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ABSTRACT
In traditional on-line problems, such as scheduling, requests arrive
over time, demanding available resources. As each request arrives,
some resources may have to be irrevocably committed to servic-
ing that request. In many situations, however, it may be possible or
even necessary toreallocatepreviously allocated resources in order
to satisfy a new request. This reallocation has a cost. This paper
shows how to service the requests while minimizing the realloca-
tion cost.

We focus on the classic problem of scheduling jobs on a multi-
processor system. Each unit-size job has a time window in which
it can be executed. Jobs are dynamically added and removed from
the system. We provide an algorithm that maintains a valid sched-
ule, as long as a sufficiently feasible schedule exists. The algorithm
reschedules onlyO(min{log∗ n, log∗ ∆}) jobs for each job that is
inserted or deleted from the system, wheren is the number of active
jobs and∆ is the size of the largest window.

1. INTRODUCTION
Imagine you are running a doctor’s office. Every day, patients

call and try to schedule an appointment, specifying a time period in
which they are free. You respond by agreeing to a specific appoint-
ment time. Sometimes, however, there is no available slot during
the period of time specified by the patient. What should you do?
You might simply turn the patient away. Or, you can reschedule
some of your existing patients, making room in the schedule.1 Un-
fortunately, patients do not like being rescheduled. How doyou
minimize the number of patients whose appointments are resched-
uled?

This research was supported in part by NSF grants IIS 1247726,
IIS 1247750, CCF 1114930, CCF 1217708, CCF 1114809, CCF
0937822, CCF 1218188, and by Singapore NUS FRC R-252-000-
443-133.
1Before you get too skeptical about the motivation, this is exactly
what M. F-C’s ophthalmologist does.

While scheduling a doctor’s office may (or may not) seem a
somewhat contrived motivating example, this situation arises with
frequency in real-world applications. Almost any scenariothat
involves creating a schedule also requires the flexibility to later
change that schedule, and those changes often have real costs (mea-
sured in equipment, computation, or tempers). For example,in the
computational world, scheduling jobs on multiprocess machines
and scheduling computation on the cloud lead to rescheduling. In
the physical world, these problems arise with depressing regularity
in scheduling airports and train stations. Real schedules are always
changing.

In a tightly packed schedule, it can be difficult to perform this
rescheduling efficiently. Each task you reschedule risks triggering
a cascade of other reschedulings, leading to high costs (andun-
happy patients). It is easy to construct an example where each job
added or removed changesΩ(n) other jobs, even with constant-
sized tasks. In this paper, we show that if there is slack in the
schedule, then these rescheduling cascades can be collapsed, in fact
down toO(log∗ n) for unit-size jobs.

Reallocation Problems
We introduce a framework for studying the familiar topic of how
to change resource allocations as problem instances change, with
a goal of unifying results of this type, e.g., [16, 26, 29]. Wecall
problems in this frameworkreallocation problems. A reallocation
problem is online in the sense that requests arrive and the system
responds. Unlike in the standard online setting where resources
are irrevocably assigned, in a reallocation problem, allocations may
change. These reallocations, however, have a cost.

Reallocation lies somewhere between traditional notions of of-
fline and online resource allocation. If the reallocation cost is 0,
then there is no penalty for producing an optimal allocationafter
each request. In this case, a reallocation problem can be viewed
as a sequence of offline problems. If the cost of reallocationis ∞,
then no finite-cost reallocation is possible and the result is a tradi-
tional online problem. When there is a bounded but non-zero cost
for reallocation, then there is a trade-off between the quality of an
allocation and the cost of reallocation.

Many related questions have been asked in the scheduling com-
munity (explored more fully below), including: how can one de-
sign schedules that are robust to uncertain or noisy inputs (see,
e.g., [22, 24]); how can one generate schedules that change in a
limited way while still remaining close to optimal [28]; what is the
computational cost of finding a new optimal schedule as the inputs
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change (e.g., [1, 2, 4, 10]). Our approach differs in that it is job-
centered, meaning that we measure the cost of moving jobs rather
than the cost of computing where jobs should move to.

Reallocation is a natural problem. Many existing algorithms,
when looked in the right way, can be viewed as reallocation prob-
lems, e.g., reconfiguring FPGAs [14], maintaining a sparse array [9,
17,31–33], or maintaining an on-line topological ordering(e.g., [8,
15,21]). We believe that the framework developed in this paper will
allow us to achieve new insights into classical scheduling and opti-
mization problems and the cost of changing a good solution when
circumstances change.

Our Problem
We focus on the reallocation version of a classical multiprocessor
scheduling problem [18] (described more fully in Section 2). We
are given a set of unit-length jobs to process onm machines. Each
job has an arrival time and a deadline. The job must be assigned
to a machine and processed at some point within the specified time
window. Jobs are added and removed from the schedule dynami-
cally. The goal is to maintain a feasible schedule at all times.

In order to process a request, it may be necessary to reschedule
some previously scheduled jobs. There are two ways in which ajob
may be rescheduled: it may bereallocatedto another time on the
same machine, or it may bemigrated to a different machine. The
migration costis the total number of jobs that are moved to differ-
ent machines when new jobs are added or removed. Therealloca-
tion costis the total number of jobs that are rescheduled, regardless
of whether they are migrated or retained on the same machine.Our
goal is to minimize both the migration cost and the total realloca-
tion cost. We bound these costs separately, since we expect that a
reallocation might be more expensive if it also entails a migration.
(See [5,7] for other work that considers migrations separately from
other scheduling considerations, such as preëmptions.)

