
INSERTION SORT is O(n log n) ∗

Michael A. Bender† Martı́n Farach-Colton‡ Miguel Mosteiro§

Abstract

Traditional INSERTION SORT runs in O(n2) time because each insertion takes O(n) time. When
people run INSERTION SORT in the physical world, they leave gaps between items to accelerate inser-
tions. Gaps help in computers as well. This paper shows that GAPPED INSERTION SORT has insertion
times of O(logn) with high probability, yielding a total running time of O(n logn) with high probability.

Keywords

Sorting, Library Sort, Insertion Sort, Gapped Insertion Sort. ACM-class: F.2.2, E.5. arXiv: cs.DS/0407003.
CoRR Subj-class: DS-Data Structures and Algorithms.

1 Introduction

Success has its problems. While many technology companies are hemorrhaging money and employees,
Google is flush with money and hiring vigorously. Google employees are cheerful and optimistic, with the
exception of G—.

G— maintains the mailboxes at Google. The mailbox technology consist of trays arranged in linear
order and bolted to the wall. The names on the mailboxes are alphabetized. G— is grumpy after each new
hire because, to make room for the nth new employee, the names on O(n) mailboxes need to be shifted by
one.

University graduate programs in the US have also been growing vigorously, accepting as students those
talented employees downsized from high-tech companies.

At Stony Brook S— implements the mailbox protocol. Each time a new student arrives, S— makes room
for the new student’s mailbox using the same technique as G—. However, S— only needs to shift names
by one until a gap is reached, where the empty mailbox belonged to a student who graduated previously.
Because the names have more or less random rank, S— does not need to shift many names before reaching
a gap.

Both S— and G— are implementing INSERTION SORT. However, while S— is blissfully unaware that
INSERTION SORT is an O(n2) algorithm, G— continually hopes that each new hire will be named Zhang,
Zizmor, or Zyxt.

R—, the librarian at Rutgers, is astonished by all the fuss over insertions. R— inserts new books into the
stacks1 every day. R— plans for the future by leaving gaps on every shelf. Periodically, R— adds stacks to

∗In Proceedings of the Third International Conference on Fun With Algorithms, FUN 2004.
†Department of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794-4400, USA; bender@cs.sunysb.edu.
‡Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA; farach@cs.rutgers.edu.
§Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA; mosteiro@cs.rutgers.edu.
1Throughout, we mean library stacks, an ordered set of stacks, rather than lifo stacks.

1

accommodate the growing collection. Although spreading the books onto the new stacks is laborious, these
rearrangements happens so infrequently that R— has plenty of time to send overdue notices to hard-working
students and professors.

This paper shows that GAPPED INSERTION SORT, or LIBRARY SORT, has insertion times of O(logn)
with high probability, yielding a total running time of O(n logn) with high probability.

Standard INSERTION SORT

In standard INSERTION SORT we maintain an array of elements in sorted order. When we insert a new
element, we find its target location and slide each element after this location ahead by one array position to
make room for the new insertion. The ith insertion takes time O(i), for a total of O(n2). Finding the target
position of the ith element takes time O(log i) using binary search, though this cost is dominated by the
insertion cost.

LIBRARY SORT

We achieve O(logn)-time insertions with high probability by keeping gaps evenly distributed between the
inserted elements and randomly permuting the input. Then we only need to move a small number of elements
ahead by one position until we reach a gap. The more gaps we leave, the fewer elements we move on
insertions. However, we can tolerate a small-constant-factor overheadin the space occupancy.

The remainder of this paper is organized as follows. We present the details of the algorithm in Section 2
and show in Section 3 that the algorithm runs in O(n logn) time with high probability. In Section 4 we
conclude with a few comments and some related work.

