
Dynamic Task Allocation in Asynchronous Shared Memory

Dan Alistarh∗

MIT

James Aspnes†

Yale

Michael A. Bender‡

Stony Brook University & Tokutek

Rati Gelashvili§

MIT

Seth Gilbert¶

NUS

Abstract

Task allocation is a classic distributed problem in which
a set of p potentially faulty processes must cooperate
to perform a set of tasks. This paper considers a new
dynamic version of the problem, in which tasks are in-
jected adversarially during an asynchronous execution.
We give the first asynchronous shared-memory algo-
rithm for dynamic task allocation, and we prove that
our solution is optimal within logarithmic factors. The
main algorithmic idea is a randomized concurrent data
structure called a dynamic to-do tree, which allows pro-
cesses to pick new tasks to perform at random from
the set of available tasks, and to insert tasks at ran-
dom empty locations in the data structure. Our anal-
ysis shows that these properties avoid duplicating work
unnecessarily. On the other hand, since the adversary
controls the input as well the scheduling, it can induce
executions where lots of processes contend for a few
available tasks, which is inefficient. However, we prove
that every algorithm has the same problem: given an
arbitrary input, if OPT is the worst-case complexity of
the optimal algorithm on that input, then the expected
work complexity of our algorithm on the same input
is O(OPT log3m), where m is an upper bound on the
number of tasks that are present in the system at any
given time.

1 Introduction

Sharing work efficiently and robustly among a set of
agents is a fundamental problem in distributed com-

∗This author was supported by the SNF Postdoctoral Fel-
lows Program, NSF grant CCF-1217921, DoE ASCR grant

ER26116/DE-SC0008923, and by grants from the Oracle and Intel
corporations.
†Supported in part by NSF grant CCF-0916389.
‡This research was supported in part by NSF grants CCF

1114809, CCF 1217708, IIS 1247726, and IIS 1251137.
§This work was supported in part by NSF grants CCF-

1217921, CCF-1301926, DoE ASCR grant ER26116/DE-

SC0008923, and by grants from the Oracle and Intel corporations.
¶Supported by Singapore AcRF-2 MOE2011-T2-2-042.

puting. The problem is all the more challenging when
there is heterogeneity, either on the workers’ side, since
individual agents may have varying speed and robust-
ness, or because of uneven workloads. In large-scale sys-
tems, heterogeneity is the norm. A further challenge for
task allocation is the fact that scheduling must often be
decentralized: the designer cannot afford a centralized
scheduler either because communication costs would be
too high, or because of fault-tolerance concerns.

Considerable research, e.g. [4,5,11–13,16,19,22–24],
has focused on algorithms and lower bounds for the
asynchronous version of task allocation, also known as
do-all [17], or write-all [19], where processes move at
arbitrary speeds and are crash-prone. Task allocation
is closely connected to many other fundamental dis-
tributed problems, such as mutual exclusion [10], dis-
tributed clocks [8], and shared-memory collect [3]. The
book by Georgiou and Shvartsman [17] gives a detailed
history of the problem.

Most of the theoretical research on task allocation
has looked at the one-shot version, where m tasks are
available initially, and the computation ends when all
tasks are performed. (Notable exceptions are refer-
ences [16] and [15], which consider task injection under
strong timing assumptions.)

This paper formalizes dynamic task allocation,
which captures the (parallel) producer-consumer
paradigm. We are given p asynchronous processes that
cooperate to perform tasks, while new tasks are in-
serted dynamically by the adversary during the exe-
cution. This problem has attracted significant inter-
est among practitioners do to the importance of the
producer-consumer problem. (See the end of this sec-
tion for a discussion of such work.)

A dynamic task allocation object supports two op-
erations: DoTask, and InsertTask. The input to an ex-
ecution is a sequential list of operations, where each
DoTask must return the index of the task performed (or
empty in case there are no more tasks left), and each
InsertTask returns success once the task has been in-
serted. We require both operations to be linearizable.

(See Section 2 for the precise semantics of these oper-
ations.) We assume that m is an upper bound on the
number of tasks present in the data structure at any
given time. We focus on a natural extension of the work
performance metric [17], which counts the total number
of shared-memory steps.

The problem is especially challenging in an asyn-
chronous setting since the adversary sees the processes’
coin flips, controls the scheduling, and the process
crashes, and chooses the input. In fact, the problem
may appear inapproachable: for instance, the adversary
can easily build an input and a schedule such that, at
regular time intervals, there is only one task available
in the system, and p processes are competing to per-
form tasks. Since any solution must be fault-tolerant,
each process must try to perform the one available task.
Thus, we always spend at least p work to perform only
one task! A natural question is: can anything efficient
be done under such harsh conditions? In general, how
well can an algorithm do for an arbitrary input I?

Contribution. In this paper, we show that efficient
solutions do exist, by presenting an algorithm which is
optimal within logarithmic factors for every input I.
More precisely, assuming an optimal algorithm OPT for
the problem, if w is the amount of work that OPT needs
to perform on input I in a worst-case schedule, then, on
the same input I, our algorithm will perform expected
O(w log3m) total work, and O(w log3m log p) work
with high probability. To the best of our knowledge,
this is the first algorithm which solves dynamic task
allocation in an asynchronous system.

Our algorithm is based on a data structure called
a dynamic to-do-tree. The underlying intuition is that,
to minimize contention, processes should pick tasks to
perform uniformly at random, and attempt to insert
new tasks at uniform random available locations in the
data structure. We achieve this by fixing a set of m
locations (each of which will be associated to a task),
and build a binary tree on top of the locations. Each
node in the tree has two counters: one for the number
of successful insert operations performed in its subtree,
and one for the number of successful remove operations.
Intuitively, the difference between the insert count and
the remove count, called the surplus at the node, gives
the number of available tasks in the subtree.

When calling DoTask, a process starts at the root
and walks down the tree looking for an available task.
It decides whether to go left or right by checking the
surplus at the left and right children. More precisely, if
s is the left surplus and s′ is the right surplus, then the
process goes left with probability s/(s + s′), and right
otherwise. (If s+ s′ = 0, the process re-traces its steps
to the root and tries again.) Once a task is executed at

a leaf, the process walks back up to the root, updating
the counters on the way. The InsertTask operation is
completely symmetric, except that it follows the space
at each node, which is the complement of the surplus
at a node. Both operations are linearizable and lock-
free. The algorithm ensures that each inserted task is
eventually performed with probability approaching 1.

Structurally, the dynamic to-do tree is relatively
simple, and borrows ideas from other shared-memory
constructions such as the poly-logarithmic snapshots
of Aspnes et al. [6] and the one-shot task allocation
algorithm of Alistarh et al. [4]. Progress trees are a
natural idea for task allocation and variants have been
analyzed previously, e.g. [4, 11, 24], however this is the
first instance of a dynamic progress tree, which supports
concurrent insert and remove operations. Instead of
using a single progress tree (sufficient for one-shot
algorithms) we combine two dual progress trees: one
for tracking insertions, and one for tracking removals.
The two implementations are “glued together,” and
interact in non-trivial ways in the actual executions.
The interactions between inserted tasks and removed
tasks add significant complications.

Our main technical contribution is in showing that
this simple algorithm works, and is in fact optimal
within logarithmic factors. Even though the intuition
behind the data structure is clean, the analysis of con-
current executions can be quite complex. For instance,
the idea that process q picks a task to perform “at ran-
dom,” minimizing contention, is appealing conceptually.
If the operations were performed sequentially, or if the
processes took steps synchronously, it would be true and
the analysis would be straightforward.

Unfortunately, due to asynchrony and dynamic
operations, this intuition of random choices is not
accurate. When one operation is executing, the p − 1
other processes are removing and inserting tasks at the
same time, changing the counters that the process reads.
In fact, the adversary may easily adapt the schedule
so that a certain process is prevented from performing
a certain task with good probability. (For example,
whenever a process is about to reach a task to perform,
it is delayed until some other process executes that
task.) Thus, most of the technical effort in the paper is
spent in building a framework to analyze the processes’
random choices under asynchronous scheduling.

Instead of proving that individual processes make
progress (a losing proposition), we focus on blocks of
tree walks of carefully chosen size. We prove that their
collective behavior is random, in that, with high prob-
ability, the adversary cannot confine them to reaching
a small subset of the available tasks. The block size is
a trade-off between the probability that a large subset

is covered, and the amount of wasted work. Interest-
ingly, this argument holds both for insert and remove
walks, though the analysis details diverge depending on
the operation type.

Another technical challenge is that known concur-
rent counter constructions are not well suited for large
numbers of concurrent insertion and removal operations.
The poly-logarithmic MaxArray of [6] only supports a
bounded number of operations. Also, it allows us to
read the two sub-counters atomically, but not to up-
date both atomically: this leads to an inherent asym-
metry between the two types of operations, where in-
serts may propagate up the tree faster than the respec-
tive removes. We resolve the former issue by building
an unbounded-use MaxArray using atomic compare-
and-swap operations. The latter is solved by an ana-
lytic technique which accounts for the distribution skews
caused by using weak counter objects.

The analysis suggests that the key parameter is the
ratio of available processes to available tasks throughout
an execution. Specifically, if q processes are performing
DoTask operations and there are only s ≤ q tasks
available at some point, then the algorithm spends
Θ(q/s log3m) work in expectation to perform Θ(s)
tasks.

Our competitive analysis shows that part of this
cost is inherent. Fixing an input I, we run both our
algorithm and the hypothetical optimal algorithm OPT
in parallel. We carefully build a schedule for OPT
such that, if our algorithm reaches a situation where
q processes must perform s � q tasks, the optimal
algorithm ends up in a similar scenario. Both algorithms
will then waste similar amounts of work to perform
the tasks. The difference between the two algorithms
will be the cost of tree walks–O(log3m) each–which
our algorithm pays and the optimal algorithm may not.
We obtain a lower bound on the cost of OPT on I,
in terms of a worst-case execution for our algorithm
on I. The notion of competitiveness with a fixed
input is new for concurrent algorithms: previous work,
e.g. [3], defined competitiveness with respect to a fixed
adversarial schedule.

In sum, we show that processes can cooperate to
perform work efficiently even in strongly adversarial
conditions. Our algorithm ensures global progress,
and employs the common atomic read, write, and
compare-and-swap (CAS) operations. Note that we as-
sume that the compare-and-swap operation is available
in hardware. This holds for virtually all modern ar-
chitectures, however this assumption makes our compu-
tational model strictly stronger than the asynchronous
read-write model [18] used by previous work on write-
all, e.g. [4, 11, 24]. The complexity bounds are amor-

tized, and we guarantee that each inserted task is even-
tually performed by some process.