We call an algorithm that processes such a sequence of schedul-
ing requests areallocating scheduler. We show in Section 6 that a
reallocating scheduler must allow for some job migrations and that
there is no efficient reallocating scheduler without some form of
resource augmentation; here we consider speed augmentation [20,
25]. We say that an instance isγ-underallocatedif it is feasible
even when all jobs sizes (processing times) are multiplied by γ. In
other words, the offline scheduler isγ times slower than the online
scheduler.

Results
This paper gives an efficientm-machine reallocating scheduler for
unit-sized jobs with arrival times and deadlines. Informally, the pa-
per shows that as long as there is sufficient slack (independent of
m) in the requested schedule, then every request is fulfilled,the
reallocation cost is small, and at most one job migrates across ma-
chines on each request. Specifically, this paper establishes the fol-
lowing theorem:

THEOREM 1. There exists a constantγ as well as a reallocat-
ing scheduler for unit-length jobs such that for anym-machine
γ-underallocated sequence of scheduling requests, we achieve the
following performance. Letni denote the number of jobs in the
schedule and∆i the largest window size when theith reallocation
takes place. Then theith reallocation

• has costO(min {log∗ ni, log
∗ ∆i}), and

• requires at most one machine migration.

We prove Theorem 1 in stages. In Sections 3 and 4, we assume
that job windows are all nicely “aligned,” by which we mean that all

job windows are either disjoint, or else one is completely contained
in the other. In Section 3, we show that the multi-machine aligned
case can be reduced to the single-machine aligned case, sacrificing
a constant-factor in the underallocation. In Section 4, we establish
Theorem 1, assuming the windows are aligned and thatm = 1.
Finally, in Section 5, we remove the alignment assumption from
Section 4, again sacrificing a constant-factor in the underallocation.

The crux of our new approach to scheduling appears in Sec-
tion 4. This section gives a simple scheduling policy that isrobust
to changes in the scheduling instances. By contrast, most classical
scheduling algorithms are brittle, where small changes to aschedul-
ing instance can lead to a cascade of job reallocations even when
the system is highly underallocated. This brittleness is certainly
inherent to earliest-deadline-first (EDF) and least-laxity-first (LLF)
scheduling policies, the classical greedy algorithms for scheduling
with arrival times and deadlines. In fact, we originally expected
that any greedy approach would necessarily be fragile. We show
that this is not the case.

Our new scheduler is based upon a simple greedy policy (“reser-
vation-based pecking-order scheduling”). Unlike most robust algo-
rithms, which explicitly engineer redundancy, the resiliency of our
scheduler derives from a basic combinatorial property of the un-
derlying “reservation” system. In this sense, it feels different from
typical mechanisms for achieving robustness in computer science
or operations research.

Related Work
Here, we flesh out the details of related scheduling and resource
allocation work.

Robust scheduling (or “robust planning”) involves designing
schedules that can tolerate some level of uncertainty. See [22, 24]
for surveys and [11, 12, 19, 23] for applications to train andairline
scheduling. The assumption in these papers is that the problem is
approximately static, but there is some error or uncertainty, or that
the schedule remains near optimal even if the underlying situation
changes [28]. By contrast, we focus on an arbitrary, worst-case,
sequence of requests that may lead to significant changes in the
overall allocation of resources.

Researchers have also focused on finding a good fall-back plan
(“reoptimization”) when a schedule is forced to change. Given an
optimal solution for an input, the goal is to compute a near-optimal
solution to a closely related input [1,3,4,10]. These papers typically
focus on the computational complexity of incremental optimiza-
tion. By contrast, we focus on the cost of changing the schedule.

Shachnai et al. [27] introduced a framework that is most closely
related to ours. They considered computationally intractable prob-
lems that admit approximation algorithms. When the problemin-
stance changes, they would like to change the solution as little as
possible in order to reestablish a desired approximation ratio. One
difference between their framework and ours is that we measure
the ratio of reallocation cost to allocation cost, whereas there is no
notion of initial cost for them. Rather they measure the ratio of
the transition cost to the optimal possible transition costthat will
result in a good solution. Although their framework is an analo-
gous framework for approximation algorithms, the particulars end
up being quite different.

Davis et al. [13] propose a resource reallocation problem
where the allocator must assign resources with respect to a user-
determined set of constraints. The constraints may change,but the
allocator is only informed when the solution becomes infeasible.
The goals is to minimize communication between the allocator and
the users.

Many other papers in the literature work within similar setting of
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job reallocations, but with different goals, restrictions, or schedul-
ing problems in mind. Unal et al. [29] study a problem whereinan
initial feasible schedule consisting of jobs with deadlines must be
augmented to include a set of newly added jobs, minimizing some
objective function on only the new jobs without violating any dead-
line constraints on the initial schedule. As in the present paper they
observe that slackness in the original schedule facilitates a more ro-
bust schedule, but outside of the hard constraints they do not count
the reallocation cost. Hall and Potts [16] allow a sequence of up-
dates and aim to restrict the change in the schedule, but theyeval-
uate the quality of their algorithm incrementally rather than with
respect to a full sequence of updates or an offline objective.

