
Maintaining Arrays of Contiguous Objects

Michael A. Bender1, Sándor P. Fekete2, Tom Kamphans2?, and Nils Schweer2

1 Department of Computer Science State University of New York at Stony Brook
Stony Brook, NY 11794-4400, USA

2 Braunschweig University of Technology, Department of Computer Science,
Algorithms Group, 38106 Braunschweig, Germany

Abstract. In this paper we consider methods for dynamically storing
a set of different objects (“modules”) in a physical array. Each module
requires one free contiguous subinterval in order to be placed. Items
are inserted or removed, resulting in a fragmented layout that makes
it harder to insert further modules. It is possible to relocate modules,
one at a time, to another free subinterval that is contiguous and does
not overlap with the current location of the module. These constraints
clearly distinguish our problem from classical memory allocation. We
present a number of algorithmic results, including a bound of Θ(n2) on
physical sorting if there is a sufficiently large free space and sum up
NP-hardness results for arbitrary initial layouts. For online scenarios in
which modules arrive one at a time, we present a method that requires
O(1) moves per insertion or deletion and amortized cost O(mi lg m̂) per
insertion or deletion, where mi is the module’s size, m̂ is the size of the
largest module and costs for moves are linear in the size of a module.

1 Introduction

Maintaining a set of objects is one of the basic problems in computer science. As
even a first-year student knows, allocating memory and arranging objects (e.g.,
sorting or garbage collection) should not be done by moving the objects, but
merely by rearranging pointers.

The situation changes when the objects to be sorted or placed cannot be
rearranged in a virtual manner, but require actual physical moves; this is the
case in a densely packed warehouse, truck or other depots, where items have to
be added or removed. Similarly, allocating space in a fragmented array is much
harder when one contiguous interval is required for each object: Even when there
is sufficient overall free space, placing a single item may require rearranging
the other items in order to create sufficient connected free space. This scenario
occurs for the application that initiated our research: Maintaining modules on
a Field Programmable Gate Array (FPGA); reconfigurable chips that consist of
a two-dimensional array of processing units. Each unit can perform one basic
operation depending on its configuration, which can be changed during runtime.
A module is a configuration for a set of processing units wired together to fulfill
? Supported by DFG grant FE 407/8-3, project “ReCoNodes”

2 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

MkMjMi Ml

Fig. 1. A module corresponds to a set of columns on an FPGA. Each module occupies
a contiguous block of array cells. Module Mi is shifted and module Mj is flipped. The
move of module Mk is forbidden, because the current and the target position overlap.
If these kind of moves would be allowed connecting the total free space could always
be done by shifting all modules to one side.

a certain task. As a lot of FPGAs allow only whole columns to be reconfigured,
we allow the modules to occupy only whole columns on the FPGA (and deal
with a one-dimensional problem). Moreover, because the layout of the modules
(i.e., configurations and interconnections of the processing units) is fixed, we
have to allocate connected free space for a module on the FPGA. In operation,
different modules are loaded onto the FPGA, executed for some time and are
removed when their task is fulfilled, causing fragmentation on the FPGA. When
fragmentation becomes too high (i.e., we cannot place modules, although there
is sufficent free space, but no sufficent amount of connected free space), the
execution of new task has to be delayed until other tasks are finished and the
corresponding modules are removed from the FPGA. To reduce the delay, we
may reduce fragmentation by moving modules. Moving a module means to stop
its operation, copy the module to an unoccupied space, restart the module in the
new place, and declare the formerly occupied space of the module as free space;
see Figure 1. Thus, it is important that the current and the target position of
the module are not overlapping (i.e., they do not share a column). This setting
gives rise to two approaches: We may either use simple placing strategies such
as first fit and compact the whole FPGA when necessary (as discussed in [1]), or
use more elaborated strategies that organize the free space and avoid the need
for complete defragmentations.

Related Work. There is a large body of work on storage allocation; e.g., [2]
for an overview and [3, 4] for competitive analysis of some algorithms. Many
storage allocation algorithms also have analogues in bin packing [5]. The salient
feature of most traditional memory-allocation and bin-packing heuristics is that
once an item is allocated, it cannot be moved, unlike the model is this paper.
There is also a tremendous amount of work on classical sorting (see, e.g., [6]).