Previous work. Task allocation is also known as
do-all [17]; the shared memory variant is also called
write-all [5, 19]. The recent book by Georgiou and
Shvartsman [17] gives a detailed overview of work on
the problem. In brief, the shared-memory version
was introduced by Kanellakis and Shvartsman [19] in
the context of PRAM computation: in this instance,
each task is a register, which must be flipped from 0
to 1. There has been significant follow-up work on
the topic, e.g. [5, 11, 12, 22–24]. However, most of
this work has focused on the one-shot version of the
problem, in which the set of tasks is fixed initially, and
computation ends when all tasks have been performed.
Alistarh et al. [4] used a variant of the progress tree
to obtain the most efficient task allocation algorithm to
date: the randomized version of the algorithm ensures
expected total work O(m + p log p log2m) for m tasks
using p processes, while a (non-explicit) deterministic
version ensures total work O(m + p log7m) for m ≥
p. This improves on previous algorithms by Kowalski
and Shvartsman [22], Malewicz [23], and Chlebus and
Kowalski [12].

Our algorithm has expected cost O(m +
p log p log3m) in an execution where only inser-
tions or removals are performed. The best known
(one-shot) lower bound for the problem is of expected
Ω(m + p logm) shared-memory steps [24]. Recent
work on the do-all problem considered at-most-once
semantics in shared memory, e.g. [20, 21], instead
of at-least-once. Assuming stronger synchronization
primitives than [20, 21], our solution gives exactly-once
semantics (see Section 2 for details).

A variant of dynamic do-all, where tasks can be
injected dynamically during the execution, has been
considered recently by Georgiou and Kowalski [15] in
the message-passing model with process crashes and
restarts, assuming a synchronous round structure. The
authors identify trade-offs between efficiency and fault-
tolerance, and introduce a framework for competitive
analysis where the efficiency of an algorithm is measured
in terms of the number of pending tasks at the begin-
ning of a computation round. Georgiou et al. [16] had
previously considered the iterated version of the prob-
lem under process crashes. In this paper, we assume
a strictly harder adversarial model, since computation
is completely asynchronous, and the adversary is adap-
tive. On the other hand, our algorithm only provides
probabilistic guarantees.

A more applied research thread has looked at ef-
ficient shared-memory data structures with set seman-
tics, also known as (task) pools, e.g. [1, 2, 9, 25], scal-

able non-zero indicators (SNZI) [14], or combining fun-
nels [26]. In general, these references emphasize the
practical performance of the data structure, and do
not provide complexity upper bounds. One exception
is the CAFE data structure [9], where removes take
O(log2 p) steps with high probability, and inserts even-
tually terminate—on the other hand, their amortized
complexity may be linear.

Roadmap. Section 2 describes the model and the
problem statement. The algorithm is described in
Section 3, while Section 4 gives the analysis of the
algorithm. We prove that the algorithm is optimal
within logarithmic factors in Section 5. The unbounded
MaxArray construction is given in Appendix Section A.

2 System Model and Problem Statement

Model. We work in the standard asynchronous shared
memory model. We have p processes which communi-
cate through registers, on which they can perform read,
write, and compare-and-swap (CAS) operations. Each
process is assumed to have a unique identifier from an
unbounded namespace. Each process has at its disposal
a (local) random number generator. Specifically, the
call random(a, b) returns a random integer chosen uni-
formly from the interval [a, b]. At most p− 1 processes
may fail by crashing. A crashed process stops taking
steps for the remainder of the execution.

The scheduling of process steps and their crashes
are controlled by a strong adaptive adversary. Specifi-
cally, the adversary can examine the state of the pro-
cesses (including random coin flips) at any point in time,
and decide on the schedule accordingly.

Dynamic Task Allocation. In this problem, the
p processes must perform a set of tasks which are
dynamically injected by the adversary over time. For
simplicity, we assume that there is a bound m ≥ p
on the number of tasks that may be available at any
point in the execution, and that each task has a unique
identifier ` ≥ 0. (As suggested by an anonymous
reviewer, a simple unique task identifier scheme can be
implemented by assigning to each task an identifier of
the form (id , count), where id is the id of the process to
which the task is assigned, and count is the value of a
local per-process counter, which is incremented on each
newly inserted task.)

A process may perform two types of operations.
The DoTask operation performs a new task and returns
the index of that task, while the InsertTask(`) operation
inserts a task ` to be performed. The input is a string
of DoTask and InsertTask(`) operations to be executed.
When a process completes its current operation, it is
assigned the next operation in the string.

We assume that the input at each process and the
scheduling are controlled by the adversary. The input
ensures the following properties:

• (Task Upper Bound) There can be at most m
tasks available at the same time. More precisely,
we require that, for every contiguous subsequence
of the input, the number of InsertTask operations
minus the number of DoTask operations in the
subsequence is at most m − 2p. (See Appendix
Section B for a discussion of this limitation.)

• (Well-formedness) No two InsertTask calls get the
same task identifier as argument.

For clarity, we fix an interface by which threads may
perform a task, or insert a new task. We assume that
each task ` to be performed is associated to a memory
location M . (Over time, a memory location can be
associated with multiple tasks.) The task ` can be
performed atomically by a process by calling a special
TryTask operation on the memory location M associated
to the task.

Out of several processes calling TryTask(M) concur-
rently, only one receives success and the index ` of the
task, whereas all the others receive a failure notification.
This ensures that only a single thread may actually per-
form the task. A process returns the task index ` from
DoTask if and only if it has received success from the
TryTask(M) call.

Note that if such a compare-and-perform operation
is not available, then we can use a compare-and-swap
to assign the task to the winning process. This changes
the semantics of the problem from exactly-once to at-
most-once [21]: the algorithm can only guarantee that
all but p−1 tasks are performed, since the adversary can
stop a process between the point it has been assigned
to a task, and the point when it performs it.

A task can be associated with a memory location M
by a special PutTask(M, task) operation. The operation
returns success if the task has been associated with
the location, and failure if the location was already
associated with another task.

To illustrate, consider the classic WriteAll prob-
lem [19], where threads must change the values of a
set of memory locations from 0 to 1; in this case, the
TryTask(`) operation attempts to perform a CAS from
0 to 1 on the location `, whereas the PutTask(M, task)
attempts to perform a CAS from 1 to 0 on the location.
The algorithmic challenge is to distribute the calls in
such a way as to minimize the amount of wasted work.

We require the DoTask and InsertTask operations to
be linearizable. More specifically, for every execution
of the data structure, there exists a total order on the
completed DoTask and InsertTask operations. A task

is done if its index has been returned by a process
after a DoTask call. A task is available if it has been
inserted, but not done. The total order must verify
the following requirements: every done task has been
inserted (validity); every available task is eventually
done (fairness); each task is performed exactly once
(uniqueness).

Complexity Measures. The complexity measure we
consider is work, or total step complexity, that is, the
total number of shared-memory operations (read, write,
or compare-and-swap) that processes take during an
execution. Since our algorithms are randomized, total
work is a random variable in the probability space given
by the processes’ coin flips.

Auxiliary Objects. An object r of type
MaxArrayK×H [6] supports three linearizable opera-
tions: MaxUpdate0(r, v), where the value v is between
0 and K − 1, MaxUpdate1(r, v), where the value v is
between 0 and H − 1, and MaxScan with the follow-
ing properties: (i) MaxUpdate0(r, v) sets the value of
the first component of r to v, assuming v < H; (ii)
MaxUpdate1(r, v) sets the value of the second compo-
nent of r to v, assuming v < K; MaxScan(r) returns
the value of r, i.e. a pair (v, v′) such that v and
v′ are the largest values in any MaxUpdate0(r, v) and
MaxUpdate1(r, v′) operations that are linearized before
it.

The results of two MaxScan operations are always
comparable under the standard ≤ partial order. Note
that the implementation of MaxArrays given in [6] is
limited-use, as it limits the maximum number of up-
date operations that can be applied during an execution.
The step complexity of MaxArrays is poly-logarithmic
in H and K. In particular, the MaxUpdate0 opera-
tion has cost O(logH), the MaxUpdate1 operation has
cost O(logK), and the MaxScan operation has cost
O(logH logK) [6]. We give an unbounded MaxArray
construction with polylogarithmic amortized complex-
ity in Appendix A.

3 The Dynamic To-Do Tree

The main data structure used for keeping track of tasks
is a binary tree with m leaves, where each leaf is ei-
ther empty or associated with a task that is available
to perform. Each tree node contains a two-location un-
bounded MaxArray. (The specification of a MaxArray is
given in Section 2, and the implementation is described
in Appendix A.) The first component of the MaxArray,
called the insert count, tracks the number of tasks suc-
cessfully inserted in the subtree. The second component
is the remove count, and tracks the number of successful
DoTask operations in the subtree.

For any node v in the tree, the first component
of the associated MaxArray counts the total number
of successful InsertTask operations performed in the
subtree rooted at v. The second component of the
MaxArray counts the total number of successful DoTask
operations performed in the subtree rooted at v. In
addition to the MaxArray, each leaf also contains an
array that stores available (and completed) tasks.

We fix m = pβ with β > 1 constant. Using the con-
struction in Appendix A, the (amortized) complexity of
MaxUpdate0 and MaxUpdate1 operations is O(logm),
and the complexity of MaxScan is O(log2m).

Intuitively, if the MaxArray at vertex v returns
the pair (x, y), then there are (x − y) tasks available
in the sub-tree rooted at v, since there have been x
tasks inserted and y tasks performed. (Formally, we
must account for concurrent operations.) We call this
difference (x− y) the surplus at vertex v, and denote it
by uv. Symmetrically, if node v has height h, we call
the complement (2h − uv) the space at node v. This
is an estimate for the number of tasks that can still be
inserted in the subtree rooted at that node.

For simplicity, we assume that the tree is initially
full of tasks, i.e., each leaf has a distinct task, each
internal node at height h has surplus 2h, and each node
has zero space. (However, our analysis works from any
initial configuration.)

The pseudocode for the DoTask procedure is given
in Figure 1. In brief, a process performs a task as
follows: it first checks the surplus at the root. If this is
zero, then there are no tasks to perform, and the process
returns. Otherwise, the process proceeds down toward
a leaf. At each node, it reads the surplus at the right
child into x (using a single MaxScan operation), and the
surplus at the left child into y. It then proceeds left with
probability x/(x+ y), and right otherwise. If x+ y = 0,
then the process backtracks towards the root.

Upon reaching a leaf, the process reads the MaxAr-
ray at the leaf into (x, y). The value y indicates the
number of tasks that have been performed at this leaf,
so the process attempts to perform task in slot y + 1
of the array by executing TryTask. Irrespective of we-
hther it successfully acquired a task to perform through
TryTask, the process then walks back up to the root,
updating the counts at each MaxArray. If it succeeded
in performing a task, it returns. Otherwise, it proceeds
to perform another treewalk.