More closely related to our setting, Westbrook [30] considers
the total cost of migrating jobs across machines in an onlineload-
balancing problem while also keeping the maximum machine load
competitive with the current offline optimum, which is a different
scheduling problem in a similar framework. Unlike in the present
paper, Westbrook considers only migration costs and does not in-
clude the reallocation cost of reordering jobs on machines.Sanders
et al. [26] consider a similar load-balancing problem with migration
costs and no reallocation costs; their goal is to study the tradeoff
between migration costs and the instantaneous competitiveratio.

2. REALLOCATION MODEL
Formally, an on-line execution consists of a se-

quence of scheduling requests of the following form:
〈INSERTJOB, name, arrival, deadline〉 and 〈DELETEJOB, name〉.
A job j has integral arrival timeaj and deadlinedj > aj , meaning
that it must be scheduled in a timeslot no earlier than timeaj and
no later than timedj . We call the time interval[aj , dj ] the job’s
windowW . We calldj − aj , denoted by|W |, thewindowW ’s
span. We usejob j ’s spanas a shorthand for its window’s span.
Each job takes exactly one unit of time to execute.

At each step, we say that theactive jobsare those that have al-
ready been inserted, but have not yet been deleted. Before each
scheduling request, the scheduler must output a feasible schedule
for all the active jobs. A feasible schedule is one in which each
job is properly scheduled on a particular machine for a time in the
the job’s available window, and no two jobs on the same machine
are scheduled for the same time. Notice that we are not concerned
with actuallyrunningthe schedule; rather, we construct a sequence
of schedules subject to an on-line sequence of requests.

We define themigration costof a requestri to be the number of
jobs whose machine changes whenri is processed. We define the
reallocation costof a requestri to be the number of jobs that must
be rescheduled whenri is processed.

When the scheduling instances do not have enough “slack” it
may become impossible to achieve low reallocation costs. Infact,
if there aren jobs currently scheduled, a new request may have re-
allocation costΘ(n). Even worse, it may be that most reallocations
require most jobs to be moved, as is shown in Lemma 12: for large-
enoughs, there exist length-s request sequences, in whichΘ(s2)
reallocations are necessary. Moreover, for large-enoughs, there ex-
ist length-s request sequences in whichΘ(s) machine migrations
are necessary (see Lemma 11).

Underallocated Schedules and Our Result
To cope with Lemmas 11 and 12, we consider schedules that con-
tain sufficient slack, i.e., that are not fully subscribed. We say that
a set of jobs ism-machineγ-underallocated, for γ ≥ 1, if there
is a feasible schedule for those jobs onm machines even when the
job length (processing time) is multiplied byγ. This is equivalent
to giving the offline scheduler a processing speed that isγ times

slower than the online scheduler. Whenm is implied by context,
we simply sayγ-underallocated.

Overloading terminology, we say that a sequence of scheduling
requests isγ-underallocatedif after each request the set of active
jobs isγ-underallocated.

Aligned-Windows Assumption
The assumption of aligned windows is used in Sections 3 and 4,
but it is dropped in Section 5 to prove the full theorem. We say
that a windowW is aligned if (i) it has span2i, for some integer
i, and (ii) it has a starting time that is a multiple of2i. If a job’s
window is aligned, we say that the job isaligned. We say that a set
of windows (or jobs) arerecursively alignedif every window (or
job) is aligned.

Notice that recursive alignment implies that two jobs windows
are either equal, disjoint, or one is contained in the other (i.e., the
windows are laminar). Dealing with recursively aligned windows
is convenient in part due to the following observation.

LEMMA 2. If a recursively aligned set of jobs ism-machineγ-
underallocated, then for any aligned windowW there are at most
m |W | /γ jobs with span at most|W | whose windows overlapW .

PROOF. The windowW comprises|W | timeslots on each of
m machines, for a total ofm |W | timeslots. By definition, a
γ-underallocated instance is feasible even if the jobs’ processing
times are increased toγ. Thus, there may be at mostm |W | /γ
jobs restricted to windowW . Since the set of jobs is recursively
aligned, if a job has windowW ′ that overlapsW and|W ′| ≤ |W |,
thenW ′ is fully contained byW . Hence, there can be at most
m |W | /γ such jobs.

3. REALLOCATING ALIGNED JOBS ON
MULTIPLE MACHINES

This section algorithmically reduces the multiple-machine
scheduling problem to a single-machine scheduling problem, as-
suming recursive alignment. The reduction uses at most one mi-
gration per request. We usem to denote the number of machines.

The algorithm is as follows. For every windowW , record the
numbernW of jobs having windowW . (This number need only
be recorded for windows that exist in the current instance, so there
can be at mostn relevant windows forn jobs.) The goal is to
maintain the invariant that every machine has between⌊nW /m⌋
and⌈nW /m⌉ jobs with windowW , with the extra jobs being as-
signed to the earliest machines. This invariant can be maintained
simply by delegating jobs, for each windowW , round-robin: if
there arenW jobs with windowW , a new job with windowW is
delegated to machine(nW +1) mod m. When a job with window
W is deleted from some machinemi, then a job is removed from
machine(nw mod m) and migrated to machinemi. All job move-
ments are performed via delegation to the single-machine scheduler
on the specified machine(s).

