
An Introduction to Bε-trees and Write-Optimization

Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan

A Bε-tree is an example of a write-optimized data
structure and can be used to organize on-disk storage
for an application such as a database or file system.
A Bε-tree provides a key-value API, similar to a B-
tree, but with better performance, particularly for
inserts, range queries, and key-value updates. This
article describes the Bε-tree, compares its asymptotic
performance to B-trees and Log-Structured Merge
trees (LSM-trees), and presents real-world perfor-
mance measurements. After finishing this article, a
reader should have a basic understanding of how a
Bε-tree works, its performance characteristics, how it
compares to other key-value stores, and how to de-
sign applications to gain the most performance from
a Bε-tree.

1 Bε-trees

Bε-trees were proposed by Brodal and Fagerberg [1]
as a way to demonstrate an asymptotic performance
tradeoff curve between B-trees [2] and buffered repos-
itory trees [3]. Both data structures support the
same operations, but a B-tree favors queries whereas
a buffered repository tree favors inserts.

Researchers, including the authors of this article,
have recognized the practical utility of a Bε-tree when
configured to occupy the “middle ground” of this
curve—realizing query performance comparable to a
B-tree but insert performance orders of magnitude
faster than a B-tree. The Bε-tree has since been used
by both the high-performance, commercial TokuDB
database [4] and the BetrFS research file system [5].
For the interested reader, we have created a simple,
reference implementation of a Bε-tree, available at
https://github.com/oscarlab/Be-Tree.

We first explain how the basic operations on a Bε-
tree work. We then give the motivation behind these
design choices and illustrate how these choices affect
the asymptotic analysis.

API and basic structure. A Bε-tree is a B-tree-
like search tree for organizing on-disk data, as illus-
trated in Figure 1. Both B-trees and Bε-trees export
a key-value store API:

• insert(k, v)

• delete(k)

• v = query(k)

• [v1, v2,...] = range-query(k1, k2)

Like a B-tree, the node size in a Bε-tree is chosen
to be a multiple of the underlying storage device’s
block size. Typical Bε-tree node sizes range from a
few hundred kilobytes to a few megabytes. In both B-
trees and Bε-trees, internal nodes store pivot keys and
child pointers, and leaves store key-value pairs, sorted
by key. For simplicity, one can think of each key-value
or pivot-pointer pair as being unit size; both B-trees
and Bε-trees can store keys and values of different
sizes in practice. Thus, a leaf of size B holds B key-
value pairs, which we call items below.

The distinguishing feature of a Bε-tree is that in-
ternal nodes also allocate some space for a buffer, as
shown in Figure 1. The buffer in each internal node is
used to store messages, which encode updates that
will eventually be applied to leaves under this node.
This buffer is not an in-memory data structure; it is
part of the node and is written to disk, evicted from
memory, etc., whenever the node is. The value of ε,
which must be between 0 and 1, is a tuning param-
eter that selects how much space internal nodes use
for pivots (≈ Bε) and how much space is used as a
buffer (≈ B −Bε).

Inserts and deletes. Insertions are encoded as
“insert messages”, addressed to a particular key, and
added to the buffer of the root node of the tree. When
enough messages have been added to a node to fill the
node’s buffer, a batch of messages are flushed to one
of the node’s children. Generally, the child with the
most pending messages is selected. Over the course of
flushing, each message is ultimately delivered to the
appropriate leaf node, and the new key and value are
added to the leaf. When a leaf node becomes too full,
it splits, just as in a B-tree. Similar to a B-tree, when
an interior node gets too many children, it splits and
the messages in its buffer are distributed between the
two new nodes.

1

· · · ≈ Bε children · · ·

· · ·

O (logBε N)

· · ·

· · · ≈ N/B leaves · · ·elements

pivots

bufferB −Bε

Bε

pivots

bufferB −Bε

Bε pivots

buffer B −Bε

Bε

B elements B

Figure 1: A Bε-tree. Each node is roughly of size B, and ε controls how much of an internal node’s space is
used for pivots (Bε) and how much is used for buffering pending updates (B − Bε). As in a B-tree, items
are stored in leaves, and the height of the tree is logarithmic in the total number of items (N), based on the
branching factor (here Bε).