Inserting a task is symmetric, where the choice of
which child to visit during the treewalk is based on the
space rather than the surplus. On reaching a leaf, a
process calls PutTask to add the new task to the leaf’s
task array in position x+ 1, where (x, y) is the last pair
scanned from the MaxArray. The pseudocode for the

1 procedure DoTask〈 〉
2 while true do
3 v ← root
4 if v.surplus() ≤ 0 then return ⊥

/* Descent */

5 while v is not a leaf do
6 (xL, yL)← MaxScan(v .left)
7 (xR, yR)← MaxScan(v .right)

8 sL ← min(xL − yL, 2
height(v))

9 sR ← min(xR − yR, 2
height(v))

10 r ← random(0, 1)
11 if (sL + sR) = 0 then Mark-up(v)
12 else if (r < sL/(sL + sR)) then
13 v ← v.left
14 else v ← v.right

/* v is a leaf */

15 (op, y)← MaxScan(v)
16 (flag , `)← TryTask(v.tasks[op])

/* Update removal count */

17 MaxUpdate1(v.MaxArray, op)
18 v ← v.parent
19 Mark-up(v)
20 if flag = success then return `

1 procedure InsertTask〈task〉
2 while true do
3 v ← root

/* Descent */

4 while v is not a leaf do
5 (xL, yL)← MaxScan(v .left)
6 (xR, yR)← MaxScan(v .right)
7 h = height(v)

8 sL ← 2h −min(xL − yL, 2
h)

9 sR ← 2h −min(xR − yR, 2
h)

10 r ← random(0, 1)
11 if (sL + sR) = 0 then Mark-up(v)
12 else if (r < sL/(sL + sR)) then
13 v ← v.left
14 else v ← v.right

/* v is a leaf */

15 (x, op)← MaxScan(v)
16 flag ← PutTask(v.tasks[op + 1], task)

/* Update insertion count */

17 MaxUpdate0(v.MaxArray, op + 1)
18 v ← v.parent
19 Mark-up(v)
20 if flag = success then return success

1 procedure Mark-up(v)
2 if v is not null then
3 (xL, yL)← MaxScan(v .left)
4 (xR, yR)← MaxScan(v .right)
5 MaxUpdate0(v, xL + xR)
6 MaxUpdate1(v, yL + yR)
7 Mark-up〈v.parent〉

18 17

10 9 8 8

Leaf 1 Leaf 2

Figure 1: Pseudocode for DoTask, InsertTask, and Mark-up. In the dynamic to-do tree, each node maintains an insert count
and a remove count. In the example, leaf 1 has surplus 1 and space 0, while leaf 2 has surplus 0 and space 1. Processes
update the tree so that the counts at a node reflect the counts at descendants.

InsertTask procedure is given in Figure 1.

Parameter values. Our algorithm has parameters m,
the maximum number of tasks in the data structure,
p, the number of processes, and H = K, the number
of operations after which the unbounded MaxArray is
“refreshed.” In the following, we assume that m = pβ ,
for β > 1 constant, and that H = K = pα, for
α > β > 1. For values of α less than β, the cost of
the unbounded MaxArray may dominate the cost of the
tree traversals. If m < p, the cost of the MaxArray
operations is poly-logarithmic in p.

4 Analysis

In this section, we analyze the correctness and perfor-
mance properties of the algorithm. We begin by defining
some auxiliary notions that will be useful in the rest of
the proof.

4.1 Preliminaries Recall that we consider two types
of operations: DoTask and InsertTask. Each operation is
composed of treewalks that begin at the root, walk down
to a leaf (or some intermediate node), and return to the
root. A DoTask treewalk is successful if it succeeds in
its TryTask operation or if it sees 0 surplus at the root in
line 4. An InsertTask treewalk is successful if it succeeds
in its PutTask operation. Each DoTask or InsertTask
operation by a correct process ends with a successful
treewalk. Notice that each successful operation can be
associated with a unique array slot number at the leaf
corresponding to the task it inserted or removed.

Operation Propagation. The counter values at the
nodes are continually updated during an execution. We
associate the node counts with tasks whose insertion
or completion has been propagated up to the node, as
follows.

First, notice that the insert count (i.e., the value

of the first max register) and the remove count (i.e.,
the value of the second max register) are always mono-
tonically increasing, by the properties of a max array.
We define the event that a task has been counted at a
node recursively, as follows. A task is counted at a leaf
` once some process completes a MaxUpdate operation
on the leaf max array component corresponding to the
task type (the insert count, or the remove count) with
a value that is at least the index of the operation in the
tasks vector.

Next, we define counting insert tasks at an arbitrary
internal node z. (Counting remove tasks is symmetric.)
We group the MaxUpdate operations on the first com-
ponent of z according to the value they write: let Ov be
the set of operations writing value v to the first com-
ponent of the max array at z. We sort the operations
in Ov by their linearization order. Let opv be the first
operation in Ov to be linearized. Operation opv is the
only in Ov which may count new tasks at node z; we
will not count any new operations at this node after any
other operation in Ov. Intuitively, the insert count must
increase if a new operation is counted.

Newly counted tasks are assigned to operation opv
as follows. First, if opv is preceded in the linearization
order by some other operation opu writing a value
u > v, then opv does not count any new task at z.

Consider now the set of operations which update
the value of either the left or right child of the current
node. Importantly, notice that these operations can be
ordered by the values they read from the left and right
children when updating the value of the node. (This is a
consequence of the fact that they first update the child,
then read the left child, then read the right child.) In
brief, each such operation “sees” the updates performed
by previous operations. We can therefore enumerate
these operations in increasing order of the values they
write to the node z, as o1, o2, . . . , ok. If opv is such an
operation, recall that it writes v = x + y to z, where x
is the insert count it read at the left child of z, and y
is the insert count it read at the right child of z. Let L
be the set of insert tasks counted at the left child of z
when the node has insert count x, and let R be the set
of insert tasks counted at the right child of z when the
node has insert count y. Also, let Cz be the set of tasks
counted at z before opv is linearized. Then the set of
tasks counted at z after opv is linearized is Cz ∪R ∪ L.
In other words, the tasks in (R ∪ L) \ Cz are the new
tasks counted at z. Notice that (R ∪ L) \ Cz 6= ∅, since
opv is the first operation to write a value ≥ v− 1 to the
insert count of z.

On the other hand, notice that there also exist
operations q which update the value at z, but do not
update the values at the left and right children of

z. Notice that each such operation can always be
placed between two updating operations oj and oj+1, as
defined above, depending on the values it reads from the
registers at the left and right children. If the operation
q sees the update of oj but not the one by oj+1, then
its associated set of insert tasks is the same as that oj .
However, there exist interleavings where the operation
sees the update of oj+1, but not that of oj . For example,
this occurs if oj increases the insert count at the left
child, and oj+1 increases the insert count at the right
child. By the structure of the algorithm, we always have
that either oj+1 sees oj ’s update, or vice-versa, however
q might see oj+1’s update in the right child, but its read
of the left child can precede oj ’s update. In this case,
we need to assign tasks to q such that its update does
not break the property that each task is counted at a
node by the time its max array update completes at the
node. First, notice that, for any such operation q, we
can identify the updating operations oj and oj+1 based
on the values q reads from the left and right children.
Let v = x+y be the value that q writes to z, let x′ > x be
the value that oj writes to the left child, and let y′ < y
be the value that oj reads from the right child. (The
converse case is symmetric.) Let L be the set of insert
tasks counted at the left child of z when the node has
insert count x′, let R be the set of insert tasks counted
at the right child of z when the node has insert count y,
and let R′ ⊆ R be the set of insert tasks counted at the
right child of z when the node has insert count y′ < y.
Also, let Cz be the set of tasks counted at z before q’s
update is linearized. Then we allocate to q the set of
tasks in L, plus a set S of (x + y) − (x′ + y′) tasks
from R \R, taken in the order in which they have been
counted at the right child, and then by task identifier.
Then the set of tasks counted at z after q’s update is
R∪S∪Cz. These cases cover all possible types of update
operations.

We say that a task is counted at a node as soon as
the MaxUpdate operation counting the task is linearized.
In particular, the updates counting task k at some
node are not necessarily performed by the operation
performing the task. The counting scheme has the
following properties.

Lemma 1. Let v be a tree node at height h. Consider
a MaxScan operation φ at v.

• If φ returns (x, y), then there exists a set Iv of
x successful InsertTask operations, and a set Dv

of y successful DoTask operations that have been
counted at v by the end of the MaxScan operation.
If φ is linearized after z InsertTask (or DoTask,
respectively) operations have been counted at v,
then it returns a value ≥ z in the corresponding

entry of the output tuple.

• If the remove count at a node v is x, then the insert
count at that node is also at least x. The surplus
at a node is greater than 0.

• Let w be a walk, let Tw be the set of tasks associated
with the walk at node z, and let z′ be the parent of
z. Then all tasks in Tw are counted at z′ by the
time w’s MarkUp operation completes at z′.

Proof. First, notice that, by the structure of the count-
ing procedure, no task is counted twice at a node.
(This can be shown formally by induction over the tree
height.)

For the first claim, consider the returned insert
count x. There must exist a MaxUpdate0 operation
which wrote x to the max array, and no previously
linearized operation wrote a larger count. Therefore
there exists a first such operation opx writing the value
x. By definition, x distinct tasks are counted at x after
this operation is linearized, as required. The argument
for remove counts is symmetric. The second statement
follows by the linearizability of the max array at v.

We prove the second claim by induction on the
height of v. If v is a leaf, assume for contradiction that
the insert count at v is x− 1, whereas the remove count
is x. Therefore, there must exist a DoTask operation
which wrote remove count x. But this implies that this
operation performed a TryTask call on v.tasks[x], which
implies that it read insert count x. This is impossible,
since the count in each max register component is
monotonically increasing, by definition.

If v is an internal node, assume for contradiction
that there exists a time t when some node has remove
count larger than the insert count, and let v be that
node. First, note that this may only occur after an
update of the remove count at v, since the insert count
is monotonically increasing. Therefore, there exists a
MaxUpdate1 operation which writes value y = y1 + y2
to the remove count, having read values y1 and y2 for the
remove counts at the two children, respectively. Recall,
however, that this operation has first performed a
MaxUpdate0 operation on the insert count, writing value
x = x1 + x2. Moreover, by the inductive hypothesis,
x1 ≥ y1, and x2 ≥ y2. Therefore, the value of the insert
count at time t is at least x ≥ y, a contradiction. The
surplus is positive by the argument above. The third
claim follows by the structure of the counting procedure.

Given the previous definitions and claims, we can
linearize every operation at the point when it is counted
at the root, taking care to properly order operations
linearized by the same MarkUp.

Lemma 2. For any execution of the algorithm, there
exists a total order on the completed operations which
verifies the validity and uniqueness properties.

Proof. The fact that each task is inserted/removed only
once is ensured by the semantics of addition / removal
at the leaves. We can prove by induction over the
height of the tree that the insert operation for a task
is always counted at a node before the corresponding
remove for that task. At the leaf, this holds since
the insert count must first be incremented before the
remove operation sees the task as inserted (see line 17
of InsertTask). For an internal node, this holds since
every operation updates the insert count before the
remove count. If a remove operation is counted at the
parent through a MaxUpdate1, then the corresponding
insert must have been counted at the child, by the
induction step. Therefore, the intervening MaxUpdate0
must have been scheduled at the parent, counting the
corresponding insert operation at the parent. Applied
at the root, this property ensures that the validity
condition holds.