The remaining question is whether the instances assigned toeach
machine are feasible. The following lemma says that they are.

LEMMA 3. Consider anym-machine6γ-underallocated recur-
sively aligned set of jobsJ , whereγ is an integer. Consider a sub-
set of jobsJ ′ such that ifJ containsnW jobs of windowW , then
J ′ contains at most⌈nW /m⌉ jobs of windowW . ThenJ ′ is 1-
machineγ-underallocated.

PROOF. SinceJ is underallocated, Lemma 2 says that there
can be at mostm |W | /(6γ) jobs with windowW or nested in-
sideW . By definition, no window smaller than6γ contains any
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jobs. The worry is that the ceilings add too many jobs to one ma-
chine. But there are at most2 |W | /(6γ) windows nested inside
W , and the ceilings add at most 1 job to each of these windows. So
the total number of jobs inJ ′ with windows insideW is at most
|W | /(6γ) + 2 |W | /(6γ) = |W | /(2γ). Even if all jobs are re-
stricted to run at multiples ofγ, a simple inductive argument shows
that this many size-γ jobs can be feasibly scheduled.

4. REALLOCATING ALIGNED JOBS ON
ONE MACHINE

We now give a single machine, reallocating scheduler for unit-
sized jobs. We assume a boundn on the number of jobs concur-
rently scheduled in the system, and relax this assumption atthe end
of the section.

Naïve Pecking-Order Scheduling is
Logarithmic
We first give the naïve solution, which requires a logarithmic num-
ber of reallocations per job insert/delete. This solution uses what
we callpecking-order scheduling, which means that a jobk sched-
ules itself without regard for jobs with longer span and withcom-
plete deference to jobs with shorter span. A jobk with windowW
may get displaced by a jobj with a shorter window (nested inside
W ), andk may subsequently displace a jobℓ with longer window.2

LEMMA 4. Let n denote the maximum number of jobs in any
schedule and let∆ denote the longest window span. There exists a
greedy reallocating scheduler such that for every feasiblesequence
of recursively aligned scheduling requests, the reallocation cost of
each insert/delete isO(min {log n, log∆}).

PROOF. To insert a jobj with span2i, find any empty slot in
j’s window, and placej there. Otherwise, select any jobk cur-
rently scheduled inj’s window that has span≥ 2i+1. If no such
k exists, the instance is not feasible (as every job currentlysched-
uled in j’s window mustbe scheduled inj’s window). If such a
k exists, replacek with j and recursively insertk. This strategy
causes cascading reallocations through increasing windowspans,
reallocating at most one job with each span. Since there are at most
log∆ distinct window spans in the aligned case, and moreover all
jobs can fit within a window of spann, the number of cascading
reallocations isO(min {log n, log∆}).

Pecking-Order Reallocation via Reservations
CostsO(min{log∗ n, log∗ ∆})
We now give a more efficient reallocating scheduler, which matches
Theorem 1 when the scheduling requests are recursively aligned.
The algorithm is summarized for job insertions in Figure 4.

The intuition behind reservation scheduling manifests itself in
the process of securing a reservation at a popular restaurant. If
higher-priority diners already have reservations, then our reserva-
tion is waitlisted. Even if our reservation is “confirmed,” acelebrity
(or the President, for DC residents) may drop in at the last moment
and steal our slot. If the restaurant is empty, or full of low-priority
people like graduate students, then our reservation is fulfilled. The
trick to booking a reservation at a competitive restaurant is to make
several reservations in parallel. If multiple restaurantsgrant the
reservation, we can select one to eat at. If a late arrival steals our
slot, no problem, we have another reservation waiting.
2At first glance, Lemma 4 seems to contradict the underallocation
requirement given in Lemma 12. That lower bound, however, ap-
plies to the general case, whereas this lemma applies to the aligned
case.

Back to our scheduling problem, by spreading out reservations
carefully, jobs will only interfere if they have drastically differ-
ent spans. Our algorithm handles jobs with “long” windows and
“short” windows separately, and only a “short” job can displace a
long job. The scheduler itself is recursive, so “very short”jobs can
displace “short” jobs which can displace “long” jobs, but the num-
ber of levels of recursion here will belog∗ ∆, as opposed tolog∆
in the naive solution.

There are two components to the scheduler. The first compo-
nent uses reservations to guarantee that jobs cannot displace (many)
other jobs having “similar” span, so the reallocation cost if all jobs
have similar spans isO(1). These (over-)reservations, however,
consume timeslots and amplify the underallocation requirements.
Applying the scheduler recursively at this point is trivialto achieve
a good reallocation cost, but the required underallocationwould
become nonconstant. The second component of the scheduler is to
combine levels of granularity so that their effects on underalloca-
tion do not compound.

The remainder of the section is organized as follows. We first
discuss an interval decomposition to separate jobs into different
“levels” according to their spans. Then we present the scheduler
with regards to a single job level. Finally we discuss how to incor-
porate multiple levels simultaneously.

Interval Decomposition
Our scheduler operates nearly independently at multiple levels of
granularity. More precisely, we view these levels from bottom up
by defining the threshold

Lℓ+1 =

{

25 if ℓ = 0

2Lℓ/4 if ℓ > 0
.

