
Optimal Cache-Oblivious Mesh Layouts

Michael A. Bender∗† ‡ Bradley C. Kuszmaul§ † ¶ Shang-Hua Teng‖ ∗∗†† Kebin Wang‡‡

May 8, 2012

Abstract

A mesh is a graph that divides physical space into regularly-shaped regions. Meshes computations
form the basis of many applications, including finite-element methods, image rendering, collision detec-
tion, and N-body simulations. In one important mesh primitive, called amesh update, each mesh vertex
stores a value and repeatedly updates this value based on thevalues stored in all neighboring vertices.
The performance of a mesh update depends on the layout of the mesh in memory. Informally, if the
mesh layout has good data locality (most edges connect a pairof nodes that are stored near each other in
memory), then a mesh update runs quickly.

This paper shows how to find a memory layout that guarantees that the mesh update has asymptoti-
cally optimal memory performance for any set of memory parameters. Specifically, the cost of the mesh
update is roughly the cost of a sequential memory scan. Such amemory layout is calledcache-oblivious.
Formally, for ad-dimensional meshG, block sizeB, and cache sizeM (whereM = Ω(Bd)), the mesh up-
date ofG usesO(1+ |G|/B) memory transfers. The paper also shows how the mesh-update performance
degrades for smaller caches, whereM = o(Bd).

The paper then gives two algorithms for finding cache-oblivious mesh layouts. The first layout
algorithm runs in timeO(|G| log2 |G|) both in expectation and with high probability on a RAM. It uses
O(1+ |G| log2(|G|/M)/B) memory transfers in expectation andO(1+(|G|/B)(log2(|G|/M)+ log|G|))
memory transfers with high probability in the cache-oblivious and disk-access machine (DAM) models.
The layout is obtained by finding a fully balanced decomposition tree ofG and then performing an
in-order traversal of the leaves of the tree.

The second algorithm computes a cache-oblivious layout on aRAM in time O(|G| log|G| log log|G|)
both in expectation and with high probability. In the DAM andcache-oblivious models, the second lay-
out algorithm usesO(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)})memory transfers in expec-
tation andO(1+(|G|/B)(log(|G|/M)min{log log|G|, log(|G|/M)}+ log|G|)) memory transfers with
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high probability. The algorithm is based on a new type of decomposition tree, here called arelax-
balanced decomposition tree. Again, the layout is obtained by performing an in-order traversal of the
leaves of the decomposition tree.

1 Introduction

A mesh is a graph that represents a division of physical space into regions, called simplices. Simplices
are typically triangular (in 2D) or tetrahedral (in 3D). They arewell shaped, which informally means that
they cannot be long and skinny, but must be roughly the same size in any direction. Meshes form the basis
of many computations such as finite-element methods, image rendering, collisiondetection, and N-body
simulations. Constant-dimension meshes have nodes of constant-degree.

In one important mesh primitive, each mesh vertex stores a value and repeatedly updates this value based
on the values stored in all neighboring vertices. Thus, we view the mesh as aweighted graphG= (V,E,w,e)
(w : V → R, e : E → R

+). For each vertexi ∈V, we repeatedly recompute its weightwi as follows:

wi = ∑
(i, j)∈E

w j ei j .

We call this primitive amesh update. Expressed differently, a mesh update is the sparse matrix-vector
multiplication, where the matrix is the (weighted) adjacency matrix ofG, and vectors are the vertex weights.

On arandom access machine (RAM) (a flat memory model), a mesh update runs in linear time, regard-
less of how the data is laid out in memory. In contrast, on a modern computer with ahierarchical memory,
how the mesh is laid out in memory can affect the speed of the computation substantially. This paper studies
themesh layout problem, which is how to lay out a mesh in memory, so that mesh updates run rapidly on a
hierarchical memory.