Finally, we need to ensure that the linearization or-
der ensures that there are never more than m tasks in-
serted in the data structure. For this, we delay the
linearization of an insert operation until after the pre-
ceding remove operation at the leaf has been linearized.
This is always possible since either the remove completes
before the insert starts, or the insert and the preceding
remove are concurrent.

4.2 Performance Recall that an input I is a se-
quence of InsertTask and DoTask operations. It defines
the order and type of the operations that the algorithm
will perform. We say that a process is busy if it is cur-
rently executing an operation, otherwise it is available.
Initially, all the processes are available. At any point
during the execution, the adversary can pick an avail-
able process and assign it to the next operation in I, or
it can choose an already assigned process and let it take
a step. Once a busy process returns from an operation,
the process becomes available again. A task is available
if it has been inserted, but not removed. Otherwise, the
task is done.

Notice that, at any point in the execution, the
input I uniquely determines the next operation that
will be assigned to some process by the adversary.
Since the code is symmetric, it makes no difference to
the adversary which available process is assigned the
next operation. Therefore, in the following, we shall
assume without loss of generality that, once a process
becomes available, it is immediately re-assigned to the
next unassigned operation in the input string. This
implies that each process is always assigned to either

an InsertTask or a DoTask operation.
In the following, we fix a constant α ≥ 1, and an

input I. Let the algorithm run against the worst-case
adversary on I and denote the resulting execution by
E . If a process is performing an InsertTask, then we
call the treewalk an i-walk, otherwise it is an r-walk.
A complete treewalk requires O(log3m) steps. A step
taken by a process performing an i-walk is an i-step;
otherwise, it is an r-step.

Phases. We now provide a framework for bounding
the ratio of steps performed versus successful operations
during the execution. We begin by splitting the execu-
tion into phases, which allow us to bound the work per-
formed versus the number of system steps taken. The
phase split is different for DoTask and InsertTask oper-
ations. Starting from this framework, we analyze the
performance the two operations types separately in the
next two subsections.

Insert Phases. Consider InsertTask operations. We
break the execution into insert phases, defined induc-
tively as follows. The first phase, with index 0, starts
with the first i-step; in general, phase number i > 0
starts as soon as phase i − 1 ends. Let si be the
space at the root at the beginning of phase i, and let
wi = min(si/4, p). Then phase i ends at the point where
exactly wi new InsertTask operations are linearized.1 We
will show that this requires O(wi) complete i-walks to
be scheduled during the phase, with high probability.
(A treewalk is complete in a phase if it begins and ends
in that phase.)

Remove Phases. For DoTask operations, the first
phase, phase 0, starts with the first r-step in the
execution. For r ≥ 1, the rth remove phase starts as
soon as the previous one ends. Let qr be the number
of the processes assigned to DoTask operations at the
beginning of the phase, and let ur be the surplus at
the root at the beginning of the phase. Fix vr =
min(ur/4, p), and let `r = max(qr, vr). Then the
phase ends at the point where exactly vr new DoTask
operations are linearized. We will show that O(`r)
complete r-walks are sufficient to move to the next
phase, with high probability.

Step Accounting. Given the above phase split, for the
purpose of the analysis, we will charge the treewalk steps
to phases as follows: for each operation type, steps of
treewalks for that operation are counted in the phase in
which the corresponding operation is linearized. Steps
of unsuccessful treewalks are counted in the phase in
which the treewalk reaches the root. The steps by

1Notice that, in the real execution, this might be in the middle

of a MaxUpdate operation. The MaxUpdate is not necessarily
performed by an i-walk.

unsuccessful walks which never complete (because of a
process crash) will be accounted separately. (There are
O(p log3m) such steps in the whole execution.)

4.2.1 DoTask Analysis In this section, we will con-
sider the execution split into remove phases. Fix a re-
move phase r as defined above, and let Br be the set of
complete r-walks in that phase. Let ur be the surplus
at the root at the beginning of the phase. By Lemma 1,
there exists a set of successful inserts Ir and a set of suc-
cessful removes Dr such that these operations are the
ones counted at the root at the end of this phase, and
|Ir|−|Dr| = ur. The set Ur = Ir \Dr, is the set of tasks
that have been inserted, but not removed, as seen from
the root at the beginning of the phase.

Proof Strategy. Our goal is to prove that α`r com-
plete r-walks are sufficient to count vr = min(ur/4, p)
new DoTask operations at the root, with high probabil-
ity. Fix some set of tasks V of size < vr. We will argue
that it is very unlikely that every treewalk in Br hits a
task in V . By taking a union bound over all such sets
V , we will conclude that, with high probability, there is
no small set of tasks V which attracts all the treewalks,
i.e., the treewalks in Br have to hit at least vr distinct
tasks.

An important issue is that the set of inserted
tasks might grow during this phase, since new i-walks
inserting tasks outside Ur may complete concurrently.
(For this reason, the set V was not defined to be
included in Ur.) This detail does not affect our analysis.

We order the walks in Br by the time at which they
complete their descent. Fix a walk b ∈ Br. Let eb be the
event that the walk b counts only DoTask operations on
tasks in V at the root, and let Pb be the event that all
walks that precede b in the order count only DoTask
operations in V at the root. Our goal is to bound
the probability of the event (eb given Pb), assuming
an arbitrary subset of concurrent treewalks. We show
that this probability is at most |V |/ur, independent of
whether the adversary inserts new tasks.

The bound is obtained in two steps: first, we argue
that any set of tasks is likely to be hit by a complete
walk (Lemma 3). Then, for a fixed set V , we argue that
the set V , of tasks not in V , is also likely to be hit by
each walk (Lemma 4). This yields an upper bound on
the probability that all r-walks fall in V (Lemma 5).

Formally, for every node z, let tz be the linearization
time of the MaxScan by the walk b at node z. Define
Fz as the set of InsertTask operations in the subtree
rooted at z that are counted at z at tz, and do not have
corresponding DoTask operations counted at z at time
tz. Intuitively, the InsertTask operations in Fz constitute
the surplus at z at tz. It includes all tasks from Ur in z’s

subtree that have not been completed, along with any
tasks that may have been added since the beginning of
the phase. We also define Nz to be the set of tasks
inserted in the subtree rooted at z throughout phase
r that are not in Fz and not in V . Intuitively, these
newly inserted tasks may be used by the adversary to
prevent the walk from reaching tasks in V after reading
the count at z. We prove the following:

Lemma 3. For every node z on a treewalk b ∈ Br, for
a fixed set V , the probability that b starting from node
z counts a task in V at the root given that the event Pb
did not occur is at least 0 if Fz ∩ V = ∅, and at least
max((|Fz ∩ V | − |Nz|)/|Fz|, 0), otherwise.

Proof. We prove the claim by induction on the height
h of the node z. If the node is a leaf, notice that
|Fz| = 1, since the walk would not have reached the
leaf otherwise. Then, the task in Fz is either in V or
not in V , which yields the claim. If the height is h > 0,
then we consider several cases. If Fz ∩ V = ∅, then
the probability is trivially at least 0. So Fz ∩ V 6= ∅,
therefore there is some task t in V in the subtree rooted
at v. If the walk gets stuck at z (since both surpluses at
the children are 0), then walk b will count task t at the
root, hence the desired probability is 1, and the claim
holds. Otherwise, the walk does not get stuck at z.

Let x be the right child of z, and y be the left child of
z. Let ux be the surplus read at x, and uy the surplus
read at y. Assume ux > 0 and uy > 0. (The case
where ux or uy is 0 follows similarly.) By the inductive
hypothesis, the desired probability is at least

ux
ux + uy

· |Fx ∩ V | − |Nx|
Fx

+
uy

ux + uy
· |Fy ∩ V | − |Ny|

|Fy|
.

By definition, ux = |Fx|, and uy = |Fy|. Therefore, the
previous lower bound is in fact

|Fx ∩ V |+ |Fy ∩ V | − (|Nx|+ |Ny|)
|Fx|+ |Fy|

.

Upon close inspection, we notice that |Fx|+ |Fy| can be
re-written as |Fz| − |Rxy|+ |IV |+ |IV |, where 1) Rxy is
the set of tasks that have been performed and counted
at x or at y, but are not counted at z; 2) IV is the set of
InsertTask operations on tasks in V counted at x or y,
but not at z, and 3) IV is the set of InsertTask operations
on tasks outside V counted at x or y, but not at z.

If Rxy contains a DoTask on a task in V , then the
walk will count the operation at the root, and we are
done. Therefore, this cannot occur, so |Fx ∩ V |+ |Fy ∩

V | = |Fz∩V |+|IV |. The previous relation then becomes

|Fz ∩ V |+ |IV | − (|Nx|+ |Ny|)
|Fz| − |Rxy|+ |IV |+ |IV |

≥

|Fz ∩ V | − (|Nx|+ |Ny|+ |IV |)
|Fz| − |Rxy|

,

by simple arithmetic. Finally, notice that, by definition,
Nx∪Ny∪IV = Nz. Since |Rxy| > 0, the resulting lower
bound is at least (|Fz ∩V | − |Nz|)/|Fz|, as claimed.

We now relate the surplus Froot seen by each walk with
the initial surplus Ur, to obtain the following.

Lemma 4. Given a set V of tasks available in phase
r, for every treewalk b ∈ Br, the probability that b
counts a task outside V at the root given that no
preceding treewalk counts a task outside V at the root
is ≥ 1− |V |/|Ur|.

Proof. Given the set V , let V be a set of tasks available
in phase r that are not in V . Applying Lemma 3 for
the walk b and the set V at the root, we have that the
probability that V is hit by b given that no preceding
walk hits V is at least (|F ∩ V | − |N |)/|F |, where F is
the surplus at the root read by b, and N is the set of
inserted tasks from V which had not been counted at
the root.

We now relate F and Ur, the initial surplus set. We
have that |F | = |Ur|+ |IV |+ |IV | − |RV | − |RV |, where
IV and RV are the tasks newly inserted and performed
from V , respectively, and IV and RV are the tasks newly
inserted and performed from outside V , respectively,
as counted at the root upon b’s scan. We have that
|RV | = 0; otherwise, a task outside V is counted at the
root with probability 1, and we are done. Therefore,
|F ∩ V | = |V ∩ Ur| + |IV |. Hence the previous lower
bound becomes

|V ∩ Ur|+ |IV | − |N |
|Ur|+ |IV |+ |IV | − |RV |

≥

|V ∩ Ur| − (|N |+ |IV |)
|Ur|

=
|Ur| − |V |
|Ur|

,

where in the last equality we have used the fact that
V = (V ∩ Ur) ∪ IV ∪N .

The above claim suggests that there is no benefit
for the adversary to insert new tasks during a remove
phase, since the probability of hitting a task outside V
is always lower bounded by 1 − |V |/|Ur|. (Recall that
|V | < |Ur| throughout.) For simplicity, for the rest of
this section, we will assume without loss of generality
that no insertions occur during this phase. The next
claim leverages the conditional probabilities to obtain a

bound on the probability that all r-walks are confined
in a set V of a given size.