Physical allocation, where elements can be placed and then moved, has re-
ceived less attention. Itai, Konheim, and Rodeh consider maintaining n unit-size
objects sorted in an O(n) sized array by appropriately maintaining a linear num-
ber of gaps interspersed between the elements at an amortized cost of O(lg2 n)
per insert, and the problem is deamortized in [7]. The packed memory array
Bender, Demaine, and Farach-Colton [8] and Bender and Hu [9] investigate a
similar problem in the context of external-memory and cache-oblivious algo-
rithms. Bender, Farach-Colton, and Mosteiro [10] show that probabilistically a
modified insertion sort runs in O(n lg n) by leaving appropriate gaps between

Maintaining Arrays of Contiguous Objects 3

elements. In these papers, elements have unit size and there is a fixed order that
needs to be maintained dynamically, unlike the problem in this paper.

A different problem is described by [11], who consider densely packed physical
storage systems for the U.S. Navy, based on the classical 15-puzzle, where items
can be moved to an adjacent empty cell. How should one arrange and maintain
the set of free cells, and how can objects be retrieved as quickly as possible?

Finally, if the sequence of modules (i.e., their size, processing time, and arrival
time) is fully known, then the problem can be stated as a strip packing problem
(without rotation) with release times for rectangles with widths and heights
corresponding to the module’s size and time, respectively. There is a (1 + ε)-
approximation for (classical) offline strip packing [12]. For the case with release
times, Augustine et al. [13] give a O(lg n) approximation and a 3-approximation
for heights bounded by one. For approaches from the FPGA community see [1]
and the references cited in this paper.

This Paper. Dealing with arrangements of physical objects or data that
require contiguous memory allocation and nonoverlapping moves gives rise to a
variety of problems that are quite different from virtual storage management:
– Starting configuration vs. full management. We may be forced to start from

an arbitrary configuration, or be able to control the placement of objects.
– Physical sorting. Even when we know that it is possible to achieve connected

free space, we may not want to get an arbitrary arrangement of objects, but
may be asked to achieve one in which the objects are sorted by size.

– Low-cost insertion. We may be interested in requiring only a small number
of moves per insertion, either on average, or in the worst case.

– Objective functions. Depending on the application scenario, the important
aspects may differ: We may want to minimize the moves for relocating ob-
jects, or the total mass that is moved. Alternatively, we may perform only
very few moves (or none at all), at the expense of causing waiting time for
the objects that cannot be placed; this can be modeled as minimizing the
makespan of the corresponding schedule.

Main Results. Our main results are as follows:
– We demonstrate that sorting the modules by size may require Ω(n2) moves.
– We show that keeping the modules in sorted order is sufficient to maintain

connected free space and to achieve an optimal makespan, requiring O(n)
moves per insertion or deletion.

– We give an alternative strategy that guarantees connected free space; in most
steps, this requires O(1) moves for insertion, but may be forced to switch to
sorted order in O(n2) moves for high densities.

– We present an online method that needs O(1) moves per insertion or deletion.
– We perform a number of experiments to compare the strategies.
– For the sake of completeness, we briefly cite and sketch that it is strongly

NP-hard to find an optimal defragmentation sequence when we are forced to
start with an arbitrary initial configuration, that (unless P is equal to NP) it
is impossible to approximate the maximal achievable free space within any
constant, and prove that achieving connected space is always possible for
low module density.

4 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

The rest of this paper is organized as follows. In Section 2, we introduce
the problem and notation. Section 3 discusses aspects of complexity for a (pos-
sibly bad) given starting configuration. Section 4 focuses on sorting. Section 5
introduces two insertion strategies that always guarantee that free space can be
made connected. Moreover, we present strategies that achieve low (amortized or
worst-case) cost per insertion. Some concluding thoughts are given in Section 6.

2 Preliminaries

Motivated by our FPGA application, we model the problem as follows: Let A be
an array (e.g., a memory or FPGA columns) that consists of |A| cells. A module
Mi of size mi occupies a subarray of size mi in A (i.e., mi consecutive cells). We
call a subarray of maximal size where no module is placed a free space. The ith
free space (numbered from left to right) is denoted by Fi and its size by fi.

A module located in a subarray, As, can be moved to another subarray, At,
if At is of the same size as As and all cells in At are empty (particularly, both
subarrays do not have a cell in common). Moves are distinguished into shifts
and flips: If there is at least one module located between As and At we call the
move a flip, otherwise a shift; see Fig. 1. Following the two approaches mentioned
in the introduction, we are mainly interested in the following problems.