We analyze the mesh layout problem in thedisk-access machine (DAM) model [2] (also known as
the I/O-model) and in thecache-oblivious (CO) model [17]. The DAM model is an idealized two-level
memory hierarchy. These two levels could represent L2 cache and main memory, main memory and disk,
or any other pair of levels. The small level (herein calledcache) has sizeM, and the large level (herein
calleddisk) has unbounded size. Data is transferred between the two levels in blocksof sizeB; we call
thesememory transfers. Thus, a memory transfer is a cache-miss if the DAM represents L2 cache and main
memory and is a page fault, if the DAM represents main memory and disk.

A memory transfer has unit cost. The objective is to minimize the number of memory transfers. Focusing
on memory transfers, to the exclusion of other computation, frequently provides a good model of the running
time of an algorithm on a modern computer. Thecache-oblivious model is essentially the DAM model,
except that the values ofB andM are unknown to the algorithm or the coder. The main idea of cache-
obliviousness is this: If an algorithm performs an asymptotically optimal numberof memory transfers on a
DAM, but the algorithm is not parameterized byBandM, then the algorithm also performs an asymptotically
optimal number of memory transfers on an arbitrary unknown, multilevel memoryhierarchy.

The cost of a mesh update in the DAM and cache-oblivious models dependson how the mesh is laid out
in memory. An update to a meshG= (V,E) is just a graph traversal. If we storeG’s vertices arbitrarily in
memory, then the update could cost as much asO(|V|+ |E|) = O(|G|) memory transfers, one transfer for
each vertex and each edge. In this paper we achieve onlyΘ(1+ |G|/B) memory transfers. This is the cost
of a sequential scan of a chunk of memory of sizeO(|G|), which is asymptotically optimal.

Our mesh layout algorithms extend earlier ideas from VLSI theory. Classical VLSI-layout algorithms
turn out to have direct application in scientific and I/O-efficient computing. Although these diverse areas
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may appear unrelated, there are important parallels. For example, in a goodmesh layout, vertices are stored
in (one-dimensional)memory locationsso that most mesh edges are short; in a good VLSI layout, graph
vertices are assigned to (two-dimensional)chip locationsso that most edges are short (to cover minimal
area).

Results

We give two algorithms for laying out a constant-dimension well-shaped meshG= (V,E) so that updates
run in Θ(1+ |G|/B) memory transfers, which isΘ(1+ |V|/B) since the mesh has constant degree.

Our first layout algorithm runs in timeO(|G| log2 |G|) on a RAM both in expectation and with high
probability.1 In the DAM and cache-oblivious models, the algorithm usesO(1+(|G|/B) log2(|G|/M))
memory transfers in expectation andO(1+(|G|/B)(log2(|G|/M)+ log|G|)) memory transfers with high
probability. The layout algorithm is based on decomposition trees and fully balanced decomposition trees [7,
24]; specifically, our mesh layout is obtained by performing an in-order traversal of the leaves of a fully-
balanced decomposition tree. Decomposition trees were developed several decades ago as a framework for
VLSI layout [7, 24], but they are well suited for mesh layout. However,the original algorithm for building
fully-balanced decomposition trees is too slow for our uses (it appears to run in timeO(|G|Θ(b)), whereb is
the degree bound of the mesh). Here we develop a new algorithm that is faster and simpler.

Our second layout algorithm, this paper’s main result, runs in timeO(|G| log|G| log log|G|) on a RAM
both in expectation and with high probability. In the DAM and cache-obliviousmodels, the algorithm
usesO(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)}) memory transfers in expectation andO(1+
(|G|/B)(log(|G|/M)min{log log|G|, log(|G|/M)}+ log|G|)) memory transfers with high probability.

The algorithm is based on a new type of decomposition tree, which we call arelax-balanced decom-
position tree. As before, our mesh layout is obtained by performing an in-order traversal of the leaves of a
relax-balanced decomposition tree. By carefully relaxing the requirementsof decomposition trees, we can
retain asymptotically optimal mesh updates, while improving construction by nearlya logarithmic factor.