Lemma 5. For a set of inserted tasks V ⊆ Ur, the
probability that no treewalk in Br counts a task outside
V as performed at the root by the end of the phase is
≤ (|V |/|Ur|)|Br|.

Proof. First, we observe that the probability that no
treewalk in Br counts a task outside V is:

Pr(e1 ∧ e2 ∧ . . .) ≤ Pr((e1 ∧ P1) ∧ (e2 ∧ P2) ∧ . . .).

This follows from the fact that Pj is the event that none
of the preceding treewalks count a task outside V . By
the definition of conditional probability, we know that
this is equal to:

Pr(e1∧P1) Pr(e2∧P2|e1∧P1) Pr(e3∧P3|e1∧P1, e2∧P2) . . .

Finally, from Lemma 4, we know that Pr(ei ∧ Pi|e1 ∧
P1, e2 ∧ P2, e3 ∧ P3, . . . , ei−1 ∧ Pi−1) ≤ |V |/|Ui|. We
multiply these inequalities to obtain the claim.

We are now ready to bound the the amount of work
duplicated by DoTask operations. Given the previous
claim, we upper bound the number of complete walks
in a remove phase. We take the union bound over all
possible sets V of size < vr which might contain all
walks, and obtain the following.

Lemma 6. Given α > 0 constant, each remove phase
r ≥ 0 contains at most (α+ 3)vr complete r-walks, with
probability at least 1− 1/2αvr .

Proof. Assume there exists a set of (α + 3)vr complete
r-walks in remove phase r, and that less than vr new
tasks are counted at the root. Therefore, there exists
a set V of inserted tasks, of size less than vr, so that
all the r-walks in this phase only count tasks in V at
the root. By Lemma 5, for a fixed set V with |V | < vr,
this probability is less than (vr/ur)

(α+3)vr , since there
are at least (α+ 3)vr walks in the phase. By the union
bound, we obtain that the probability that there exists
some set V with the above property is at most(

ur
vr

)(
vr
ur

)(α+3)vr

≤
(
ure

vr

)vr (vr
ur

)(α+3)vr

≤

≥ evr
(
vr
ur

)(α+2)vr

≤
(

1

2

)αvr
,

where in the last step we used the fact that vr =
min(p, ur/4). This implies the desired bound.

Next, we upper bound the total work expended in a
remove phase.

Theorem 1. For each remove phase r, the ratio be-
tween the expected number of r-steps counted in the
phase and the number of DoTask operations linearized
in the phase is O((`r log3m)/vr). The r-steps to opera-
tions ratio is O((`r log3m log p)/vr) with high probabil-
ity.

Proof. We need to prove that the expected number of
r-steps in a remove phase r is O(`r log3m). Given initial
surplus ur, the phase ends when vr = min(ur/4, p) new
tasks are linearized. By Lemma 6, the expected number
of complete walks in phase i is O(vr). By the structure
of the algorithm, each of these r-walks costs O(log3m)
r-steps.

We then need to bound the number of r-steps
contained in other walks counted during this phase.
First, we count walks that are linearized in this phase
(but do not necessarily start or complete in this phase).
The number of such walks is O(vr) by the definition of
the phase.

The extra walks we need to count started in pre-
vious phases, but reached the root in phase r, and
were unsuccessful. There can be at most one such r-
walk for each process assigned to DoTask operations
at the beginning of the phase. Therefore, these walks
take O(qr log3m) additional steps. Summing up, we
get that the expected r-steps to new operations ratio is
O(`r log3m/vr), as claimed.

For the high probability claim, notice that it holds
easily by the above argument if ur ≥ log p. On the other
hand, if ui < log p, then, by Lemma 6, we still have that
Θ(`r) walks will finish the phase with probability at
least 1/2. Therefore, for a costant c ≥ 1, c`r log p walks
will finish the phase with probability at least 1 − 1/pc,
as desired.

We call a remove phase heavy if the number of
performed operations vr is at least a constant fraction
of qr, the number of processes performing DoTask
operations. In brief, vr ≥ qr/k for some constant k.
The following holds.

Corollary 1. For each heavy remove phase r, the
ratio between the r-steps and the expected successful
operations for the phase is O(log3m).

Unfortunately, we cannot prove a similar statement
for all remove phases. The problem lies in the phases
that are not heavy, when qr is much larger than vr.
In this case, a lot of processes may compete on only a
handful of tasks; since each task can be done by only
one process, many processes have to fail and retry. In
Section 5, we will prove that this problem is inherent, i.e.
any algorithm has a similar limitation in this setting.

Finally, we show that every task inserted is even-
tually performed. The proof is based on the intuition
that, given any available task, some process eventually
becomes poised to perform it. However, this process
might be suspended by the adaptive adversary before
performing the task. We argue that, given such a strat-
egy, eventually, every process will be poised on the task,
which gives the adversary no choice but to allow the task
to be counted at the root.

Lemma 7. The Dynamic To-Do Tree Algorithm en-
sures that every inserted task is eventually performed.

Proof. Consider some task x, inserted in phase r0.
(Recall that the task is inserted once it has been counted
at the root.) Let r > r0 be a remove phase, and let Br
be the set of walks in r, with br = |Br|. It follows
by an inductive argument over the height of the tree
that there exists an ε = O(2log

2m) such that, for any
phase r > r0 at the beginning of which task x has not
been performed, the probability that no r-walk in Br
reaches the leaf associated with x is at most (1 − ε)br .
Note that the adversary could suspend every process
that is poised to perform x as soon as it reaches the
leaf. However, by the above argument, it follows that,
in an infinite execution, with probability 1, every non-
failed process will be eventually poised to perform task
x. Therefore the task is eventually performed, even
though the completion time may be high because of the
adaptive adversary.

4.2.2 Insert Analysis In this section, we lower
bound the performance of insert operations. For the
rest of the section, we will consider the execution split
into insert phases. Fix an insert phase i as defined in
Section 4.2, and let Bi be the set of complete i-walks in
the phase. Let si be the space at the root at the be-
ginning of the phase. By Lemma 1, there exists a set T
of insert operations, and a set D of remove operations
such that m− si = |T | − |D|. We say that a leaf is free
at the root at some time t if, given the tasks counted at
the root at t, each insert task on the leaf counted at the
root has a matching remove task on the leaf counted at
the root. (The property can also hold vacuously.) It
follows that, at the beginning of the phase, there exist
at least si distinct leaves that are free at the root. Let
Si be this set of leaves.

We say that an successful insert is counted at the
root during this phase if it is propagated to the root by
some walk during this phase.

The argument is similar to the one for remove
operations: we aim to bound the probability of the event
D that more than (α+3)wi walks complete in the phase
without inserting wi new tasks. In other words, we wish

to upper bound the probability that Θ(wi) i-walks in the
phase only hit leaves from a subset of size wi, out of the
total of at least si ≥ 4wi available spots.

First, notice that the initial space si at the root
may in fact increase during the phase, as some tasks
are removed by concurrent DoTask operations. We will
show that this does not affect the analysis significantly.

We also notice a subtle technical issue: by the struc-
ture of the algorithm, the set of successful InsertTask
operations at a certain leaf can propagate up the tree
ahead of the set of removes at the same leaf. (See Fig-
ure 2 for an illustration.) In particular, two consecutive
inserts at a leaf can be counted at an ancestor node be-
fore the intermediate DoTask operation. Consequently,
the space at a node v may be smaller than the size of
the set of leaves that are free in the subtree rooted at v.

2 0

2 1 0 0

Leaf 1 Leaf 2

MaxUpdate0(2) MaxUpdate1(1)

Figure 2: Example of asymmetric propagation. The second
insert on Leaf 1 first updates the insert count to 2, and
then is stalled before updating the remove count to 1. A
concurrent insert walk would see 0 space in the subtree with
two leaves, even though Leaf 2 always has space 1. The bias
in this subtree therefore has value 1.

The immediate consequence for our analysis is that
the adversary may bias the probability of walks b ∈ Bi
hitting V in two ways: by decreasing the space at certain
internal node, therefore making it less likely that the
walks will hit certain sets V , and by making extra leaves
available outside V . Our strategy will be to bound
the probability bias that the adversary can introduce
through these two procedures. For the first issue, we
will show that the adversary can only generate bias by
allowing walks to count extra operations at the root;
therefore, the existence of bias can affect the probability
of hitting a certain set, but not that of hitting a certain
number of leaves.

Node Overflow and Bias. For this, we define the
overflow at a node v of height h as follows. Let sv
be the space at a node v, as read by some walk b.
By Lemma 1, there exists a set of insert operations Iv
and a set of DoTask operations Dv, such that exactly
those operations are counted at v, and |Iv| − |Dv| =

2height(v) − sv. From Lemma 1, sv is at most 2height(v).
On the other hand, notice that the value of the surplus is
always bounded in the algorithm to be at most 2height(v);
therefore, in the following, we consider that the space at
a node is always ≥ 0. (While the space can be negative
at a node because of the issues outlined above, it does
not change the analysis.)

Let T` be the InsertTask operations on leaf ` that are
counted at v, while a corresponding DoTask operation
on the same task is not counted at v. Notice that
having one such insert for each leaf in the subtree
is normal—this is an insert without its corresponding
remove. However, by the structure of the algorithm, it
is possible to have several such inserts for the same leaf,
which propagate ahead of their corresponding removes.
Let Ov be the set of such operations at a node v, which
is formed by taking the union of the sets T` for each
descendant leaf ` of v, from which we remove the first
insert operation on that leaf, if such an operation exists.
We define the overflow at v to be Ov.

The new overflow for phase i at some node v,
denoted by N i

v, is the overflow at v that is a consequence
of InsertTask operations not counted at the root at the
beginning of phase i. Finally, we define the bias at some
node v in phase i, Qiv as the union of all new overflow
sets N i

w, where w is a descendant node of v, including
v itself.

Formally, fix a set of leaves V of size < wi. We sort
the walks in Bi by the order in which they complete
their descent. Fix a walk b ∈ Bi, and let eb be the event
that b counts only operations on leaves in V at the root,
and Pb be the event that all preceding walks only count
operations on leaves in V at the root. We aim to bound
the probability of the event eb given Pb.

Again, we obtain the bound by induction. Given
node z in the tree, let tz be the linearization point of
the MaxScan of b at z. Let Ez be the set of leaves which
are free at z at time tz: these are leaves on which every
InsertTask counted at z can be paired with a DoTask
counted at z. Intuitively, Ez constitutes the space at
z when the walk b accesses z. We also define Rz to be
the set of leaves in the subtree rooted at z that become
free during phase i, but are not in Ez and not in V .
Intuitively, the adversary can use these extra leaves to
bias the walk b away from V after it has scanned the
count at z. We also define the set of tasks Qz to be
the bias at z, in phase i. We claim the following lower
bound on the probability that b hits V .