It is not hard to see thatL is always a power of 2, growing as a
tower function of 4

√
2. It is often convenient to use the equivalent

relationshipLℓ = 4 lg(Lℓ+1)—each threshold is roughly thelg of
the next.

Our scheduler operates recursively according to these thresholds.
The level-ℓ scheduler handles jobs and windowsW with spanLℓ <
|W | ≤ Lℓ+1. We call a job (or window) alevel-ℓ job (window)if
its span falls in this range.

We partition level-ℓ windows into nonoverlapping, aligned sub-
windows calledlevel-ℓ intervals, consisting ofLℓ = 4 lgLℓ+1

timeslots. The following observation is useful in our analysis:

(# of distinct level-ℓ-window spans) ≤ lg(Lℓ+1) = Lℓ/4 (1)

The reallocation scheduler operates recursively within each in-
terval to handle lower-level jobs. Because this is pecking-order
scheduling, the recursive scheduler makes decisions without pay-
ing attention to the location of the higher-level jobs, guaranteeing
only that each lower-level job is assigned a unique slot within its
appropriate window. In doing so, it may displace a long job and
invoke the higher-level scheduler.

Schedule Level-ℓ Jobs via Reservations
Consider a level-ℓ window W with span2kLℓ, for some integer
k ≥ 1 (i.e., W contains2k level-ℓ intervals). Letx denote the
number of jobs having exactly windowW .

The windowW maintains a set ofreservationsfor thesex jobs,
where each reservation is arequest for a slot in a given level-ℓ
interval. A reservation made byW can befulfilled ; this means
that one slot from the requested interval isassigned toW , and
the only level-ℓ jobs that mayoccupy that slot are any of thex
jobs with window exactlyW . Alternatively, a reservation can be
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waitlisted; this means that all the slots in the requested interval are
already assigned to smaller windows thanW . Which reservations
are fulfilled and which are waitlisted may change over time asjobs
get allocated and removed.

We now explain how these reservations are made. Initially, a
level-ℓ windowW makes one reservation for each enclosed level-ℓ
interval. It makes two additional reservations for each jobhaving
windowW . These reservations are spread out round-robin among
the intervals withinW (and independently of any jobs with any
different windows). We maintain the following invariant:

INVARIANT 5. If there arex jobs having level-ℓ windowW
with |W | = 2kLℓ, thenW has exactly2x + 2k reservations in
level-ℓ intervals.

• These reservations are assigned in round-robin order to the
intervals inW .
• Each of the enclosed intervals contains either

⌊

2x/2k
⌋

+1

or
⌊

2x/2k
⌋

+2 ofW ’s reservations, where the leftmost inter-
vals have the most reservations and the rightmost intervals
have the least reservations.

To maintain Invariant 5, when a new job with windowW is al-
located,W makes two new reservations, and these are sent to the
leftmost intervals that have the least number (

⌊

2x/2k
⌋

+1) of W ’s
reservations. When a job having windowW is deleted,W removes
one reservation each from the two rightmost intervals that have the
most reservations.

We now describe the reservation process from the perspective of
the interval, which handles reservation requests from the< Lℓ/4
level-ℓ windows that contain the interval (see Equation 1). The
interval decides whether to fulfill or waitlist a reservation, pri-
oritizing reservations made by shorter windows. Each interval
I has anallowanceallowance(I), specifying which slots it may
use to fulfill reservations. In the absence of lower-level jobs, the
|allowance(I)| = Lℓ, since the interval has spanLℓ. (When lower-
level jobs are introduced, however, the allowance decreases—
the allowance contains all those slots that are notoccupiedby
lower-level jobs.) Thus, the interval sorts the window reserva-
tions with respect to span from shortest to longest, and fulfills the
|allowance(I)| ≤ Lℓ reservations that originate from the shortest
windows. A fulfilled reservation is assigned to a specific slot in
the interval, while a waitlisted reservation has no slot. The interval
maintains a list of these waitlisted reservations.

The set of fulfilled reservations changes dynamically as inser-
tions/deletions occur. When a new reservation is made by window
W , a longer windowW ′ may lose a reserved slot as one of its ful-
filled reservations is moved to the waitlist; if there is a job(of the
same level) in that slot, it must be moved. When a job with win-
dowW is deleted,W has two fewer reservations, and so may lose
two fulfilled slots. If there is a job in either of these slots,then that
job must be moved. (In this case, a longer windowW ′ may gain a
fulfilled slot, but this does not require any job movement.) The fol-
lowing invariant is needed to establish the algorithm’s correctness.

INVARIANT 6. When a job having windowW is newly allo-
cated,W makes two new reservations. Then the job is assigned to
any empty slot for whichW has a fulfilled reservation. There will
always be at least one such slot (proved by Lemma 8).

Interestingly, as a consequence of pecking-order scheduling
combined with round-robin reservations:

OBSERVATION 7. Which reservations in which intervals are
fulfilled and which are waitlisted is history independent. The ac-
tual placement of the jobs is not history independent.