Moving messages down the tree in batches is the
key to the Bε-tree’s insert performance. By storing
newly-inserted messages in a buffer near the root, a
Bε-tree can avoid seeking all over the disk to put
elements in their target locations. The Bε-tree only
moves messages to a subtree when enough messages
have accumulated for that subtree to amortize the
I/O cost. Although this involves rewriting the same
data multiple times, this can improve performance for
smaller, random inserts, as our analysis in the next
section shows.

Bε-trees delete items by inserting “tombstone mes-
sages” into the tree. These tombstone messages are
flushed down the tree until they reach a leaf. When
a tombstone message is flushed to a leaf, the Bε-tree
discards both the deleted item and the tombstone
message. Thus, a deleted item, or even entire leaf
node, can continue to exist until a tombstone mes-
sage reaches the leaf. Because deletes are encoded as
messages, deletions are algorithmically very similar
to insertions.

A high-performance Bε-tree should detect and op-
timize the case where a a large series of messages all
go to one leaf. Suppose a series of keys are inserted
that will completely fill one leaf. Rather than write
these messages to an internal node, only to imme-
diately rewrite them to each node on the path from
root to leaf, these messages should flush directly to
the leaf, along with any other pending messages for
that leaf. The Bε-tree implementation in TokuDB
and BetrFS includes some heuristics to avoid writing
in intermediate nodes when a batch of messages are
all going to a single child.

Point and range queries. Messages addressed to
a key k are guaranteed to be applied to k’s leaf or in
some buffer along the root-to-leaf path towards key k.
This invariant ensures that point and range queries
in a Bε-tree have a similar I/O cost to a B-tree.

In both a B-tree and a Bε-tree, a point query visits
each node from the root to the correct leaf. However,
in a Bε-tree, answering a query also means checking
the buffers in nodes on this path for messages, and
applying relevant messages before returning the re-
sults of the query. For example, if a query for key k
finds an entry (k, v) in a leaf and a tombstone mes-
sage for k in the buffer of an internal node, then the
query will return “NOT FOUND”, since the entry
for key k has been logically deleted from the tree.
Note that the query need not update the leaf in this
case—it will eventually be updated when the tomb-
stone message is flushed to the leaf. A range query
is similar to a point query, except that messages for
the entire range of keys must be checked and applied
as the appropriate subtree is traversed.

In order to make searching and inserting into
buffers efficient, the message buffers within each node
are typically organized into a balanced binary search
tree, such as a red-black tree. Messages in the buffer
are sorted by their target key, followed by timestamp.
The timestamp ensures that messages are applied in
the correct order. Thus, inserting a message into a
buffer, searching within a buffer, and flushing from
one buffer to another are all fast.

1.1 Performance analysis

We analyze the behavior of B-trees, Bε-trees, and
LSM-trees in this article in terms of I/Os. Our pri-

2

mary interest is in data sets too large to fit into
RAM. Thus, the first-order performance impact is
how many I/O requests must be issued to complete
each operation. In the algorithms literature, this is
known as the disk-access-machine (DAM) model, the
external-memory model, or the I/O model [6].

Performance model. In order to compare B-trees
and Bε-trees in a single framework, we make a few
simplifying assumptions. We assume that all key-
value pairs are the same size and that each node in
the tree can hold B key-value pairs. The entire tree
stores N key-value pairs. We also assume that each
node can be accessed with a single I/O transaction—
i.e., on a rotating disk, the node is stored contiguously
and requires only one random seek.

This model focuses on the principal performance
characteristics of a block storage device, such as a
hard drive or SSD. For instance, on a hard drive, this
model captures the latency of a random seek to read
a node. In the case of an SSD, the model captures the
I/O bandwidth costs, i.e., the number of blocks that
must be read or written from the device per opera-
tion. Regardless of whether the device is bandwidth
or latency bound, for a given node size B, minimizing
the number of nodes accessed minimizes both band-
width and latency costs.

Bε-tree I/O performance. Table 1 lists the
asymptotic complexities of each operation in a B-tree
and Bε-tree. We will explain upserts and epsilon (ε),
as well as how they affect performance, later in the
article. For this discussion, note that ε is a tuning pa-
rameter between 0 and 1; ε is generally set at design
time and becomes a constant in the analysis.

The point-query complexities of a B-tree and a
Bε-tree are both logarithmic in the number of items
(O(logB N)); a Bε-tree adds a constant overhead of
1/ε. Compared to a B-tree with the same node size,
a Bε-tree reduces the fanout from B to Bε, making
the tree taller by a factor of 1/ε. Thus, for example,
querying a Bε-tree, where ε = 1/2, will require at
most twice as many I/Os.