Lemma 8. For every node z on a treewalk b ∈ Bi, the
probability that a treewalk b starting from node z counts
a leaf in the set V given event Pb is at least 0 if Ez∩V =
∅, and at least max((|Ez ∩ V | − |Qz| − |Rz|)/|Ez|, 0)
otherwise.

Proof. We proceed by induction on h, the height of node
z. If z is a leaf, then the claim follows: the overflow at
a leaf is always 0, and the leaf is either in V or it is
not. If the height of the node is h > 0, then we consider
several cases. If Ez∩V = ∅, then the claim is trivial. So
|Ez ∩ V | > 0, therefore there exists some set L ⊆ V of
leaves in the subtree rooted at V . If the walk gets stuck
at z, then either some insert on a leaf in L is counted at
z, or there must exist at least |L| bias on a set of leaves
not in L, which are descendants of z. In both cases, the
claim holds.

Otherwise, the walk does not get stuck at z. Let x
be the left child of z, and y be the right child. Let sx
be the space read at x, and sy be the space read at y.
Assume sx > 0 and sy > 0. (The case when one of them
is 0 follows similarly.) By the inductive hypothesis, the
probability of hitting V is at least

sx
sx + sy

|Ex ∩ V | − |Qx| − |Rx|
|Ex|

+

sy
sx + sy

|Ey ∩ V | − |Qy| − |Ry|
|Ey|

=

|Ex ∩ V |+ |Ey ∩ V | − (|Qx|+ |Qy|)− (|Rx|+ |Ry|)
|Ex|+ |Ey|

,

since, by definition, sx = |Ex|, and sy = |Ey|. We can
now write |Ex|+|Ey| = |Ez|+|AV |+|AV |−(|IV |+|IV |),
where 1) AV and AV are space additions over Ez on
leaves in V and outside V , respectively, caused by
DoTask operations which are counted at x or y, but not
at z, and 2) IV and IV are space removals over the space
in Ez on leaves in V and outside V , respectively, caused
by InsertTask operations which are counted at x or y, but
not at z. Notice that if IV 6= ∅, then the walk b will mark
some insert operation on a leaf in V at the root, which
proves the claim. Therefore, |IV | = 0. At the same
time, this implies that |Ex∩V |+ |Ey∩V | = |Ez|+ |AV |.
We obtain that the desired probability is at least

|Ez ∩ V |+ |AV | − (|Qx|+ |Qy|)− (|Rx|+ |Ry|)
|Ez|+ |AV |+ |AV | − (|IV |+ |IV |)

≥

|Ez ∩ V | − (|Qx|+ |Qy|)− (|Rx|+ |Ry| − |AV |)
|Ez|

=

|Ez ∩ V | − |Qz| − |Rz|
|Ez|

,

where in the last step we have used that |Rz| = |Rx|+
|Ry| + |AV | and |Qz| = |Qx| + |Qy|, according to the
definitions. This concludes the proof.

Let Q be the bias at the root in this phase. We obtain
the following probability bound for single treewalks.

Lemma 9. For every treewalk b ∈ Bi, the probability
that b counts an insert on a leaf outside V at the
root given that every preceding preceding treewalk counts
inserts on a leaf in V at the root is ≥ 1−(|V |−|Q|)/|Si|.

Proof. Given the set V , let V be the set of free leaves
in phase i that are not in V . Applying Lemma 8 to the
set V and the walk b at the root, we obtain that the
probability that V gets hit by b given that no preceding
walk hits V is at least (|E∩V |−|R|)/|E|, where E is the
space at the root read by b, and R is the set of leaves in
V which were not counted at the root when b scanned.

We now relate E and the initial surplus set Si. We
have |E| = |Si| − |IV | − |IV | + |RV | + |RV |, where IV
and RV are the tasks newly inserted and performed
on leaves in V , respectively, and IV and RV are the
tasks newly inserted and performed on leaves outside
V , respectively, as counted at the root upon b’s scan. If
|IV | > 0, then the probability is 1, and the claim holds.
Therefore, |E ∩ V | = |Si ∩ V |+ |RV |. Hence the bound
becomes

|Si ∩ V |+ |RV | − |R| − |Q|
|Si| − |IV | −+|RV |+ |RV |

≥

|Si ∩ V | − |R| − |Q| − |RV |
|Si|

=
|Si| − |V | − |Q|

|Si|
,

where we have used that, by definition, |V | = (|Si| −
|Si ∩ V |) + |R|+ |RV | in the last step.

Notice that the previous claim proves that the adversary
can derive no benefit from scheduling new DoTask
operations during the insert phase in terms of confining
all walks to the set V . For simplicity, for the rest of this
section we shall assume without loss of generality that
no tasks get removed during this phase. We put these
results together to obtain a bound on the probability of
hitting a set V of a given size.

Lemma 10. For a set of leaves V ⊆ Si, the probability
that no treewalk in Bi counts an insert at a leaf outside
V is ≤ ((|V | − |Q|)/|Si|)|Bi|.

Proof. First, we observe that the probability that no
treewalk in Bi counts an insert at a leaf outside V is:

Pr(e1 ∧ e2 ∧ . . .) ≤ Pr((e1 ∧ P1) ∧ (e2 ∧ P2) ∧ . . .).

This follows from the fact that Pj is exactly the event
that no preceding treewalk counts an insert at a leaf
outside V . By the definition of conditional probability,
this is equal to:

Pr(e1∧P1)·Pr(e2∧P2|e1∧P1)·Pr(e3∧P3|e1∧P1, e2∧P2)·. . .

Finally, from Lemma 9, Pr(ei ∧ Pi|e1 ∧ P1, e2 ∧ P2, e3 ∧
P3, . . . , ei−1 ∧Pi−1) ≤ (|V | − |Q|)/|Si|, which concludes
the proof.

We are now ready to analyze the performance of
InsertTask operations. Recall that wi = min(p, si/4).
We prove the following.

Lemma 11. For α > 0 constant, each insert phase
i ≥ 0 as defined above contains at most (α + 3)wi
complete i-walks, with probability at least 1− 1/2αwi .

Proof. Assume there exists a set of (α+ 3)wi complete
i-walks scheduled in phase i, and that less than wi new
insert tasks are counted at the root by the end of the last
complete walk. Therefore, there exists a set V of size
less than wi so that all the i-walks in this phase only
count tasks at leaves in this set at the root. Assume
si/4 ≤ p, so wi = si/4. (The case si/4 > p is similar.)

Let Q be the bias set for the tree root in this phase.
Notice that, by construction, none of the tasks in the
bias set were counted at the root at the beginning of
phase i, and all of them will be counted at the root by
the end of the phase. Notice that this automatically
implies that the size of the bias Q at the root is at most
si/4.

Second, since all the walks are concentrated in a set
of size at most si/4, there must exist a set V ⊂ Si of
leaves of size at least 3si/4 such that no walk in Bi hits a
leaf in V . By Lemma 10, we obtain that the probability
that such a set V exists is at most(

si
3si/4

)(
1−

(
3

4
− 1

4

))(α+3)wi

≤(
sie

si/4

)si/4(1

2

)(α+3)wi

≤ esi/4
(

1

2

)(α+2)wi

≤(
1

2

)αwi

,

which implies the desired bound.

This implies the following.

Lemma 12. For each insert phase i, the ratio between
the expected number of i-steps counted in the phase and
the number of InsertTask operations linearized in the
phase is O(log3m). The i-steps to linearized insert
operations ratio is O(log3m log p) with high probability.

Proof. We need to prove that the expected number of
i-steps in some insert phase i is O(wi log3m). Given
initial space si, the phase ends when wi new tasks are
linearized. By Lemma 11 and the properties of the
geometric distribution, the expected number of complete
walks in phase i is O(wi). By the structure of the
algorithm, each of these i-walks costs O(log3m) i-steps.

We then need to bound the number of i-steps
contained in other walks counted during this phase.
First, we count walks that start and are linearized in

this phase, but do not complete in this phase. The
number of such walks is O(wi) by the definition of the
phase.

The extra walks we need to count started in previ-
ous phases, but reached the root in phase i, or were lin-
earized in phase i. By the task semantics, for TaskInsert
operations there can be at most min(si, p) distinct such
walks: otherwise, at the beginning of the phase, the ad-
versary must have scheduled > si distinct inserts into
si space, a contradiction. Therefore, the additional
cost for these walks is O(wi log3m) steps. Summing
up, we get that the i-steps / new operations ratio is
O(wi log3m/wi) = O(log3m).

For the high probability claim, notice that it holds
easily by the above argument if wi ≥ log p. On the
other hand, if wi < log p, then, by Lemma 11, we
still have that Θ(wi) walks will finish the phase with
probability at least 1/2. Therefore, for a costant c ≥ 1,
cwi log p walks will finish the phase with probability at
least 1− 1/pc, as desired.

This implies the final performance claim.

Theorem 2. Consider an input I, and assume a time
t during an execution of the Dynamic To-Do Tree
algorithm on I. For x ≥ p/2, let Ti(t, x) be the number
of i-steps the algorithm requires to perform x inserts
starting from time t. Then we have that E[Ti(t, x)] =
O(x log3m), and that Ti(t, x) = O(x log3m log p), with
high probability.

Proof. Let t′ be the time when x new insert operations
are performed, starting from time t. (In theory, t′ could
be infinite.) We consider the interval [t, t′] split into
insert phases. Let i be the phase which contains time
t, and let j ≥ i be the phase which contains time t′.
By the definition of a phase, phases i and j perform at
most p new inserts. By Lemma 12, each is charged at
most O(p log3m) total steps in expectation.

Each intermediate phase k ∈ {i + 1, . . . , j −
1} performs some wk work, being charged expected
O(wk log3m) steps in total, with

∑
k wk ≤ x. There-

fore, the total expected number of steps charged during
the interval [t, t′] is in O((p+ x) log3m) = O(x log3m),
as claimed. The high probability claim follows identi-
cally.

5 Competitive Analysis

Finally, we compare the performance of our algorithm
with that of an optimal algorithm OPT for the dynamic
task allocation problem. We prove the following claim.

Theorem 3. For any input I, let W (I) be the ex-
pected worst-case cost of our algorithm under input
I, and let W (OPT , I) be the expected worst-case cost

of the optimal algorithm under I. Then W (I) ≤
c W (OPT , I) log3m, for a constant c.

Proof Structure. We fix an input I, containing n
operations. Let ni be the number of inserts in I, and
nr be the number of removes in I. Fix A to be a worst-
case adversarial strategy for our algorithm. Let E be
an execution of the algorithm under A, and let C(E , I)
be the total work in E . The expected worst-case cost of
our algorithm under I is W (I) = E[C(E , I)], where the
expectation is taken over processes’ coin flips.

Our argument bounds the number of i-steps and
r-steps in the execution separately. The number of i-
steps is O(ni log3m), by Theorem 2. To bound r-steps,
we need to take into account the number of processes
that may be poised to perform DoTask operations at the
beginning of each phase.