Offline Defragmentation: We start with a given configuration of modules
in an array A and look for a sequence of moves such that there is a free space of
maximum size. We state the problem formally:
Given: An array A, and a set of modules, M1,M2, ...,Mn, placed in A.
Task: Move the modules such that there is a free space of maximum size.

Online Storage Allocation: This problem arises from inserting a sequence
of modules, M1, M2, . . . ,Mn, which arrive in an online fashion, the next module
arrives after the previous one has been inserted. After insertion, a module stays
for some period of time in the array before it is removed; the duration is not
known when placing an object. If an arriving module cannot be placed (because
there is no sufficient connected free space), it has to wait until the array is
compacted or other modules are removed. The modules in the array can be
moved as described above to create free space for further insertions.

Our goals are twofold: On the one hand we want to minimize the makespan
(i.e., the time until the last module is removed from the array) and, on the other
hand, we want to minimize the costs for the moves. Moves are charged using
a function, c(mi), which is linear in mi. For example, we can simply count the
number of moves using c1(mi) := 1, or we count the moved mass (i.e., we sum
up the sizes of the moved modules) with c2(mi) := mi. Formally:
Given: An empty array, A, a sequence of modules, M1,M2, ...,Mn, arriving one
after the other.
Task: Place the modules in A such that (1) the makespan and (2) the total costs
for all moves performed during the insertions is minimized.

Maintaining Arrays of Contiguous Objects 5

3 Offline Defragmentation

In this section, we assume that we are given an array that already contains n
modules. Our task is to compact the array; that is, move the modules such that
we end up with one connected free space. Note that a practical motivation in
the context of dynamic FPGA reconfiguation as well as some heuristics were
already given in our paper [1]. As they lay the basis of some of the ideas in the
following sections and for the sake of completeness, we briefly cite and sketch
the corresponding complexity results.

Theorem 1 Rearranging an array with modules M1, . . . ,Mn and free spaces
F1, . . . , Fk such that there is a free space of maximum size is strongly NP-
complete. Moreover, there is no deterministic polynomial-time approximation
algorithm within any polynomial approximation factor (unless P=NP).

The proof is based on a reduction of 3-PARTITION, see Figure 2. The sizes
of the first 3k modules correspond to the input of a 3-PARTITION instance,
the size of the free spaces, B, is the bound from the 3-PARTITION instance.
We can achieve a free space of maximum size, if and only if we can move the
first 3k modules to the free spaces, which corresponds to a solution for the 3-
PARTITION instance. The inapproximability argument uses a chain of immobile
modules of increasing size that can be moved once a 3-PARTITION has been
found, see [1].

This hardness depends on a number of immobile modules, i.e., on relatively
small free space. If we define for an array A of length |A| the density to be
δ = 1

|A|
∑n

i=1 mi, it is not hard to see that if

δ ≤ 1
2
− 1

2|A|
· max

i=1,...,n
{mi} or (1)

max
i=1,...,n

{mi} ≤ max
j=1,...,k

{fj} . (2)

is fulfilled, the total free space can always be connected with 2n steps by Algo-
rithm 1 which shifts all modules to the right in the first loop and all modules to
the left in the second loop. Starting at the right and left end, respectively.

Theorem 2 Algorithm 1 connects the total free space with at most 2n moves
and uses O(n) computing time.

In the following, we use the idea of Algorithm 1 for maintenance strategies
that can accommodate any module for which there is sufficient total free space.

......

M4k+1M4kM3k+3M3k+2M3M2M1 M3k+1M3k

kB kB + 1B

Fig. 2. Reducing 3-Partition to the MDP.

6 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

Input: An array A with n modules M1, . . . , Mn (numbered from left to right)
such that Eq. (1) or Eq. (2) is fulfilled.