Range queries incur a logarithmic search cost for
the first key, as well as a cost that is proportional
to the size of the range and how many disk blocks
the range is distributed across. The scan cost is
roughly the number of keys read (k) divided by the
block size (B). The total cost of a range query is
O(k/B+logB N) I/Os. Compared to a B-tree, batch-
ing messages divides the insertion cost by the batch
size (B1−ε). For example, if B = 1024 and ε = 1/2, a
Bε-tree can perform inserts ≈ εB1−ε = 1

2

√
1024 = 16

times faster than a B-tree.

Write optimization. Batching small, random in-
serts is an essential feature of write-optimized data
structures (WODS), such as a Bε-tree or LSM-tree.
Although a WODS may issue a small write multiple
times as a message moves down the tree, once the
I/O cost is divided among a large batch, the cost per
insert or delete is much smaller than one I/O per op-
eration. In contrast, a workload of random inserts to
a B-tree requires a minimum of one I/O per insert—
to write the new element to its target leaf.

The Bε-tree flushing strategy is designed to ensure
that it can always move elements in large batches.
Messages are only flushed to a child when the buffer
of a node is full, containing B − Bε ≈ B messages.
When a buffer is flushed, not all messages are neces-
sarily flushed— messages are only flushed to children
with enough pending messages to offset the cost of
rewriting the parent and child nodes. Specifically, at
least (B −Bε)/Bε ≈ B1−ε messages are moved from
the parent’s buffer to the child’s on each flush. Con-
sequently, any node in a Bε-tree is only rewritten if
a sufficiently large portion of the node will change.

Caching. Most systems cache a subset of the tree
in RAM. With an LRU replacement policy, accesses
to the top of the tree are likely to hit in the cache,
whereas accesses to leaves and “lower nodes” will
more commonly miss. Thus, when the cache is warm,
the actual cost of a search may be much less than
O(logB N) I/Os. For both B-trees and Bε-trees, if
only the leaves are out-of-cache, point queries and
updates require a single I/O, whereas a range query
has an I/O cost that is linear in the number of leaves
read.

1.2 The impact of node size (B) on
performance

B-trees have small nodes to balance the cost of
insertions and range queries. B-tree implemen-
tations face a trade-off between update and range-
query performance. A larger node size B favors range
queries and a smaller node size favors inserts and
deletes. Larger nodes help range query performance
because the I/O costs, such as seeks, can be amor-
tized over more data. However, larger nodes make
updates more expensive because a leaf and possibly
internal nodes must be completely re-written each
time a new item is added to the index, and larger
nodes mean more to rewrite.

Thus, many B-tree implementations use small
nodes (tens to hundreds of KB), resulting in sub-
optimal range-query performance. As free space on

3

Table 1: Asymptotic I/O costs of important operations. Bε-trees simultaneously support efficient inserts,
point queries (even in the presence of upserts), and range queries. These complexities apply for 0 < ε ≤ 1.
Note that ε is a design-time constant. We show the complexity for general ε and evaluate the complexity
when ε is set to a typical value of 1/2. The 1/ε factor evaluates to a constant that disappears in the
asymptotic analysis.

Data Structure Insert Point Query Range Query
no Upserts w/ Upserts

Bε-tree logB N
εB1−ε

logB N
ε

logB N
ε

logB N
ε + k

B

Bε-tree (ε = 1/2) logB N√
B

logB N logB N logB N + k
B

B-tree logB N logB N logB N logB N + k
B

LSM logB N
εB1−ε

log2
B N
ε

log2
B N
ε

log2
B N
ε + k

B

LSM+BF logB N
εB1−ε logB N

log2
B N
ε

log2
B N
ε + k

B

disk becomes fragmented, B-tree nodes may also be-
come scattered on disk; this is sometimes called ag-
ing. Now a range query must seek for each leaf in the
scan, resulting in poor bandwidth utilization.

For example, with 4KB nodes stored on a disk with
a 5ms seek time and 100MB/s bandwidth, updating a
single key only rewrites 4KB. Range queries, however,
must perform a seek for each 4KB leaf node, resulting
in a net bandwidth of 800KB/s, less than 1% of the
disk’s potential bandwidth.