The mesh-update guarantees require atall-cache assumption on the memory system thatM = Ω(Bd),
whered is the dimension of the mesh. We also show how the performance degrades for small caches,
whereM = o(Bd). If the cache only has sizeO(Bd−ε), then the number of memory transfers increases to
O(1+ |G|/B1−ε/d).

In addition to the main results listed above, this paper has contributions extending beyond I/O-efficient
computing. First, our algorithms for building fully-balanced decomposition trees are faster and simpler than
previously known algorithms. Second, our relax-balanced decompositiontrees may permit some existing
algorithms based on decomposition trees to run more quickly. Third, the techniques in this paper yield
simpler and improved methods for generatingk-way partitions of meshes, earlier shown in [23]. More
generally, we cross-pollinate several fields, including I/O-efficient computing, VLSI layout, and scientific
computing.

2 Geometric Separators and Decomposition Trees

In this section we review the geometric-separator theorem [27], which we use for partitioning constant-
dimensional meshes. We then review decomposition trees [24]. Finally, we show how to use geometric
separators to build decomposition trees for well shaped meshes.

1For input sizeN and eventE, we say thatE occurswith high probability if for any constantc> 0 there exists a proper choice
of constants defining the event such that Pr{E} ≥ 1−N−c.
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Geometric Separators

A finite-element mesh is a decomposition of a geometric domain into a collection of interior-disjoint sim-
plices (e.g., triangles in 2D and tetrahedra in 3D), so that two simplices can only intersect at a lower dimen-
sional simplex. Each simplicial element of the mesh must bewell shaped. Well shaped means that there is
a constant upper bound to the aspect ratio, that is, the ratio of the radius of the smallest ball containing the
element to the radius of the largest ball contained in the element [33].

A partition of a graphG = (V,E) is a division ofG into disjoint subgraphsG0 = (V0,E0) andG1 =
(V1,E1) such thatV0∩V1 = /0, andV0∪V1 =V. G0 andG1 is aβ-partition of G if they are a partition ofG
and|V0| , |V1| ≤ β |V|. We letE(G0,G1) denote the set of edges inG crossing fromV0 to V1, andE(v,G1)
denote the set of edges inG connecting vertexv to the vertices ofG1. For a functionf , G = (V,E) has
a family of ( f ,β)-partitions if for each subsetS⊆ V and induced graphGS = (VS,ES), graphGS has a
β-partition ofGS0 = (VS0,ES0) andGS1 = (VS1,ES1) such that|ES−ES0 −ES1| ≤ f (|VS|).

The following separator theorem of Miller, Teng, Thurston, and Vavasis[27] shows that meshes can be
partitioned efficiently:

Theorem 1 (Geometric Separators [27]) Let G= (V,E) be a well shaped finite-element mesh in d di-
mensions (d> 1). For constantsε (0 < ε < 1) and c(ε,d) depending only onε and d, a ( f (N) =
O(N1−1/d),(d+1+ ε)/(d+2))-partition of G can be computed in O(d |G|+c(ε,d)) time with probability
at least1/2.

The separator algorithm from [27] works as follows. First, project the coordinates of the vertices of
the input graphG onto the surface of a unit sphere in(d+1)-dimensions. The projection of each point is
independent of all other input points and takes constant time. Sample a constant number of points from all
projected points uniformly at random. Compute a centerpoint of the sampled points. (A centerpoint of a
point set ind-dimensions is a point such that every hyperplane through the centerpoint divides the point
set approximately evenly, i.e., in the ratio ofd to 1 or better.) Rotate and then dilate the sampled points.
Both the rotation and dilation are functions of the centerpoint and the dimensiond. Choose a random great
circle on this unit sphere. (Agreat circle of a sphere is a circle on the sphere’s surface that evenly splits
the sphere.) Map the great circle back to a sphere in thed-dimensional space by reversing the dilation, the
rotation, and the projection. Now use this new sphere to divide the vertices and the edges of the input graph.

Now more mechanics of the algorithm. MeshG is stored in an array. Each vertex ofG is stored with its
index (i.e., name), its coordinates, and all of its adjacent edges, including the index and coordinates of all
neighboring vertices. (This mesh representation means that each edge is stored twice, once for each of the
edge’s two vertices.)