Output: A placement of M1, . . . , Mn such that there is only one free space.
for i = n to 1 do1

Shift the Mi to the right as far as possible.2

for i = 1 to n do3

Shift Mi to the left as far as possible.4

Algorithm 1: LeftRightShift

4 Sorting

In the next section, we present some strategies that are based on sorting the set
of modules by their size. But more than that, sorting is always an important task.
Thus, in this section we focus on the sorting problem for modules solely. Note
that we cannot apply classical sorting algorithms such as Quicksort or Selection
Sort, because they assume that every object is of the same size. We state an
algorithm that is similar to Insertion Sort and show that it can be applied to
our setting. It sorts n modules in an array with O(n2) steps. Moreover we show
that this is best possible up to a constant factor. More precisely, we deal with the
following problem: Given an array, A, with modules M1, . . . ,Mn and free spaces
F1, . . . , Fk. Sort the modules according to their size such that there is only one
free space in A. It is necessary to be able to move every module. Therefore we
assume in this section that Eq. (2) is fulfilled in the initial placement. Note that
if Eq. (2) is not fulfilled, there are instances for which it is NP-hard to decide
whether it can be sorted or not; this follows from a similar construction as in
Section 3.

4.1 Sorting n modules with O(n2) steps

To sort a given configuration, we first apply Algorithm 1, performing O(n)
moves.3 Afterwards, there is only one free space at the right end of A and all
modules are lying side by side in A. We number the modules in the resulting
position from left to right from 1 to n. The algorithm maintains a list I of un-
sorted modules. As long as I is not empty, we proceed as follows: We flip the
largest unsorted module, Mk, to the right end of the free space and shift all
unsorted modules that were placed on the right side of Mk to the left. Note that
afterwards there is again only one free space in A.

Theorem 3 Let A be an array with modules M1, . . . ,Mn, free spaces F1, . . . , Fk,
and let Eq. (2) be satisfied. Then Algorithm 2 sorts the array with O(n2) steps.

Proof. The while loop is executed at most n times. In every iteration there is at
most one flip and n shifts. This yields an upper bound of n2 on the total number
of moves.
3 A short proof of correctness for this procedure can be found in [1].

Maintaining Arrays of Contiguous Objects 7

Input: An array A such that Eq. (2) is satisfied.
Output: The modules M1, . . . , Mn side by side in sorted order and one free

space at the left end of A.
Apply Algorithm 11

I := {1, . . . , n}2

while I 6= ∅ do3

k = argmaxi∈I{mi}4

flip Mk to the right end of the free space5

I = I \ {k}6

for i = k + 1, . . . , n and i ∈ I do7

shift Mi to the left as far as possible8

Algorithm 2: SortArray

For correctness, we prove the following invariant: At the end of an iteration
of the while loop, all Mj , j /∈ I, lie side by side at the right end of A in increasing
order (from left to right) and all Mj , j ∈ I, lie side by side at the left end of A.
We call the first sequence of modules sorted and the other one non-sorted.

Now, assume that we are at the beginning of the jth iteration of the while
loop. Let k be the index of the current maximum in I. By the induction hypoth-
esis and by Eq. (2), the module Mk can be flipped to the only free space. This
step increases the number of sorted elements lying side by side at the right end
of A. Since in every step the module of maximum is chosen, the increasing order
in the sequence of sorted modules is preserved. Furthermore, this step creates a
free space of size mk that divides the sequence of non-sorted modules into two
(possible empty) subsequences. By the numbering of the modules, the left sub-
sequence contains only indexes smaller than k. This ensures that in the second
while loop only modules from the right subsequence are shifted. Again, since Mk

is chosen to be of maximum size all shifts are well defined. At the end of the
iteration, the non-sorted modules lie side by side and so do the sorted ones. ut

4.2 A Lower Bound of Ω(n2)

We show that Algorithm 2 needs the minimum number of steps (up to a constant
factor) to sort n modules. In particular, we prove that any algorithm needs Ω(n2)
steps to sort the following example. The example consists of an even number of
modules, M1, . . . ,Mn, with size mi = k if i is odd and mi = k + 1 if i is even
for a k ≥ 2. There is only one free space of size k + 1 in this initial placement at
the left end of A, see Fig. 3.

. . .k + 1 k k + 1k k + 1kk + 1

M3M2 M4 Mn−1 MnM1

Fig. 3. Sorting an array is in Ω(n2).

8 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

Lemma 1 The following holds for any sequence of shifts and flips applied to the
instance shown in Fig. 3:

(i) There are never two free spaces, each of size greater than or equal to k.
(ii) There might be more than one free space but there is always exactly one
having either size k or size k + 1.