Bε-trees have efficient updates and range
queries even when nodes are large. In contrast,
batching in a Bε-tree allows B to be much larger in
a Bε-tree than in a B-tree. In a Bε-tree the band-
width cost per insert is O(Bε logB N

ε), which grows
much more slowly as B increases. As a result, Bε-
trees use node sizes of a few hundred kilobytes to a
few megabytes.

By using large B, Bε-trees can perform range
queries at near disk bandwidth. For example, a Bε-
tree using 4MB nodes need perform only one seek for
every 4MB of data it returns, yielding a net band-
width of over 88MB/s on the same disk as above.

In the comparison of insert complexities above, we
stated that a Bε-tree with ε = 1/2 would be twice
as deep as a B-tree, as some fanout is sacrificed for
buffer space. This is only true when the node size
is the same. Because a Bε-tree can use larger nodes
in practice, a Bε-tree can still have close to the same
fanout and height as a B-tree.

1.3 The role of ε

The parameter ε in a Bε-tree was originally designed
to show that there is an optimal trade-off curve be-
tween insert and point query performance. Param-
eter ε ranges between 0 and 1. As we explain in
the rest of this section, making ε an exponent simpli-
fies the asymptotic analysis and creates an interesting
trade-off curve.

Intuitively, the trade-off with parameter ε is how
much space in the node is used for storing pivots and
child pointers (≈ Bε) and how much space is used
for message buffers (≈ B − Bε). As ε increases, so
does the branching factor (Bε), causing the depth
of the tree to decrease and searches to run faster.
As ε decreases, the buffers get larger, batching more
inserts for every flush and improving overall insert
performance.

At one extreme, when ε = 1, a Bε-tree is just a B-
tree, since interior nodes contain only pivot keys and
child pointers. On the other, when ε = 0, a Bε-tree is
a binary search tree with a large buffer at each node,
called a buffered repository tree [3].

The most interesting configurations place ε strictly
between 0 and 1, such as ε = 1/2. For such configura-
tions, a Bε-tree has the same asymptotic point query
performance as a B-tree, but asymptotically better
insert performance.

For inserts, setting ε = 1/2 divides the cost by the
square root of node size. Formally, the cost then be-
comes: O(logB N

εB1−ε) = O(logB N√
B

). Since the insert cost

is divided by
√
B, selecting larger nodes (increasing

B) can dramatically improve insert performance.

Assuming all other parameters are the same, de-
creasing ε slows down point queries by a constant

4

1/ε. To see the query performance for ε = 1/2, eval-

uate the point query cost in Table 1: O(logB N
ε) =

O(logB N
1/2) = O(2 logB N)—doubling the number of

I/Os. Changing ε from 1/2 to 1/4 would make this
a factor of 4. This cost can be offset by increasing
B, which, as pointed out above, also improves insert
performance.

The above analysis assumes all keys have unit size
and that nodes can hold B keys; real systems must
deal with variable-sized keys, so B, and hence ε, are
not fixed or known a priori. Nonetheless, the main
insight of Bε-trees—that we can speed up insertions
by buffering items in internal nodes and flushing them
down the tree in batches—still applies in this setting.

In practice, Bε-tree implementations select a fixed
physical node size and fanout (Bε). For the imple-
mentation in TokuDB and BetrFS, nodes are approx-
imately 4MB and the branching factor ranges from 4
to 16. As a result, the fractal tree can always flush
data in batches of at least 256KB.

1.4 How to speed up an applications
by using a Bε-tree

A practical consequence of the analysis above is that
a Bε-tree can perform updates orders of magnitude
faster than point queries. This search-insert asymme-
try has two implications for designing applications on
Bε-trees.

Performance rule. Avoid query-before-update
whenever possible.

Because of the search-insert asymmetry, the com-
mon read-modify-write (or query-modify-insert) pat-
tern will be bound to the speed of a query, which is
no faster in a Bε-tree than in a B-tree.

Upserts. Bε-trees support a new upsert operation,
to help applications bridge this performance asym-
metry. An upsert is a type of message that encodes
an update with a callback function that can be issued
without first knowing the value of the key.

Upserts can encode any modification that is asyn-
chronous and depends only on the key, the old value,
and some auxiliary data that can be stored with the
upsert message. Tombstones are a special case of
upserts. Upserts can also be used to increment a
counter, update the access time on a file, update a
user’s account balance after a withdrawal, and many
other operations.