Scheduling Across All Levels
Consider inserting a level-ℓ job j. Supposej’s window is contained
in a higher-level intervalI ′. We schedulej at its own level accord-
ing to the pecking-order scheduler, without regard to higher-level
schedulers. Recall that the first step of the insertion is placing two
new reservations. Whenever the reservations cause anotherlevel-ℓ
job j′ to move from slots to slot s′, the allowance of all higher-
level intervals must be updated to reflect the change in slot usage.
However, since boths ∈ I ′ ands′ ∈ I ′, andj′ vacates the original
slots, there is no net change to|allowance(I ′)|. It is thus sufficient
to swaps ands′ for all higher-level intervalsI ′, which may result
in a total of one higher-level job movement.

After updating the reservations, the new jobj is placed in one of
its assigned slotss. This slot may either be empty, or it may contain
a higher-level jobh—the scheduler choosess without regard to
these possibilities. In either case, the slots will be used byj, so it
must be removed fromallowance(I ′) for any ancester intervalI ′—
meaning the higher-level scheduler cannot use this slot. Ifthe slot
s was empty, then the jobj is assigned to that slot and the insertion
terminates. If the slots was previously occupied by a higher-level
job h, thenh is displaced and a new slot must be found. Unlike
in the case of reservations,|allowance(I ′)| decreases here and we
do not immediately have a candidate slot into which to placeh.
Instead, we reinserth recursively using the scheduler at its level.
This displacement and reinsertion may cascade to higher levels.

Observe that the higher-level scheduler is unaware of the reserva-
tion system employed by the lower-level scheduler. It only knows
which slots are in its allowance. These slots are exactly those that
are notoccupiedby short-window jobs. The interval does not ob-
serve the reservations occurring within nested intervals—only ac-
tual job placement matters. When a lower-level job is deleted, the
allowance of the containing interval increases to include the slot
that is no longer occupied.

Reservation Analysis
We now use the following lemma to establish Invariant 6, which
claims that there are always enough fulfilled reservations.Since the
reservations fulfilled by each interval are history independent (see
Observation 7), this proof applies at all points during the execution
of the algorithm.

LEMMA 8. Suppose that a sequence of aligned scheduling re-
quests 8-underallocated. If there arex jobs each having the same
windowW , thenW has at leastx+ 1 fulfilled reservations.

PROOF. Let |W | = 2kLℓ for level-ℓ window W . Let y be the
number of level-ℓ jobs with windows nested insideW . Each of
those windows makes 2 reservations for each job, plus an extra
reservation to each of the2k intervals. So the total number of reser-
vations inW is at most2(x + y) + 2k lgW . In addition, letz be
the number of lower-level jobs nested insideW . Since we are 8-
underallocated, we have2(x + y) + z ≤ 2(x + y + z) ≤ |W | /4
by Lemma 2. By Equation 1, we havelgW ≤ Lℓ/4, and hence
2k lgW ≤ (2kLℓ)/4 = |W | /4. Summing these up, we have
that at most|W | /2 slots consumed by lower-level jobs and these
reservations.

In order for a particular interval to waitlist even one ofW ’s reser-
vation requests, it would need to have strictly more thanLℓ of these
reservations or lower-level jobs assigned to it. But there are only
|W | /2 slots consumed in total, so strictly less than1/2 the inter-
vals can waitlist even one ofW ’s reservations. Since windowW
reserves at least

⌊

2x/2k
⌋

+ 1 slots in every one of the2k inter-
vals by Invariant 5, it must therefore be granted strictly more than
(
⌊

2x/2k
⌋

+ 1)(1/2)(2k) ≥ x fulfilled reservations.
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• Initially, each level-ℓ windowW has one reservation in each level-ℓ interval contained inW .
• Initially, each intervalI hasallowance(I) = I .
• To insert a new level-ℓ job j with windowW :

1. Identify the two underloaded intervalsI1 andI2 according to Invariant 5
2. Call RESERVE(I1,W ) and RESERVE(I2,W )
3. Call PLACE(j)

RESERVE(I,W ) // make a reservation inI for level-ℓ windowW

1 if there is a slots ∈ allowance(I) that has not been assigned
2 then fulfill the reservation, assigning slots to windowW andreturn
3 letW ′ be the longest window with a fulfilled reservation inI , and lets be one of its slot
4 if |W ′| ≤ |W |
5 then waitlist the reservation forW
6 else waitlist the reservation forW ′ and take slots fromW ′

7 if there is a level-ℓ job j′ in slots
8 then MOVE(j′)
9 fulfill the reservation, assigning slots toW

// Note that though the reservation is fulfilled, the slot maybe occupied by a higher-level job

MOVE(j′) // level-ℓ job j′ lost the reservation to a slot it occupies

10 letW ′ be the window ofj′, and lets be the slot it occupies
11 lets′ be a fulfilled slot, assigned toW ′, not containing any level-ℓ job // exists by Lemma 8
12 for all ancestor intervalsI ′ containingW ′

13 do swaps ands′ with regards to reservations and allowances forI ′ // both slots are insideI ′

// if a higher-level jobh occupiess′ then scheduleh in s instead ofs′

14 schedulej′ in slots′

PLACE(j) // letW bej’s window and letℓ bej’s level

15 lets be a fulfilled slot, assigned toW , not containing any level-ℓ job // exists by Lemma 8
16 schedulej in s, potentially displacing a higher-level jobh
17 removes from the allowance of all higher-level intervals
18 for each ancestor interval whose allowance decreases //s is only in allowances up toh’s level
19 do adjust the reservations to reflect a smaller allowance, possibly waitlisting one reservation
20 if a newly waitlisted reservation is for a slot containing a jobj′

21 then MOVE(j′)
22 if there is a displaced jobh
23 then PLACE(h)

Figure 1: Pecking-order scheduling with reservations.