Proof. (i) is obvious because otherwise the sum of the sizes of the free spaces
would exceed the total free space. (ii) follows because in the last step either a
module of size k or k + 1 was moved leaving a free of size k or k + 1, resp. ut

Lemma 2 Let ALG be an algorithm that uses a minimum number of steps to
sort the above instance. Then the following holds:

(i) There is never more than one free space in A.
(ii) A module of size k will only be shifted (and never be flipped).

Proof. Consider a step that created more than one free space. This is possible
only if a module, Mi, of size k was moved (i.e., there is one free space of size k).
By Lemma 1, all other free spaces have sizes less than k. Thus, only a module,
Mj , of size k can be moved in the next step. Since we care only about the order
of the sizes of the modules not about their numbering the same arrangement
can be obtained by moving Mj to the current place of Mi and omitting the flip
of Mi (i.e., the number of steps in ALG can be decreased); a contradiction.

From (i) we know that there is always one free space of size k + 1 during the
execution of ALG. Flipping a small module to this free space creates at least
two free spaces. Hence, a small module will only be shifted. ut

Theorem 4 Any algorithm that sorts the modules in the example from Fig. 3
needs at least Ω(n2) steps.

Proof. Let ALG be an algorithm that needs the minimum number of steps.
W.l.o.g. we assume that at the end the large modules are on the left side of the
small ones. We consider the array in its initial configuration and, in particular,
a module, Mi, of size k. There are i−1

2 small modules, the same number of large
modules and one free space of size k+1 to the left of Mi. Because small modules
are only shifted in ALG the number of small modules on the left side of Mi will
not change but the number of large ones will finally increase to n

2 . Since a shift
moves Mi at most a distance of k + 1 to the right, Mi has to be shifted at least
once for every large module that is moved to Mi’s left. Taking the free space
into account this implies that Mi has to be shifted at least n

2 − (i−1
2 + 1) times,

for any odd i between 1 and n. Hence, for i = 2j − 1 we get a lower bound of∑n
2
j=1

n
2 −j = 1

8n2− 1
4n on the number of shifts in ALG. Additionally, every large

module has to be flipped at least once, because it has a small one to its left in
the initial configuration. This gives a lower bound of 1

8n2 − 1
4n+ 1

2n = 1
8n2 + 1

4n
on the total number of steps in ALG and therefore a lower bound on the number
of steps for any algorithm. ut

Maintaining Arrays of Contiguous Objects 9

5 Strategies for Online Storage Allocation

Now, we consider the online storage allocation problem, i.e., we assume that
we have the opportunity to start with an empty array and are able to control
the placement of modules. We consider strategies that handle the insertion and
deletion of a sequence of modules. AlwaysSorted achieves an optimal makespan,
possibly at the expense of requiring up to O(n2) moves per insertion; the algo-
rithm ClassSort that is designed to require very few moves, but at the cost of
larger makespan. Additionally, we present a simple local heuristic, LocalShift.

AlwaysSorted. This algorithm inserts the modules such that they are sorted
according to their size; that is, the module sizes decrease from left to right. Note
that the sorted order ensures that if a module, Mi, is removed from the array
all modules lying on the right side of Mi (these are at most as large as Mi)
can be shifted mi units to the left. Now the algorithm works as follows: Before a
module, Mj , is inserted, we shift all modules to the left as far as possible starting
at the left side of the array. Next we search for the position that Mj should have
in the array to keep the sorted order. We shift all modules lying on the right
side of the position mj units to the right if possible; after that Mj is inserted.

Theorem 5 AlwaysSorted achieves the optimal makespan. The algorithm per-
forms O(n) moves per insertion in the worst case.

Proof. All modules are shifted to the left as far as possible before the next
module is inserted. After that, there is only one free space at the right side of
A. If this free space is at least as large as the next module, the insertion is
performed, meaning that a module has to wait if and only if the total free space
is smaller than the module size; no algorithm can do better. ut

DelayedSort. The idea is to reduce the number of moves by delaying the sorting
until it is really necessary: We maintain a large free space on the left or the right
side (alternatingly). First, we check if we can insert the current module Mi, i.e.,
if mi ≤

∑
fj . Now, if we can insert Mi maintaining maxmi ≤ max fj we insert

Mi using First-Fit. Otherwise, we check if Mi can be inserted—maintaining the
above condition—after compacting the array using by shifting all modules to the
side where we currently keep the large free space, beginning with the module
next to the free space. If maintaining the condition is not possible, we sort the
array using Alg. 2 and insert the module into the single free space left after
sorting. Note that this strategy also achieves the optimal makespan.