With upserts, an application can update the value
associated with key k in the Bε-tree by inserting an
“upsert message” (k, (f,∆)) into the tree, where f is

a call-back function and ∆ is auxiliary data specify-
ing the update to be performed. This upsert message
is semantically equivalent to performing a query fol-
lowed by an insert:

v ← query(k); insert(k, f(v,∆)).

However, the upsert does not perform these opera-
tions. Rather, the message (k, (f,∆)) is inserted into
the tree like an insert or tombstone message.

When an upsert message (k, (f,∆)) is flushed to
a leaf, the value v associated with k in the leaf is
replaced by f(v,∆) and the upsert message is dis-
carded. If the application queries k before the upsert
message reaches a leaf, then the upsert message is
applied to v before the query returns.

As with any an insert or delete message, multiple
upserts can be buffered for the same key between the
root and leaf. If a key is queried with multiple upserts
pending, each upsert must be collected on the path
from root to leaf, and applied to the key in the order
they were inserted into the tree.

The upsert mechanism does not interfere with I/O
performance of searches, because the upsert messages
for a key k always lie on the search path from the root
of the Bε-tree to the leaf containing k. Thus, the up-
sert mechanism can speed up updates by one to two
orders of magnitude without slowing down queries.

Performance rule. Use insert performance to im-
prove query performance by maintaining appropriate
indices.

Secondary indices. In a database, secondary in-
dices can greatly speed up queries. For example, con-
sider a database table with three columns, k1, k2,
and k3, and an application that sometimes performs
queries using k1 and sometimes using k2. If the ta-
ble is implemented as a B-tree sorted on k1, then
queries using k1 are fast, but queries using k2 are ex-
tremely slow—they may have to scan essentially the
entire database. To solve this problem, the table can
be configured to maintain two indices—one sorted by
k1 and one sorted by k2. Queries can then use the
appropriate index based on the type of the query.

When a multiple indices are maintained with B-
trees, each index update requires an additional insert.
Because inserts are as expensive as a point query,
maintaining an index on each column is often imprac-
tical. Thus, the table designer must carefully analyze
factors such as the expected type of queries and dis-
tribution of keys in deciding which columns to index,
in order to ensure good overall performance.

Bε-trees turn these issues upside down. Indices are
cheap to maintain. Point queries are fundamentally

5

expensive—Bε-tree point queries are no faster than
in a B-tree. Thus, Bε-tree applications should main-
tain whatever indices are needed to perform queries
efficiently.

There are three rules for designing good Bε-tree
indices.

First, maintain indices sorted by the keys used to
query the database. For example, in the above exam-
ple, the database should maintain two Bε-trees—one
sorted by k1 and one sorted by k2.

Second, ensure that each index has all the infor-
mation required to answer the intended queries. For
example, if the application looks up the k3 value us-
ing key k2, then the index sorted by k2 should store
the corresponding k3 value for each entry. In many
databases, the secondary index contains only keys
into the primary index. Thus, for example, a query
on k2 would return the primary key value, k1. To ob-
tain k3, the application has to perform another query
in the primary index using the k1 value obtained from
the secondary index. An index that contains all the
information relevant to a query is called a covering
index for that query.

Finally, design indices to enable applications to
perform range queries whenever possible. For ex-
ample, if the application wants to lookup all entries
(k1, k2, k3) for which a ≤ k1 ≤ b and k2 satisfies some
predicate, then the application should maintain a sec-
ondary index sorted by k1 that only contains entries
for which k2 matches the predicate.

1.5 Log-structured merge-trees

Log-structured merge trees (LSM-trees) [7] are a
WODS with many variants [8, 9]. An LSM-tree typ-
ically consists of a logarithmic number of B-trees of
exponentially increasing size. Once an index at one
level fills up, it is emptied by merging it into the
index at the next level. The factor by which each
level grows is a tunable parameter comparable to the
branching factor (Bε) in a Bε-tree. For ease of com-
parison, Table 1 gives the I/O complexities of opera-
tions in an LSM-tree with growth factor Bε.