To run the algorithm, scan the vertices and edges inG after obtaining the sphere separator. During the
scan, divide the vertices into two sets,G0, containing the vertices inside the new sphere andG1, containing
the vertices outside the sphere. Mark an edge as “crossing” if the edge crosses fromG0 to G1. Verify
that the number of crossing edges,|E(G0,G1)|, is O(|G|1−1/d), and if not, repeat. The cost of this scan is
O(|G|/B+1) memory transfers.

The geometric separator algorithm has the following performance:

Corollary 2 Let G= (V,E) be a well shaped finite-element mesh in d dimensions (d> 1). For constants
ε (0< ε < 1) and c(ε,d) depending only onε and d, the geometric-separator algorithm finds an( f (N) =
O(N1−1/d),(d+1+ ε)/(d+2))-partition of G. The algorithm runs in O(|G|) on a RAM and uses O(1+
|G|/B) memory transfers in the DAM and cache-oblivious models, both in expectation and with probability
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at least1/2. With high probability, the geometric-separator algorithm completes in O(|G| log|G|) on a RAM
and uses O(1+ |G| log|G|/B) memory transfers in the DAM and cache-oblivious models.

Proof A linear scan ofG takes timeO(|G|) and uses an asymptotically optimal number of memory
transfers. We expect to find a good separator after a constant numberof trials, and so the expectation
bounds follow by linearity of expectation. The probability that after selectingclg |G| candidate separators,
none are good is at most 1/2clg |G| = |G|−c. Thus, with high probability, the geometric separator algorithm
completes inO(|G| log|G|) on a RAM and usesO(1+ |G| log|G|/B) memory transfers in the DAM and
cache-oblivious models. The separator algorithm is cache-oblivious since it is not parameterized byB or M.

Decomposition Trees

A decomposition tree TG of a graphG= (V,E) is a recursive partitioning ofG. The root ofTG is G. Root
G has left and right childrenG0 andG1, and grandchildrenG00, G01, G10, G11, and so on recursively down
the tree. GraphsG0 andG1 partitionG, graphsG00 andG01 partitionG0, and so on. More generally, a node
in the decomposition tree is denotedGp (Gp ⊂ G), wherep is a bit string representing the path to that node
from the root. We callp the id of Gp. We say that a decomposition tree isβ-balanced if for all siblings
Gp0 = (Vp0,Ep0) andGp1 = (Vp1,Ep1) in the tree,|Vp0| , |Vp1| ≤ β |Vp|. We say that a decomposition tree is
balanced if β = 1/2. For a functionf , graph G has an f decomposition tree if for all (nonleaf) nodesGp

in the decomposition tree,|E(Gp0,Gp1)| ≤ f (|Vp|). A β-balancedf decomposition tree is abbreviated as an
( f ,β)-decomposition tree.

For a parent nodeGp and its childrenGp0 andGp1, there are several categories of edges.Inner edges
connect vertices that are both inGp0 or both inGp1. Crossing edges connect vertices inGp0 to vertices
in Gp1. Outgoing edges of Gp0 (resp.Gp1) connect vertices inGp0 (resp.Gp1) to vertices in neither set,
i.e., to vertices inG−Gp. Outer edges of Gp0 (resp.Gp1) connect vertices inGp0 (resp.Gp1) to vertices
in G−Gp0 (resp. G−Gp1); thus an outer edge is either a crossing edge or an outgoing edge. More
formally, inner(Gp0) = E(Gp0,Gp0), crossing(Gp) = E(Gp0,Gp1), outgoing(Gp0) = E(Gp0,G−Gp), and
outer(Gp0) = E(Gp0,G−Gp0).

We build a decomposition treeTG of meshG recursively. First we run the geometric separator algorithm
on the rootG to find the left and right children,G0 andG1. Then we recursively build the decomposition
tree rooted atG0 and then the decomposition tree rooted atG1. (Thus, the right child ofTG is not processed
until the whole left subtree is built.)

