorithms for sorting by reversals for large α. We show that when

α ≥ 2, bubble-sort is optimal for sorting 0/1 sequences, and when α ≥ 3 it is also optimal for permutations.

BSBR When α ≥ 2

We consider first the sub-class of algorithms using only reversals of length 2.

Lemma 59. When α ≥ 2, bubble sort is optimal among all algorithms using only reversals of length 2.

Proof. Let T = t1, . . . , tn be a 0/1 sequence, and consider reversal series composed of length-2 reversals. We

say that two elements ti and tj are in correct order if ti ≤ tj , i < j. We define an order function X(i, j) for

element pair ti, tj to be

X(i, j) =

{

0, ti ≤ tj and i < j,

1, otherwise.

For any sequence T , we define the potential function to be the number of pairs of elements in reverse order:

P (T ) =
∑

1≤i<j≤n

X(i, j).

Each reversal decreases the potential value by at most 1. Thus, it requires at least P (T ) reversals to sort

T and sorting cost at least 2αP (T ). Since each reversal in bubble-sort decreases this number by exactly 1,

bubble sort is optimal over algorithms using only length-2 reversals.
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We now show that if α ≥ 2, it never makes sense to perform reversals greater than 2.

Theorem 60. Bubble-sort sorts 0/1 sequences optimally when α ≥ 2.

Proof. We prove that there are no reversals of length greater than 2 in the optimal sorting sequence. For the

sake of contradiction, suppose there is at least one reversal of length ` ≥ 3 in the optimal sorting sequence.

The cost of this reversal is `α. Suppose that there are k 1’s and ` − k 0’s in this reversal. Replace this

reversal in the solution by length-2 reversals with bubble-sort. For each 0 element, bubble-sort requires k

length-2 reversals (since each 0 element needs to be flipped with k 1’s). In total, bubble-sort requires k(`−k)

length-2 reversals for the `− k 0’s. Therefore, its total cost is k(` − k)2α. Observe that

k(` − k)2α ≤
`

2

`

2
2α ≤ 2α−2`2 < `α.

Thus, we can replace any reversal of length at least 3 with length-2 reversals with lower cost, meaning that

no reversals of length greater than 2 appear in the optimal sorting sequence.

From Lemma 59, bubble-sort is optimal among all sorting solutions with length-2 reversals, establishing

the theorem.

Sorting Permutations for α ≥ 2 and α ≥ 3

We now show how bubble-sort performs on permutations for large α. For α ≥ 2, we have the following

approximation bound:

Theorem 61. Bubble-sort is a 2-approximation algorithm for sorting permutations in the case α ≥ 2.

Proof. We show that given an optimal sorting sequence of cost opt(π), there is a length-2-reversal solution

of cost at most 2opt(π). For each reversal in the optimal sequence, replace it by a sequence of reversals of

length 2 with bubble-sort. A reversal of length ` is replaced by `(`−1)/2 length-2 reversals using bubble-sort.

Therefore the total cost of the new length-2 reversals sorting sequence is at most

2α ·
`(` − 1)

2
≤ 2α−1`2 ≤ 2`α−2`2 = 2`α.

Once α ≥ 3, bubble-sort becomes optimal. Thus, Caprara’s hardness proof [10] for α = 0 does not extend

automatically to all cost functions.

Theorem 62. Bubble-sort optimally sorts permutations when α ≥ 3.

Proof. We show that reversals of length greater than 2 can be replaced by length-2 reversals while decreasing

the sorting cost. Consider an optimal sorting sequence, and suppose it has a reversal of length ` ≥ 3 with

sorting cost of `α. Replace this reversal with reversals of length-2 using bubble-sort. The cost of bubble-sort

in this step is at most 2α−1`(` − 1).

If ` = 3, then
3(3− 1)

2
· 2α ≤ 3 · 2α < 3α.

If ` ≥ 4, we have:

2α `(` − 1)

2
< 2α−1`2 ≤ `α−2`2 = `α.

Thus, we can replace any long reversal by length-2 reversals at a lower cost, meaning that any reversal of

length great than 2 cannot occur in the optimal sorting sequence. The theorem follows from Lemma 59.
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7 Conclusions

In this paper we studied the problem of sorting by length-weighted reversals. There are many previous

papers on sorting by reversals, and most earlier papers assume that all reversals have the same cost. The

motivation for much work on sorting by reversals, including this paper, comes from comparative genomics,

and in this field, it has been shown to be reasonable to weight the cost of a reversal by its length `. This

paper presents the first comprehensive analysis of sorting by length-weighted reversals, for a wide range of

cost functions f(`) = `α.

The length-weighted problem introduces richness and variety to sorting by reversals for both sorting 0/1

sequences and permutations. In our algorithms, a main strategy was to use 0/1-sorting as the principal

workhorses for sorting permutations. We found that the 0/1 problem becomes appealing once reversals have

weights. In particular, if α = 0, then the problem is straightforward: any reversal reduces the number of 0/1

blocks by at most two. On the other hand, for α > 0, the problem is sensitive to the length and the order of

the reversals; a special structure was needed to show that the problem remains solvable in polynomial time

for α = 1. The problem is still open for other values of α ∈ (0, 1)∪ (1, 2).

We found one universal algorithm for sorting all “interesting” values of α, i.e., α ∈ (0, 2), although we

needed different proofs to show that its worst-case performance was tight or near tight for different ranges

of α. However, for both 0/1 sequences and permutations, we needed different algorithms to approximate

the optimal sorting cost for α ∈ (0, 1) and α ∈ (1, 2). It is still an open question to find a nontrivial

approximation algorithm for sorting permutations for 0 < α < 1.

Many questions remain about applying these models and techniques to comparative genomics. For

example, it is an open question which cost function is most biologically relevant. It remains to be shown

whether a single cost function is appropriate for all biological applications or whether different functions

should be used in different situations.
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