ClassSort. For this strategy we assume that the size of the largest module at
most half the size of the array. We round the size of a module, Mi, to the next
larger power of 2; we denote the rounded size by m′

i.
We organize the array in a = dlg |A|

2 e classes, C0, C1, . . . , Ca. Class Ci has
level i and stores modules of rounded size 2i. In addition, each class reserves 0,
1, or 2 (initially 1) buffers for further insertions. A buffer of level i is a free space
of size 2i. We store the classes sorted by their level in decreasing order.

10 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

The numbers of buffers in the classes provide a sequence, S = sa, . . . , s0,
with si ∈ {0, 1, 2}. We consider this sequence as a redundant binary number;
see Brodal [14]. Redundant binary numbers use a third digit to allow additional
freedom in the representation of the counter value. More precisely, the binary
number d`d`−1 . . . d0 with di ∈ {0, 1, 2} represents the value

∑`
i=0 di2i. Thus,

for example, 410 can be represented as 1002, 0122, or 0202. A redundant binary
number is regular, if and only if between two 2’s there is one 0, and between two
0’s there is one 2. The advantage of regular redundant binary numbers is that
we can add or subtract values of 2k taking care of only O(1) carries, while usual
binary numbers with ` digits and 11 . . . 12 + 12 = 100 . . . 02 cause ` carries.

Inserting and deleting modules benefits from this advantage: The reorganiza-
tion of the array on insertions and deletions corresponds to subtracting or adding,
respectively, an appropriate value 2k to the regular redundant binary numbers
that represents the sequence S. In details: If a module, Mj , with m′

j = 2i ar-
rives, we store the module in a buffer of the corresponding class Ci.4 If there is
no buffer available in Ci, we have a carry in the counter value; that is, we split
one buffer of level i+1 to two buffers of level i; corresponding, for example, to a
transition of . . . 20 . . . to . . . 12 . . . in the counter. Then, we subtract 2i and get
. . . 11 Now, the counter may be irregular; thus, we have to change another
digit. The regularity guarantees that we change only O(1) digits [14]. Similarly,
deleting a module with m′

j = 2i corresponds to adding 2i to S.

Theorem 6 ClassSort performs O(1) moves per insertion or deletion in the
worst case. Let m̂ be the size of the largest module in the array, c a linear
function and c(mi) the cost of moving a module of size mi. Then the amortized
cost for inserting or deleting a module of size mi is O(mi lg m̂).

Proof. The number of moves is clear. Now, observe a class, Ci. A module of size
2i is moved, if the counter of the next smaller class, Ci−1, switches from 0 to 2
(for the insertion case). Because of the regular structure of the counter, we have
to insert at least modules with a total weight of 2i−1 before we have to move
a module of size 2i again. We charge the cost for this move to theses modules.
On the other hand, we charge every module at most once for every class. As we
have lg m̂) classes, the stated bound follows. The same argument holds for the
case of deletion. Note that we move modules only, if the free space inside a class
is not located on the right side of the class (for insertion) or on the left side (for
deletion). Thus, alternatingly inserting and deleting a module of the same size
does not result in a large number of moves, because we just imaginarily split
and merge free spaces. ut

LocalShift. We define the distance between two blocks (modules or free spaces)
as the number of blocks that lie between these two blocks. For a free space Fi

we call the set of blocks that are at most at a distance k ∈ N from Fi the
k-neighborhood of Fi. The algorithm LocalShift works as follows: If possible
4 Initially, the array is empty. Thus, we create the classes C1, . . . , Ci if they do not

already exist, reserving one free space of size 2k for every class Ck.

Maintaining Arrays of Contiguous Objects 11

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100 150 200 250 300 350 400 450 500

Size exponentially

Time, Duration exponentially

 0

 20

 40

 60

 80

 100

 120

 100 150 200 250 300 350 400 450 500

Size exponentially

Moves, Duration exponentially

BestFit
FirstFit

LocalShift
AlwaysSorted

DelayedSort
ClassSort

 0

 50

 100

 150

 200

 250

 300

 100 150 200 250 300 350 400 450 500

Size exponentially

Mass, Duration exponentially

Fig. 4. Experiments with exponential distribution for size and duration.

we use BestFit to insert the next module Mj . Otherwise, we look at the k-
neighborhood of any free space (from left to right). If shifting the modules from
the k-neighborhood, lying on the left side of Fi, to the left as far as possible
(starting a the left side) and the modules lying on the right side to the right as
far as possible (starting at the right side) would create a free space that is at
least as large as Mj we actually perform these shifts and insert Mj . If no such
free space can be created, Mj has to wait until at least one modules is removed
from the array. This algorithm performs at most 2k moves per insertion.