2 LIBRARY SORT: Algorithm and Terminology

Let A be an n-element array to be sorted. These elements are inserted one at a time in random order into a
sorting array S of size (1 + ε)n. The insertions proceed in logn rounds as follows. Each round doubles the
number of elements inserted into S and doubles the prefix of S where elements reside. Specifically, round
i ends when 2i elements have been inserted and the elements are rebalanced. Before the rebalance, the 2i

elements are in the first (1 + ε)2i positions. A rebalance moves them into the first (2 + 2ε)2i positions,
spreading the elements as evenly as possible. We call 2 + 2ε the spreading factor.

During the ith round, the 2i−1 elements in S at the beginning of the round are called support elements,
and their initial positions are called support positions. The 2i−1 elements inserted before the end-of-round
rebalance are called intercalated elements. It is important to remark that the support positions are the
positions occupied by the support elements at the beginning of a round because, as explained in the next
paragraph, while a round proceeds support elements might be shifted to make room for new insertions.

The insertion of 2i−1 intercalated elements within round i is performed the brute force way: search for
the target position of the element to be inserted by binary search (amongst the 2i−1 support positions in S),
and move elements of higher rank to make room for the new element. Not all elements of higher rank need
to be moved, only those in adjacent array positions until the nearest gap is found.

3 Analysis

For the sake of clarity, we divide the time complexity into four parts: the rebalance cost, the search cost,
the insertion cost for the first

√
n elements, and the insertion cost for the remaining elements. Let m be the

number of elements inserted at any time.

2

3.1 Insertion cost for m = O(
√

n), rebalance cost, and search cost

The following straightforward lemmas prove the upper bounds on the rebalance and search costs for any m
and on the insertion cost for m = O(

√
n).

Lemma 1 The insertion time for the first O(
√

n) insertions is O(n).

Proof. By the quadratic running time of INSERTION SORT.

Lemma 2 For a given input of size n, the cost of all rebalances is O(n).

Proof. Since the number of elements doubles in each round and the spreading factor is constant, the cost
of spreading m elements on each rebalance is amortized over the previous m/2 insertions, for an amortized
rebalance cost of O(1) per insertion.

Lemma 3 The cost of finding the location to insert a new element in the sorting array is O(logm).

Proof. Binary search among the O(m) support positions takes time O(logm). A final search between
two support positions takes time O(1), since the spreading factor is constant.

3.2 Insertion cost for m = Ω(
√

n)

We now bound the number of elements moved per insertion when m = Ω(
√

n) elements have already
been inserted. We show that with high probability, for sufficiently large c, all sets of c logm contiguous 2

support elements have fewer than (1 + ε)c logm intercalated elements inserted among them by the end of
the round. The c logm support elements are spread among (2 + 2ε)c logm sorting array positions at the
beginning of a round. Therefore, after (1+ε)c logm intercalated elements are added, there will still be gaps
— indeed, there will be εc logm empty array positions. Thus, each insertion takes time O(logm) because
shifts propagate until the next gap, which appears within O(logm) positions. This observation establishes
our result.

The direct approach

Let D be a set of c logm contiguous support elements. We would like to compute the number of intercalated
elements that land among the elements of D. Notice that if there are k elements in the sorting array, then
the (k + 1)-th intercalated element is equally likely to land between any of those k elements. Thus, if
an intercalated element is inserted within D, the probability of further insertions within D increases, and
conversely, if an intercalated element is inserted outside of D, the probability of further insertions within D
decreases.

We formalize the problem as follows. Consider two urns, urn A starting with c logm balls and urn B
starting with m − c logm balls. Throw m additional balls, one after another, into one of the two urns with
probability proportional to the number of balls in each urn. Let random variable Xi = 1 if ball i lands in
urn A and let Xi = 0 if ball i lands in urn B. We now need to bound the tails of

∑

Xi.
Because these Xi are positively correlated, bounding the tail of their sum is awkward. We analyze a

simpler game below.