Preliminaries. For the rest of this section, let I
be a fixed input. Let ni be the number of InsertTask
operations, and nr be the number of DoTask operations
in the input. Also, let n = ni + nr. Let A be the
worst-case adversarial strategy for our algorithm. Let
E be an execution of the algorithm under A, and let
C(E , I) be the total work in E . The expected worst-case
cost of our algorithm under I is W (I) = E[C(E , I)],
where the expectation is taken over processes’ coin
flips. For accounting purposes, we consider the number
of steps spent by processes on each operation type
separately. Let C(E , I)ins be the number of steps
spent on InsertTask operations, and let C(E , I)do be
the number of steps spent on DoTask operations in
an execution E . Obviously, C(E , I) = C(E , I)ins +
C(E , I)do.

Bounding Insert Steps. We first upper bound the
number of i-steps in the execution. The claim follows
directly from Theorem 2, by summing up the total
number of i-steps across phases.

Claim 1. For some constant c, E[C(E , I)ins] ≤
c ni log3m.

Bounding Remove Steps. Consider the split of exe-
cution E into remove phases, as described in Section 4.2.
Fix a remove phase r. Let qr be the number of the pro-
cesses assigned to DoTask operations in the beginning
of the phase, and let ur be the corresponding surplus.
Let vr = min(ur/4, p), and let `r = max(qr, vr). The
phase contains exactly vr new DoTask operations.

Theorem 1 suggests that the number of r-steps in
a phase r is proportional to max(qr, vr). To bound
the total number of steps, we need to upper bound
this quantity for each phase. Fix a phase r, and
consider the parameters (qr, vr) at its beginning, and
their values (qr+1, vr+1) at the beginning of the next

phase. The value of vr+1 is uniquely determined by p
and the surplus ur. Thus, to maximize the expected
cost of the algorithm, it is in the adversary’s interest
to maximize qr+1, the number of processes performing
DoTask operations at the beginning of the phase. We
now define a way to upper bound the value of

∑
r qr

over the course of an execution.
We define a pattern to be a sequence of operation

types (InsertTask,Dotask, . . .). Notice that each execu-
tion induces a pattern as output: the linearization order
of performed operations. Given an initial state and an
input, the output pattern of an execution determines
the insert and remove phase split of the execution: the
beginning of each phase is the end of the next (or the
first step in the execution), and the end of the phase
is defined as the point where some number of new op-
erations have completed. (Recall that upon completing
an operation, a process gets the next available input
task.) Importantly, the pattern and the input deter-
mine the tuples (qr, vr)r for every remove phase r ≥ 1,
since the pattern determines the order in which oper-
ations are completed, and processes are then assigned
the next available operation in the input. The output
pattern of an execution is controlled by the adversary,
since it controls the point when a process is scheduled
to complete its current operation. For a pattern π, let
f(π) be the sum

∑
r≥1 qr. Notice that not every pattern

can match a certain input. We say that π agrees with
the input I, π |= I, if there exists an execution of our
algorithm against the adversary A under input I match-
ing π. For fixed input I, let πmax be the pattern with
f(πmax) = maxπ|=I f(π). Obviously, πmax agrees with
I. The following claim encapsulates a few properties of
patterns.

Claim 2. Given a fixed number of tasks inserted ini-
tially, the input I and the pattern π uniquely determine
the phase split of the execution and the values (qr, vr)
for every phase r. Given any pattern π |= I, the adver-
sary can induce any execution E on I to produce pattern
π.

Proof. Fix an input I and a pattern π. Assume an
arbitrary number of tasks inserted in the data structure
initially. This gives an initial surplus u0, and an initial
space s0 for the execution. Upon wakeup, each process
gets assigned the next available task in the input. This
gives the initial number of processes q0 that are assigned
DoTask operations. Tasks get completed in the order
specified by the pattern π. Once a process completes
a task, it gets the next task from the input. Therefore
the number of processes assigned to DoTask operations
is entirely determined after each new operation in the
pattern completes. The end of each phase i is specified

by the pattern (we count up the point when enough
new operations complete). By the above argument, the
number of processes poised on DoTask operations at the
end of the phase is also determined at the end of each
phase by the input and by the pattern.

To see that the adversary controls the pattern,
first recall that each DoTask operation must contain
a TryTask, and each InsertTask operation must contain
a PutTask. Notice that, to control the pattern, it is
enough for the adversary to control the type of the next
operation performed. For example, to ensure that the
next operation in the pattern is an insert, the adversary
may simply suspend all active DoTask operations before
performing their TryTask call. As long as some process
is currently assigned to an insert (necessary for the
adversary’s target pattern to agree with I), this process
can be scheduled to complete next. Ensuring that the
next operation is a remove is symmetric.

We can now upper bound the expected number of re-
move steps in an execution of our algorithm as a func-
tion of the number of remove operations and f(πmax).

Claim 3. For some constant c ≥ 1, E[C(E , I)do] ≤
c(nr + f(πmax)) log3m.

Proof. By Theorem 1, the total expected number of
steps in the execution is upper bounded by

∑
r α(vr +

qr) log3m =
∑
r αvr log3m+

∑
r αqr log3m, where the

sums are taken over all the remove phases. The first
sum is at most αnr log3m, while the second term is at
most αf(πmax) log3m, by definition. This implies the
claim.

The following lemma provides the last missing piece
in the proof of Theorem 3 by establishing a lower bound
on the worst-case cost of the optimal algorithm.

Lemma 13. W (OPT , I) ≥ max(n, f(πmax)/2).

Proof. The optimal algorithm has to perform n oper-
ations, therefore at least n steps. To prove the lower
bound of f(π′) steps, let us define the adversarial strat-
egy and the adversary A′ that ensures that every execu-
tion of the optimal algorithm OPT follows the pattern
πmax. As πmax agrees with I, there exists an execution
E ′ of our algorithm against A under I that matches
πmax. The strategy of A′ is built on E ′ as follows:

• When an available process is assigned to a new
operation from I in E ′, A′ assigns an available process
to a new operation of the same type in the execution
of OPT .

• When a process takes a step but does not complete
the operation in E ′, no steps are taken in OPT ’s
execution.

• When a process completes an operation in E ′ and
becomes available, the adversary A′ first lets each
process assigned to an operation of the same type
reach a state where the next step would complete its
operation. If the operation is InsertTask, A′ lets one
of these processes complete the operation. If it is
DoTask, then consider a task that would be done by
the highest number of processes if they were to take
the next step. Strategy A′ just lets all these processes
take the next step. As tasks can be done only once,
only one process will be successful.

The fact that this is a valid strategy is proved by
the following Lemma.

Lemma 14. Consider the execution E ′ step-by-step.
After each step, let the corresponding steps, defined by
the adversarial strategy, complete in the execution of
OPT . At all these points, where the corresponding steps
complete, the number of available processes, the number
of processes assigned to InsertTask and the number of
processes assigned to DoTask operations are the same in
both executions. The type of an operation from I that
will be assigned next is also the same in both executions.

Proof. Define the state of an execution as a tuple
(a, t, q, i), where a is the number of the available
processes, t is the number of processes assigned to
InsertTask operations , q is the number of processes as-
signed to the DoTask operations, with a+ t+ q = p and
i ≥ 0 is the index of the next operation to be assigned in
input I. Let E ′opt denote the current execution of OPT
against the adversarial strategy. The basis of the in-
duction holds since the initial state for both executions
is (p, 0, 0, 0): p processes are available and the next op-
eration to be assigned is the first operation in I. For
the induction step, assume that both E ′ and E ′opt are in
state (a, t, q, i), and a step is performed in E ′. We have
one of the following cases.

• If the step assigned an available process to i-th
operation from I, there had to be an available process,
so a ≥ 1 holds. Then, because the state of E ′opt was
the same, there are available processes in E ′opt and the
i-th operation of I will be assigned to one of them.

By construction, the i-th operation from I was as-
signed in both E ′ and E ′opt, therefore the next op-
eration assigned will have index i + 1. If the i-
th operation was a InsertTask, a new state will be
(a−1, t+1, q, i+1), and if the operation was a DoTask
then the new state will be (a−1, t, q+1, i+1) in both
executions and the inductive step holds.

• If a process already assigned to an operation in E ′
took a step, a state of the execution E ′ would remain

unchanged. By construction, no step is taken in E ′opt
and this also does not change the state of E ′opt. E ′
and E ′opt were in the same state and they stay in the
same state.

• If a process completed an operation and became
available in E ′, depending on the type of the operation
completed, the new state in E ′ becomes (a + 1, t −
1, q, i) or (a + 1, t, q − 1, i). In E ′opt, initially some
steps are performed that do not change the state
(bringing all the processes to the point where they
are about to complete). In the end, by the above
construction and argument, only a single process
completes an operation successfully in E ′opt, and the
type of operation is the same as the type of operation
completed in E ′, therefore the final state in E ′opt again
matches the state of E ′.

We have that E ′opt is any execution of OPT under
input I against the adversary A′. If a next step of a
process completes a task, the process is said to be cov-
ering the task. The way A′ schedules DoTask opera-
tions in E ′opt according to the above defined strategy,
is that the operation with the most processes covering
it finishes first. In any phase with parameters s and
q, performed s/2 DoTask operations would have to be
covered by more processes than the other s/2 tasks, so
they would be covered by at least q/2 processes. All
of these processes would take a step and therefore, the
optimal algorithm OPT has to perform at least q/2
steps. Moreover, Eopt matches πmax, so the phases are
determined by πmax and the sum of q/2 values for all
phases is f(πmax)/2. The adversary A′ ensures that
OPT does at least f(πmax)/2 work in every execution,
so the worst-case work is at least f(πmax)/2. The proof
is complete.

Since W (I) = E[C(E , I)] = E[C(E , I)ins] +
E[C(E , I)do] the theorem follows by putting together
the previous claims.

6 Conclusions and Future Work

We have presented the first algorithm for the dynamic
task allocation problem, which is within logarithmic fac-
tors of optimal. Our results show that, using random-
ization, processes can cooperate to share work efficiently
even in strongly adversarial conditions. Interesting di-
rections for future work would be to explore the practi-
cal implications of our results for long-lived data struc-
tures, and to see our algorithm can be adapted to obtain
long-lived solutions for other problems such as renam-
ing [7] or distributed counting.

7 Acknowledgements

The authors would like to thank Nir Shavit for useful
discussions and support, and the anonymous reviewers
for their insightful comments.

References

[1] Yehuda Afek, Michael Hakimi, and Adam Morrison.
Fast and scalable rendezvousing. In DISC, pages 16–
31, 2011.

[2] Yehuda Afek, Guy Korland, Maria Natanzon, and Nir
Shavit. Scalable producer-consumer pools based on
elimination-diffraction trees. In Euro-Par (2), pages
151–162, 2010.

[3] Miklós Ajtai, James Aspnes, Cynthia Dwork, and Orli
Waarts. A theory of competitive analysis for dis-
tributed algorithms. In Proc. 35th Annual Symposium
on Foundations of Computer Science (FOCS), pages
401–411, 1994.