6 Comparison and Conclusion

To test our strategies, we generated a number of random input sequences and an-
alyzed the performance of our strategies as well as the simple FirstFit and Best-
Fit approaches in an array of size 210. A sequence consists of 100,000 modules,
each module has a randomly chosen size and duration time. For each sequence,
size and time are shuffled using several probability distributions. We analyzed
three objectives: the time to complete the whole sequence (the makespan), the
number of moved modules (c(mi) = 1) and the moved mass (c(mi) = mi). Our
experiments (see Fig. 4 for an example) showed that LocalShift performs very
well, as it constitutes a compromise between a moderate number moves and a
low makespan. Both makespan and moves turn out to be nearly optimal.

The more complex strategy ClassSort performed only slightly worse than Lo-
calShift concerning moves, but disappoints in its resulting makespan. In contrast,
both types of sorting-related strategies have—of course—a good makespan, but
need a lot of moves. Unsurprisingly, FirstFit and BestFit need the fewest moves
(as they perform moves only on inserting a module, but never move a previously

12 Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer

placed module). Their makespan turned out to be clearly better than ClassSort,
but worse than LocalShift and the sorting strategies.

A comparison of the sorting strategies, AlwaysSorted and DelayedSort, showed
that delaying the sorting of the array until it is really necessary pays off for the
number of moves, but not if we count the moved mass, this is because the shift
from maintaining one large free space to sorting (caused by not enough free space
to accompany the largest item) results in a sequence with several moves of the
heaviest items, which is not the case for AlwaysSorted.

We have introduced the systematic study of dynamic storage allocation for
contiguous objects. There are still a number of open questions, such as the
worst-case number of moves required to achieve connected free space or cheaper
certificates for guaranteeing that connected free space can be achieved.

References

[1] Fekete, S.P., Kamphans, T., Schweer, N., Tessars, C., van der Veen, J.C., Anger-
meier, J., Koch, D., Teich, J.: No-break dynamic defragmentation of reconfigurable
devices. In: Proc. Internat. Conf. Field Program. Logic Appl. (FPL 08). (2008)

[2] Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms.
Third edn. Volume 1. Addison-Wesley (1997)

[3] Luby, M.G., Naor, J., Orda, A.: Tight bounds for dynamic storage allocation.
SIAM Journal on Discrete Math. 9 (1996) 155–166

[4] Naor, J., Orda, A., Y.Petruschka: Dynamic storage allocation with known dura-
tions. Discrete Applied Mathematics 3 (2000) 203–213

[5] Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: A survey. In Hochbaum, D.S., ed.: Approximation Algorithms for NP-
Hard Problems. PWS Publishing Company, Boston, MA (1996) 46–93

[6] Knuth, D.E.: The Art of Computer Programming: Sorting and Searching. Third
edn. Volume 3. Addison-Wesley (1997)

[7] Willard, D.E.: A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Information and Computation
97 (1992) 150–204

[8] Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. SIAM
J. Comput 35 (2005) 341–358

[9] Bender, M.A., Hu, H.: An adaptive packed-memory array. Transactions on
Database Systems 32 (2007) Special Issue on PODS ’06.

[10] Bender, M.A., Farach-Colton, M., Mosteiro, M.A.: Insertion sort is O(n log n).
Theory of Computing Systems 39 (2006) 391–397 Special Issue on FUN ’04.

[11] Gue, K.R., Kim, B.S.: Puzzle-based storage systems. TR, Auburn University
(2006)

[12] Kenyon, C., Remila, E.: Approximate strip packing. In: Proc. 37th Annu. IEEE
Sympos. Found. Comput. Sci. (1996) 31–36

[13] Augustine, J., Banerjee, S., Irani, S.: Strip packing with precedence constraints
and strip packing with release times. In: Proc. 18th Annu. ACM Sympos. Parallel
Algor. Architect. (2006) 180–189

[14] Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 96), Atlanta,
Georgia (1996) 52–58