2Throughout, we use contiguous to refer to elements that are consecutive within their class, i.e. support or intercalated, which
does not imply consecutive within the sorting array. More formally, if an ordered sequence of support (resp. intercalated) elements
within the sorting array is e1, e2, . . . , ek , for some 1 ≤ k ≤ m, two support (resp. intercalated) elements ei and ej with 1 ≤ i <

j ≤ k are contiguous if and only if j = i +1. However, if the sorting array positions where ei and ej are stored are A[i′] and A[j′]
respectively, then j′ ≥ i′ +1, because there might be some intercalated (resp. support) elements or empty positions between them.

3

The arrival permutation

We first set up the problem. Consider 2m elements to sort. Each of the (2m)! orders of insertion is equally
likely. We refer to each insertion order as an arrival permutation. The first half of the arrival permutation
consists of support elements, and the second half consists of intercalated elements. Thus, the probability of
being a support (resp. intercalated) element equals the probability of being in the first (resp. second) half of
the arrival permutation.

Our goal is to show that for sufficiently large c, with high probability in every set of (2 + ε)c logm

contiguous elements, there are at least c logm support elements at the end of a round. Thus, with high prob-
ability there are also at most (1 + ε)c logm intercalated elements in every set of (2 + ε)c logm contiguous
elements. Because the at least c logm support elements are spread out in a subarray of size (2+2ε)c logm,
there is room to add the at most (1 + ε)c logm intercalated elements while still leaving gaps. Therefore,
with high probability no insertion will move more than (2 + ε)c logm elements.

Theorem 4 In any set C of (2 + ε)c logm contiguous elements, there are at least c logm support elements
with high probability.

Proof. Consider choosing an arrival permutation P of length 2m uniformly at random by placing the
elements one-by-one into P , selecting an empty slot uniformly at each step. We place the elements of set C
into P before placing the elements of C in P. We give an upper bound on the number of elements in C that
are support elements, that is, the number of elements that fall in the first half of P.

Let si be the number of elements already inserted into the first half of P just before the ith insertion.
The probability pi that the ith insertion is in the first half of P is then (m − si)/(2m− i + 1).

Let random variable Xi = 1 if element i is a support element, and let Xi = 0 otherwise. Random
variables X1, . . . , X2m now depend on the remaining blank spaces in the permutation and are negatively
correlated. Furthermore, |C| = (2 + ε)c logm is small compared to m, and so E[Xi] = pi is very close to
1/2 for the first |C| elements. Given this bound, we can prove our theorem with a straightforward application
of Chernoff bounds.

Here we prove the theorem using elementary methods, as follows. The probability that a given element
in C is a support element is at most

m

2m− |C| + 1
=

m

2m− (2 + ε)c logm + 1

Let p be the probability that there are at most c logm support elements in the set C. Then,

p ≤
c logm
∑

j=0

(|C|
j

)(

m

2m − |C| + 1

)j (m

2m − |C| + 1

)|C|−j

≤
(

m

2m − |C| + 1

)|C| c log m
∑

j=0

(|C|
j

)

.

Bounding the summation by the largest term, we obtain

p ≤
(

m

2m − |C| + 1

)|C|

c logm

(

(2 + ε)c logm

c logm

)

.

Using Stirling’s approximation [4], for some constant c′ we obtain

4

p ≤ c′
(

m

2m − |C| + 1

)|C|
√

c logm

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c logm

.

Manipulating on the first term, we obtain

p ≤ c′
(

1 +
|C|
m

)|C|(1

2

)|C|
√

c logm

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c logm

.

Since |C| � m, we replace the first term by a constant less than e (indeed, 1 + o(1)) and fold it, along
with c′, into c′′. We get

p ≤ c′′
(

1

2

)|C|
√

c logm

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c log m

.

Since |C| = (2 + ε)c logm, the previous equation simplifies to

p ≤ c′′
√

c logm

(

(2 + ε)(2+ε)

2(2+ε)(1 + ε)(1+ε)

)c log m

.