[4] Dan Alistarh, Michael A. Bender, Seth Gilbert, and
Rachid Guerraoui. How to allocate tasks asyn-
chronously. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 331–
340, 2012.

[5] Richard J. Anderson and Heather Woll. Algorithms
for the certified write-all problem. SIAM J. Comput.,
26:1277–1283, October 1997.

[6] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and
Faith Ellen. Faster than optimal snapshots (for a
while). In 2012 ACM Symposium on Principles of
Distributed Computing, pages 375–384, July 2012.

[7] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David
Peleg, and Ruediger Reischuk. Renaming in an
asynchronous environment. Journal of the ACM,
37(3):524–548, 1990.

[8] Y. Aumann and M. O. Rabin. Clock construction in
fully asynchronous parallel systems and pram simula-
tion. Theoretical Computer Science, 128:3–30, 1994.

[9] Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov,
and Dmitri Perelman. Café: Scalable task pools with
adjustable fairness and contention. In DISC, pages
475–488, 2011.

[10] Michael A. Bender and Seth Gilbert. Mutual exclusion
with O(log2 logn) amortized work. In Proc. 52nd An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 728–737, 2011.

[11] Jonathan F. Buss, Paris C. Kanellakis, Prabhakar L.
Ragde, and Alex Allister Shvartsman. Parallel algo-
rithms with processor failures and delays. J. Algo-
rithms, 20:45–86, January 1996.

[12] Bogdan S. Chlebus and Dariusz R. Kowalski. Cooper-
ative asynchronous update of shared memory. In Proc.
37th Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 733–739, 2005.

[13] Bogdan S. Chlebus, Roberto De Prisco, and Alexan-
der A. Shvartsman. Performing tasks on synchronous

restartable message-passing processors. Distributed
Computing, 14(1):49–64, 2001.

[14] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark
Moir. Snzi: scalable nonzero indicators. In Proceed-
ings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, PODC ’07, pages
13–22, New York, NY, USA, 2007. ACM.

[15] Chryssis Georgiou and Dariusz R. Kowalski. Perform-
ing dynamically injected tasks on processes prone to
crashes and restarts. In DISC, pages 165–180, 2011.

[16] Chryssis Georgiou, Alexander Russell, and Alexan-
der A. Shvartsman. The complexity of synchronous
iterative do-all with crashes. Distributed Computing,
17(1):47–63, 2004.

[17] Chryssis Georgiou and Alexander A. Shvartsman. Do-
All Computing in Distributed Systems: Cooperation in
the Presence of Adversity. Springer, 2008.

[18] Maurice Herlihy. Wait-free synchronization. ACM
Trans. Program. Lang. Syst., 13(1):124–149, January
1991.

[19] Paris C. Kanellakis and Alexander A. Shvartsman. Ef-
ficient parallel algorithms can be made robust. Dis-
tributed Computing, 5(4):201–217, 1992.

[20] Sotiris Kentros, Chadi Kari, and Aggelos Kiayias. The
strong at-most-once problem. In DISC, pages 386–400,
2012.

[21] Sotiris Kentros, Aggelos Kiayias, Nicolas C. Nicolaou,
and Alexander A. Shvartsman. At-most-once seman-
tics in asynchronous shared memory. In DISC, pages
258–273, 2009.

[22] Dariusz R. Kowalski and Alexander A. Shvartsman.
Writing-all deterministically and optimally using a
nontrivial number of asynchronous processors. ACM
Trans. Algorithms, 4:33:1–33:22, July 2008.

[23] Grzegorz Malewicz. A work-optimal deterministic al-
gorithm for the asynchronous certified write-all prob-
lem. In Proc. 22nd Annual Symposium on Principles of
Distributed Computing (PODC), pages 255–264, 2003.

[24] Charles Martel and Ramesh Subramonian. On the
complexity of certified write-all algorithms. J. Algo-
rithms, 16:361–387, May 1994.

[25] Nir Shavit and Dan Touitou. Elimination trees and
the construction of pools and stacks. Theory Comput.
Syst., 30(6):645–670, 1997.

[26] Nir Shavit and Asaph Zemach. Combining funnels: A
dynamic approach to software combining. J. Parallel
Distrib. Comput., 60(11):1355–1387, 2000.

A An Unbounded MaxArray Implementation

The unbounded MaxArray, whose pseudocode is given
in Algorithm 1, uses a CAS object2 C, and an array of
bounded MaxArrays MA, built using the construction
of Aspnes et al. [6]. We consider their maximum values
to be H = K = pα, for α > β > 1 constant, where we

2We assume a CAS object supports a read and a
compare-and-swap operation, with the usual semantics.

1 Shared:
2 Register C = (V0, V1, P)
3 Vector of MaxArrays MA, with maximum values
H = K = pα

4 procedure MaxScan()
5 (V0, V1, P)← C.read()
6 (v0, v1)← MA[P].MaxScan()
7 return (V0 + v0, V1 + v1)

8 procedure MaxUpdate0(v)
9 (V0, V1, P)← C.read()

10 v′ ← v − V0
11 if v′ ≤ 0 then
12 return success
13 if v′ ≤ h then
14 MA[P].MaxUpdate0(v′)
15 if C.read() = (V0, V1, P) then
16 return success
17 else
18 MaxUpdate0(v)

19 else
20 (v0, v1)← MA[P].MaxScan()
21 (u1, u2, u3)←

C.CAS((V0 + v0, V1 + v1, P), (V0, V1, P))
22 MaxUpdate0(v)
Algorithm 1: The Unbounded MaxArray algorithm.

have previously fixed m = pβ . The CAS register has
three sub-fields: V0, the remove offset, V1, the insert
offset, and P, the index of the current active MaxArray.
All these fields are read and updated at the same time.

The intuition behind the data structure is that we
use each of the MaxArray objects to store values up
to their maximum capacity; when this is exceeded, we
store the extra count in the CAS object as an offset,
and change the pointer to the next object in MA.

More precisely, to read the unbounded MaxArray,
a process reads the CAS to get the current offsets
(V0, V1) and the pointer to the current active MaxArray
in MA. The process then snapshots the current value
(v0, v1) in the bounded MaxArray, and returns the sum
(V0 + v0, V1 + v1).

If a process needs to update the first cell (insert
count) of the unbounded MaxArray to some value v,
it proceeds as follows (updating the remove count is
symmetric). The process first reads the CAS C to
get (V0, V1, P), then computes the value v′ = v − V0
that it should write to the current active MaxArray in
MA, pointed to by P . If v′ ≤ 0, the process simply
returns. If v′ > 0 but is smaller than the maximum
value h for the corresponding cell of the MaxArray, then
the process writes the value to the current MaxArray
using a MaxUpdate0 operation. Finally, if the value is

larger than the maximum value of the MaxArray, then
the process attempts to update the current value of C to
(V0 + v0, V1 + v1, P + 1), i.e. increasing the value offsets
and moving up the MA array index by one. It then
calls MaxUpdate on the modified object to complete its
operation.

Analysis. The safety of the algorithm is straightfor-
ward to prove, and reads are wait-free. The performance
of the algorithm is formalized by the following claim.

Lemma 15. Given the unbounded MaxArray in Al-
gorithm 1, where increments are bounded by p, the
amortized step complexity of a MaxScan operation is
O(log2 p), and the amortized step complexity of a
MaxUpdate is O(log p), assuming that a CAS operation
costs a constant number of steps, and that H = K = pα

for α ≥ 2 constant.

Proof. We define an epoch i ≥ 0 to be the interval
between successful3 CAS operations number i and i +
1. We now consider the unbounded MaxArray in the
context of the dynamic to-do tree, and lower bound the
number of MaxUpdate operations in each epoch to be at
least polynomial in p.

Consider a MaxUpdate(v) operation by process p
that causes the process to invoke a CAS operation. This
implies that v−V0 is at leastH ≥ pα, for α ≥ 2 constant.
On the other hand, notice that, by Lemma 1, in the
dynamic to-do tree, the maximum difference between
the value v that a process is updating and the value
currently in the unbounded MaxArray is p: there can
be at most p distinct walks suspended in the subtree
corresponding to the current MaxArray. This implies
that, whenever some process wants to write v to the
unbounded MaxArray, the current value of the MaxArray
is at least v − p. Hence the new offset value that the
process is proposing to the CAS is at least V0 + pα − p,
therefore polynomially many operations are taken into
account in the epoch. (Also, the difference between the
two indices of the MaxArray can be at most m = pβ ,
for α > β > 0; therefore, there also exist at least
pα−pβ−pMaxUpdate1 operations that succeeded in the
epoch.) Hence, there are polynomially many MaxUpdate
operations on each MaxArray index in an epoch. On
the other hand, the number of CAS operations and
restarted MaxUpdate operations for each epoch change
is at most p (since each process may be in only one of
these categories), therefore we can amortize the extra
work of a epoch change against the successful operations
in the epoch. The claim follows.

3A CAS is successful if it changes the value of the register, and
fails otherwise.

B Preventing Data Structure Overflow

We only consider inputs which do not allow the data
structure to have more than m items inserted at the
same time. Formally, we require that all inputs obey the
following property. Recall that an input is a sequence
of DoTask and InsertTask operations. A subsequence of
the input is a contiguous substring.

Definition 1. An input I is valid if it has no contiguous
subsequence such that the number of InsertTask minus
the number of DoTask operations in the subsequence is
greater than m− 2p.

We now prove that no valid input can result in a
situation where the data structure has more than m
elements.

Lemma 16. For any valid input I, the task allocation
object has at most m available tasks.

Proof. We proceed by contradiction. Fix a valid input
I, and assume that there exists an execution E on I
where the data structure has m + 1 tasks available.
We show the existence of a contiguous subsequence S
of I containing m − 2p more insert operations than
remove operations, which contradicts the valid input
assumption.

Consider the execution E up to the first point where
m+1 tasks are available. At that point, consider the last
operation in I that was assigned to some process. Let
subsequence S finish with this operation. Now consider
the latest point in the execution when some DoTask
operation failed (i.e., it observed an empty To-Do tree).
All the subsequent Do-Task operations were successful.
The process performing that operation gets immediately
assigned to the next operation in the input. Let our
subsequence S start with this operation. If no DoTask
operation failed in the execution, then let S start with
the first operation in I.

We have identified two points in the execution, one
when the To-Do tree was empty, and another when
it contained m tasks. Meanwhile, all except possibly
at most p operations from subsequence S have been
executed, in addition to at most p other operations
that were initially assigned to processes when the last
DoTask operation failed. Initially, the data structure
has no available tasks. Therefore, subsequence S has
to contain at least m − 2p more InsertTask operations
than DoTask operations, contradicting the valid input
assumption.

In fact, notice that, if input I contains a contiguous
subsequence withm+1 more InsertTask operations than
DoTask operations, the adversary can easily overflow
the To-Do tree. The strategy is to let all the operations

located before the beginning of the subsequence finish,
and then to execute all operations from the subsequence.