Since each windowW containingx jobs has at leastx + 1 ful-
filled reservations at intervals withinW , there is always an appro-
priate slot to schedule a new belonging to this window. This ensures
that there each operation leads to onlyO(1) reallocations at each
level.

Trimming Windows to n and Deamortization
Ideally, the reallocation cost for a requestr should be a function of
the number of active jobsnr in the system when requestr is made.
To achieve this performance guarantee, we maintain a valuen∗ that
is roughly the number of jobs in the current schedule. When the
number of active jobs exceedsn∗, we doublen∗; when the number
of active jobs shrinks belown∗/4, we halven∗.

For every job that has a window larger than2γn∗, we trim its
window—reducing it arbitrarily to size2γn∗. The adjusted in-
stance remainsγ-underallocated, since there are at mostn∗ other
jobs scheduled in the trimmed window of size2γn∗.

To achieve good amortized performance, it is enough to rebuild
the schedule from scratch each time we change the value ofn∗.
This rebuilding incurs an amortizedO(1) reallocation cost.

This amortized solution can be deamortized, as long as the
scheduling instance is sufficiently underallocated that the follow-
ing property holds: if each job is duplicated (i.e., inserted twice
on inserts, deleted twice on delete), the resulting instance is γ-
underallocated, for appropriate constantγ. This property holds
as long as the initial (unduplicated) scheduling instance is 2γ-
underallocated.

The idea is to rebuild the schedule gradually, performing a little
update every time a new reallocation request is serviced. This ap-
proach is reminiscent to how one deamortizes the rebuildingof a
hash table that is too full or too empty. We use the even (or odd)
time slots for the old schedule and the odd (or even) time slots for
the new schedule. Instead of rebuilding the schedule all at once,
every time one job is added or deleted, two jobs are moved from
the old schedule to the new schedule.

Wrapping Up
We conclude with the following lemma, which puts together the
various results in this section:
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LEMMA 9. There exists a constantγ and a single-machine re-
allocating scheduler such that for any1-machineγ-underallocated
sequence of aligned scheduling requests, we achieve the following
performance. Letni denote the number of jobs in the schedule and
∆i the largest window size when theith reallocation takes place.
Then theith reallocation has costO(min {log∗ ni, log

∗ ∆i}).
PROOF. We consider the performance of the pecking-order

scheduler with reservations, where we maintain an estimaten∗ via
deamortized shrinking and doubling and trim all windows toγn∗.

Lemma 8 shows that there is always a slot available to put a job
(Invariant 6), and hence we observe that there are at mostO(1) re-
allocations at each level of the scheduler. Specifically, oninsertion,
the two reservations may result in two calls to MOVE for jobs at
the same level as the one being inserted. Each MOVE results in one
reallocation of the job being moved, plus at most one reallocation
at a higher level. Then the call to PLACE may cascade across all
levels, but it in aggregate it only includes one MOVE per level, each
causing at most two reallocations.

If ∆i is the largest job size when operationi occurs, there are no
more thanO(log∗ ∆i) levels. Sincen∗

i ≤ 4n, and all windows are
trimmed to lengthγn∗, we also know that there are no more than
O(log∗(4γni)) levels. From this the result follows.

5. REALLOCATING UNALIGNED JOBS
ON MULTIPLE MACHINE

In this section, we generalize to jobs that are not aligned, remov-
ing the alignment assumptions that we made in Sections 3 and 4.
We show that ifS is a γ-underallocated sequence of scheduling
requests, then we can safelytrim each of the windows associated
with each of the jobs, creating an aligned instance. Since the ini-
tial sequence of scheduling requests is underallocated, the resulting
aligned sequence is also underallocated, losing only a constant fac-
tor.

We first define some terminology. IfW is an arbitrary window,
we say thatALIGNED(W ) is a largest aligned window that is con-
tained inW . (If there is more than one largest window, choose
arbitrarily.) Notice that|ALIGNED(W )| ≥ |W | /4. If J is a set of
jobs, thenALIGNED(J) is the set of jobs in which the windowW
associated with each job is replaced withALIGNED(W ).

LEMMA 10. Consider anym-machine4γ-underallocated set
of jobsJ , whereγ is an integer. ThenALIGNED(J) is m-machine
γ-underallocated.

PROOF. Assume for the sake of contradiction thatALIGNED(J)
is notγ-underallocated. This implies that there must exist a win-
dow W that has> m |W | /γ jobs with trimmed windows con-
tained inW (as otherwise we could schedule the sizeγ jobs via a
simple inductive argument). LetJ ′ ⊆ J be the jobs whose trimmed
windows are contained inW .

SinceJ is 4γ-underallocated, we now examine an (unaligned)
scheduling of the jobs inJ ′ that satisfies the4γ-underallocation
requirement. We observe that all the jobs inJ ′ are scheduled in
a region of size at most4 |W |. However, since the schedule is
4γ-underallocated, there can be at most4m|W |/(4γ) jobs in this
region of size4|W |. That is|J ′| ≤ m|W |/γ, which is a contradic-
tion.