LSM-trees can be tuned to have the same inser-
tion complexity as a Bε-tree, but queries in a näıvely

implemented LSM-tree can require O(
log2

B N
ε) I/Os

because the query must be repeated in O(logB N) B-
trees. Most LSM-tree implementations use Bloom fil-
ters to avoid queries in all but one of the B-trees, im-
proving point query performance to O(logB N

ε) I/Os.
One problem for LSM-trees is that the benefits of

Bloom filters do not extend to range queries. Bloom
filters are only designed to improve point queries
and do not support range queries. Thus, a range

query must be done on every level of the LSM-tree—
squaring the search overhead in Table 1, and yielding
strictly worse asymptotic performance than a Bε-tree
or a B-tree.

A second advantage of a Bε-tree over an LSM-tree
is that Bε-trees can effectively use upserts, whereas
upserts in an LSM-tree will ruin the performance ad-
vantage of adding Bloom filters. As discussed above,
upserts address a search-insert asymmetry common
to any WODS, including LSM-trees. When an ap-
plication uses upserts, it is possible for a message for
that key to be present in every level of the tree con-
taining a pending message for the key. Thus, a subse-
quent point query will still have to query every level
of the tree, defeating the purpose of adding Bloom fil-
ters. Note that querying every level of an LSM-tree
also squares the overhead compared to a Bε-tree or
B-tree, and is more expensive than walking the path
from root-to-leaf in a Bε-tree.

In summary, Bloom-filter-enhanced LSM-trees can
match the performance of Bε-trees for some but
not all workloads. Bε-trees asymptotically dominate
LSM-tree performance. In particular, Bε-trees are
asymptotically faster than LSM-trees for small range
queries and point queries in upsert-intensive work-
loads.

2 Performance comparison

To give a sense of how Bε-trees performs in practice,
we present some data from BetrFS, an in-kernel, re-
search file system based on Bε-trees. We compare
BetrFS to other file systems, including btrfs, which
is built with B-trees. A more thorough evaluation
appears in our recent FAST paper [5].

All experimental results were collected on a Dell
Optiplex 790 with a 4-core 3.40 GHz Intel Core i7
CPU, 4 GB RAM, and a 250 GB, 7200 RPM ATA
disk. Each file system used a 4096-byte block size.
The system ran Ubuntu 13.10, 64-bit, with Linux
kernel version 3.11.10. Each experiment compared
with several general purpose file systems, including
BTRFS, ext4, XFS, and ZFS. Error bars and ± ranges
denote 95% confidence intervals. Unless otherwise
noted, benchmarks are cold-cache tests.

Small Writes. We used the TokuBench bench-
mark [10] to create 3 million 200-byte files in a bal-
anced directory tree with fanout of 128, using 4
threads (one per CPU). In BetrFS, file creations are
implemented as Bε-tree inserts and small file writes
are implemented using upserts, so this benchmark
demonstrates the Bε-tree’s performance on these two

6

●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●

100

1000

10000

100000

0 1M 2M 3M
Files Created

*higher is better

F
ile

s/
se

co
nd ● BetrFS

btrfs
ext4
xfs
zfs

Small File Creation

Figure 2: Sustained rate of file creation for 3 million
200-byte files, using 4 threads. Higher is better.

FS find grep

BetrFS 0.36 ± 0.06 3.95 ± 0.28
BTRFS 3.87 ± 0.94 14.91 ± 1.18
ext4 2.47 ± 0.07 46.73 ± 3.86
XFS 19.07 ± 3.38 66.20 ± 15.99
ZFS 11.60 ± 0.81 41.74 ± 0.64

Table 2: Directory operation benchmarks, measured
in seconds. Lower is better.

operations. Figure 2 shows the sustained rate of file
creation in each file system (note the log scale). In
the case of ZFS, the file system crashed before com-
pleting the benchmark, so we reran the experiment
five times and used data from the longest-running it-
eration. BetrFS is initially among the fastest file sys-
tems, and continues to perform well for the duration
of the experiment. The steady-state performance of
BetrFS is an order of magnitude faster than the other
file systems.

This performance distinction is attributable to
both fewer total writes and fewer seeks per byte
written—i.e., better aggregation of small writes.
Based on profiling from blktrace, one major dis-
tinction is total bytes written: BetrFS writes 4–10×
fewer total MB to disk, with an order of magnitude
fewer total write requests. Among the other file sys-
tems, ext4, XFS, and ZFS wrote roughly the same
amount of data, but realized widely varying underly-
ing write throughput.