This last factor is 1 when ε = 0, and decreases with increasing ε. Then, using that m ∈ Ω(
√

n), calling
δ = (2(2+ε)(1 + ε)(1+ε))/(2 + ε)(2+ε) and b the base of the logarithm, we obtain

p ≤ c′′
√

c

2

√

logn

nc/ logδ b

∈ O(n−γ) where γ =
c

2 logδ b
− log logn

2 logn
.

Thus, for any constant ε > 0, there exists a big enough constant c such that the probability p is polyno-
mially small when m is Ω(

√
n).

Note that since C is split evenly in expectation, the expected insertion cost is constant.

Corollary 5 There are at least c logm support elements in each set of (2 + ε)c logm contiguous elements
with high probability.

Proof. We are interested only in nonoverlapping sets of contiguous elements and there are m/((2 +

ε)c logm) such sets. By Theorem 4 and the union bound, the claim holds.

3.3 Summary

We summarize our results as follows: The overall cost of rebalancing is O(n) by Lemma 2. By Lemma 3,
the cost of searching for the position of the ith element is O(log i), and then the overall searching cost is
O(n logn). We proved in Lemma 1 that the insertion cost of the first O(

√
n) elements is O(n) in the worst

case. Finally, Theorem 4 shows that for sufficiently large c, no contiguous c logm elements in the support
have (1+ε)c logm intercalated elements inserted among them at the end of any round, with high probability.
Thus, there is a gap within any segment of (2 + ε)c logm elements with high probability. Therefore, the
insertion cost per element for m = Ω(

√
n) is O(logm) with high probability. The overall cost of LIBRARY

SORT is O(n logn) with high probability.

5

4 Conclusions and related work

We have shown that LIBRARY SORT outperforms traditional INSERTION SORT. There is a trade-off between
the extra space used and the insertion time given by the relation between c and ε. The lower the desired
insertion cost, the bigger the required gap between elements at rebalance.

LIBRARY SORT is based on the priority queue presented in Itai, Konheim, and Rodeh [6]. Our analysis
is a simplification of theirs. Moreover, we give high probability and expectation bounds for the insertion
cost, whereas they only give expectation bounds.

An algorithm similar to LIBRARY SORT was presented by Melville and Gries in [7]. This algorithm has
a 1/3 space overhead as compared with the ε space overhead of LIBRARY SORT. They point out that their
running time analysis was too complicated to be included in the journal version. To quote the authors: “We
hope others may develop more satisfactory proofs.”.

The idea of leaving gaps for insertions in a data structure is used by Itai, Konheim, and Rodeh [6]. This
idea has found recent application in external memory and cache-oblivious algorithms in the packed memory
structure of Bender, Demaine and Farach-Colton [1] and later used in [2, 3, 5].

Acknowledgments

We would like to thank Erik Demaine and Ian Munro for helpful discussions. MAB was supported in part by
the Sandia National Laboratories and NSF Grants ACI-0324974, CCR-0208670, and EIA-0112849. MFC
was supported in part by CCR-9820879.

References

[1] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In Proc. 41st IEEE Ann. Symp.
on Foundations of Computer Science, pages 399–409, 2000.

[2] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic dictionary. In Proc.
13th ACM-SIAM Ann. Symp. on Discrete Algorithms, pages 29–38, 2002.

[3] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via binary trees of small height. In Proc.
13th ACM-SIAM Ann. Symp. on Discrete Algorithms, pages 39–48, 2002.

[4] W. Feller. Stirling’s Formula. In An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., II.9,
John Wiley and Sons Inc., New York, pages 50–53, 1968.

[5] G. Franceschini. An in-place sorting algorithm performing O(n logn) comparisons and O(n) data moves. In
Proc. 44th IEEE Ann. Symp. on Foundations of Computer Science, pages 242–250, 2003.

[6] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority queues. In Proc. 8th EATCS
Int. Colloquium on Automata, Languages and Programming, pages 417–431, 1981.

[7] R. Melville, D. Gries. Controlled density sorting. In Information Processing Letters, 10:4, pages 169–172, 1980.

6