From this we can conclude with the proof of Theorem 1:

PROOF OFTHEOREM1. Jobs are scheduled as follows: first, a new
job has its window aligned; second, it is delegated to a machine

in round-robin fashion; finally, it is scheduled via single-machine
pecking-order scheduling with reservations. When a job is deleted,
it is removed by the appropriate single-machine scheduler,and then
there is at most one migration to maintain the balance of jobsacross
machines. This is the only time that jobs migrate.

Lemma 10 shows that the set of aligned jobs ism-machine
γ/4-underallocated, and Lemma 3 shows that the jobs asigned
to each machine are1-machineγ/24-underallocated. Finally,
Lemma 9 shows that each single-machine scheduler operationhas
costO(min {log∗ ni, log

∗ ∆i})—and each job addition or dele-
tion invokesO(1) single-machine scheduler operations.

6. WHAT HAPPENS WITHOUT
UNDERALLOCATION?

This section explains what happens without underallocation and
why migrations are necessary at all.

If migration cost is to be bounded only by reallocation cost and
since jobs have unit size, it is trivial to transform a parallel instance
to a single-machine instance my making a single machine gom
times faster. Since migration cost across machines could bemore
expensive than rescheduling a single machine, we are interested in
providing a tighter bound on the migration cost. The question then
is: are migrations necessary?The following lemma shows that
they are. In fact, the per-request migration cost must beΩ(1) in the
worst-case for any deterministic algorithm.

LEMMA 11. There exists a sufficiently large sequence ofs job
insertions/deletions onm > 1 machines, such that any determinis-
tic scheduling algorithm has a total migration cost ofΩ(s).

PROOF. Without loss of generality, assume6m dividess. Di-
vide thes requests intos/(6m) consecutive subsequences of6m
requests each. Each subsequence is as follows:

1. Insert2m span-2 jobs with window[0, 2].
2. Delete them jobs scheduled on the firstm/2 machines.
3. Insertm span-1 jobs with windows[0, 1].
4. Delete all2m remaining jobs.

After step 1, the only feasible schedule is to put two jobs on each
machine. After step 2, half the machines have two jobs, and the
other half of the machines have no jobs. The only feasible sched-
ule after step 3 is to have on each machine a span-1 job starting at
time 0, and a span-2 job starting at time 1. This means that half
of the span-2 jobs must migrate across machines, causingm/2 mi-
grations. There are thusm/2 migrations for every6m requests, or
a total ofs/12 migrations.

It is also easy to see that for some sequences of scheduling re-
quests, if they are not underallocated, it is impossible to achieve
low reallocation costs, even if there exists a feasible schedule.

LEMMA 12. There exists a sequence ofs job inserts/deletions,
such that any scheduling algorithm has a rescheduling cost of
Ω(s2).

PROOF. Consider for exampleη = s/2 jobs numbered
0, 1, . . . , η − 1, where jobj has window[j, j + 2]. With the inser-
tion of one additional job having window[0, 1], forcing the job to
be scheduled at time 0, allη other jobs are forced to schedule during
their later slot. If that job is deleted and another unit-span job with
window [η, η + 1] is inserted, then all jobs are forced to schedule
during their earlier slot. By toggling between these two options, all
jobs are forced to move, resulting in costΩ(η) to handle each re-
quest. Repeatingη times gives a total cost ofΩ(η2) = Ω(s2).
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7. CONCLUSIONS AND OPEN
QUESTIONS

The results in this paper suggest several followup questions.
First, is it possible to generalize this paper’s reallocation scheduler
for the case where jobs are not unit-sized? Observe that we are lim-
ited by the computational difficulty of scheduling with arrival times
and deadlines when jobs are not unit size; see [6] for recent results
with resource augmentation. We are also limited by the following
observation:

OBSERVATION 13. Suppose there exist jobs of size1 and jobs
of sizek, for any k > 1. For any reallocation scheduler, there
is a sequence ofΘ(n) scheduling requests that has aggregate re-
allocation costΩ(kn), for k ≤ n, even if the requests areγ-
underallocated for any constantγ.

PROOF. Consider a schedule of lengthm = 2γk. Assume there
arek unit-sized jobs that are each scheduled with a window begin-
ning at0 and ending atm. In addition, consider a single large job
p that has sizek and a window of span exactlyk.

Initially, all k unit-size jobs are scheduled and they remain in the
system throughout. The large jobp is initially scheduled at time
slot 0. It is then deleted from time slot 0 and re-inserted at time
slot k, and then again at time slot2k, 3k, . . . ,m − k. The same
sequence of2γ insertions and deletions is then repeatedn times.

During a single sequence of2γ insertions and deletions, each of
thek unit-sized jobs has to be rescheduled at least once, resulting
in Ω(kn) reallocation cost.

Does there exist a reallocation scheduler that handles jobswhose
sizes are integers less than or equal tok and matching the bounds
in Observation 13? There could be applications where jobs are not
unit size, but wherek is relatively small.

What happens if other types of reallocations are allowed, such as
if new machines can be added or dropped from the schedule, or if
machine speeds can change?

In this paper,γ is very large, and the paper does not attempt to
optimize this constant, preferring clarity of exposition.How much
can this constant be improved? Is there a reallocation scheduler
whereγ = 1 + ε?

Finally, what other scheduling and optimization problems lend
themselves to study in the context of reallocation?
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