Locality and Directory Operations. In BetrFS,
fast range queries translate to fast large directory
scans. Table 2 reports the time taken to run find and
grep -r on the Linux 3.11.10 source tree, starting
from a cold cache. The grep test recursively searches
the file contents for the string “cpu to be64”, and the

find test searches for files named “wait.c”.

Both the find and grep benchmarks do well be-
cause file system data and metadata are stored in
large nodes, and sorted lexicographically by full path.
Thus, related files are stored near each other on disk.
BetrFS also maintains a second index that contains
only metadata, so that metadata scans can be im-
plemented as range queries. As a result, BetrFS can
search directory metadata and file data one or two or-
ders of magnitude faster than the other file systems.

Limitations. It is important to note that BetrFS
is a still a research prototype and currently has three
primary cases where it performs considerably worse
than other file systems: large directory renames,
large deletes, and large sequential writes (more de-
tails in [5]). Renames and deletes are slow because
BetrFS does not map them directly onto Bε-tree op-
erations. Sequential writes are slow largely because
the underlying fractal tree appends all data to a log
before inserting it into the tree, so everything is writ-
ten to disk at least twice. We believe these issues can
be addressed in ongoing research and development ef-
forts; our goal, supported by the asymptotic analysis,
is for BetrFS to match or exceed the performance of
other file systems on all workloads.

3 Conclusion

Bε-tree implementations can match the search perfor-
mance of B-trees, perform inserts and deletes orders-
of-magnitude faster, and execute range queries at
near disk bandwidth. The design and implementa-
tion of Bε-trees converts a trade-off between update
and range query costs into a mutually-beneficial syn-
ergy between batching small updates and large nodes.
Our results with BetrFS demonstrate that the asymp-
totic improvements of Bε-trees can yield practical
performance improvements for applications that are
designed for Bε-tree’s performance characteristics.

Acknowledgments

This work was supported in part by NSF grants
CNS-1409238, CNS-1408782, CNS-1408695, CNS-
1405641, CNS-1149229, CNS-1161541, CNS-1228839,
CNS-1408782, IIS-1247750, CCF-1314547, Sandia
National Laboratories, and the Office of the Vice
President for Research at Stony Brook University.

7

References

[1] G. S. Brodal and R. Fagerberg, “Lower bounds
for external memory dictionaries,” in
Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pp. 546–554, 2003.

[2] D. Comer, “The ubiquitous B-tree,” ACM
Computing Surveys, vol. 11, pp. 121–137, June
1979.

[3] A. L. Buchsbaum, M. Goldwasser,
S. Venkatasubramanian, and J. R. Westbrook,
“On external memory graph traversal,” in
Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pp. 859–860, 2000.

[4] Tokutek, Inc., “TokuDB: MySQL Performance,
MariaDB Performance.”
http://www.tokutek.com/products/tokudb-

for-mysql/, 2013.

[5] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala,
J. Esmet, Y. Jiao, A. Mittal, P. Pandey,
P. Reddy, L. Walsh, M. Bender,
M. Farach-Colton, R. Johnson, B. C. Kuszmaul,
and D. E. Porter, “BetrFS: A right-optimized
write-optimized file system,” in Proceedings of
the USENIX Conference on File and Storage
Technologies (FAST), pp. 301–315, 2015.

[6] A. Aggarwal and J. S. Vitter, “The
input/output complexity of sorting and related
problems,” Communications of the ACM,
vol. 31, pp. 1116–1127, Sept. 1988.

[7] P. O’Neil, E. Cheng, D. Gawlic, and E. O’Neil,
“The log-structured merge-tree (LSM-tree),”
Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[8] R. Sears and R. Ramakrishnan, “bLSM: a
general purpose log structured merge tree,” in
Proceedings of the 2012 ACM SIGMOD
International Conference on Management of
Data, pp. 217–228, 2012.

[9] P. Shetty, R. P. Spillane, R. Malpani,
B. Andrews, J. Seyster, and E. Zadok,
“Building workload-independent storage with
VT-trees,” in Proceedings of the USENIX
Conference on File and Storage Technologies
(FAST), pp. 17–30, 2013.

[10] J. Esmet, M. A. Bender, M. Farach-Colton, and
B. C. Kuszmaul, “The TokuFS streaming file
system,” in Proceedings of the 4th USENIX
Workshop on Hot Topics in Storage
(HotStorage), June 2012.

8