The decomposition tree is encoded as follows. Each leaf nodeGq for TG stores the single vertexv and
the bit stringq (the root-to-leaf path). The leaf nodes ofTG are stored contiguously in an arrayLG. The bit
stringq contains enough information to determine which nodes (subgraphs) ofTG containv — specifically
any nodeGq̂, whereq̂ is a prefix ofq (includingq). As mentioned earlier, each vertex is stored along with
its coordinates, adjacent edges, and coordinates of all neighboring vertices inG. (Recall that each edge is
therefore stored twice, once for each of the edge’s vertices.) Each edgee in G is a crossing edge for exactly
one node in the decomposition treeTG. In TG, each edgeealso stores the idp of the tree nodeGp for which
e is a crossing edge. The bit strings on nodes and edges therefore contains enough information to determine
which edges are crossing, inner, and outer for which tree nodes. Specifically, e∈ crossing(Gp). Let p̂ be a
prefix of p that is strictly shorter (p 6= p̂); thene∈ inner(Gp̂). Let p̃ be bit string representing a node inTG

wherep is a strictly shorter prefix of ˜p (p 6= p̃). Thene∈ outer(Gp̃). If p̃0 and p̃1 represent nodes inTG,
thene∈ outgoing(Gp̃0) or e∈ outgoing(Gp̃1).
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Thus, decomposition treeTG is laid out in memory by storing the leaves in order in an arrayLG. We
do not need to store internal nodes explicitly because the bit strings on nodes and edges encode the tree
structure.

Here are a few facts about our layout ofTG. Given any two nodesGp andGq of LG, the common prefix
of p andq is the smallest node inTG containing all vertices in bothGp andGq. All the vertices in any node
Gp of TG are stored in a single contiguous chunk of the array. Thus, we can identify for Gp, which edges are
inner, crossing, outer, and outgoing by performing a single linear scan of sizeO(|Gp|).

We construct the decomposition treeTG by recursively partitioning ofG. While TG is in the process
of being constructed, its encoding is similar to the above, except that (1) a leaf nodeGq may contain more
than one vertex, and (2) some edges may not yet be labelled as crossing.Thus, when the process begins,
TG is just a single leaf comprisingG. The nodes are stored in a single array of sizeO(|G|) and are stored
in an arbitrary order. Then we run the geometric separator algorithm. Oncewe find a good separator, we
partition G into G0 andG1, and we storeG0 beforeG1 in the same array. We label vertices ofG0 with
bit string 0 and vertices ofG1 with bit string 1. We then run through and label all crossing edges with the
appropriate bit string (for the leaf node, the empty string). Now the nodes ineach ofG0 andG1 are stored
in an arbitrary order, but the subarray containingG0 is stored before the subarray containingG1. We then
apply the geometric separator algorithm forG0. We partition intoG00 andG01, label vertices inG0 with
00 or 01, and label all crossing edges ofG0 with the bit string 0; we then do the same forG00 and so on
recursively until all leaf nodes are graphs containing a single vertex.

We now give the complexity of building the decomposition tree. Our high-probability bounds are based
on the following observation involving a coin with a constant probability of heads. In order to get at least
one head with probability at least 1−1/poly(N), Θ(logN) flips are necessary and sufficient. In order to get
Θ(logN) heads with probability at least 1−1/poly(N), the asymptotics do not change;Θ(logN) flips are
still necessary and sufficient. The following lemma can be proved by Chernoff bounds (or otherwise):

Lemma 3 Consider S≥ clogN flips of a coin with a constant probability of heads, for sufficiently large
constant c. With probability at least1−1/poly(N), Θ(S) of the flips are heads.

Theorem 4 Let G= (V,E) be a well shaped finite-element mesh in d dimensions (d> 1). Mesh G has a
(2d+ 3)/(2d+ 4)-balanced-O(|V|1−1/d) decomposition tree. On a RAM, the decomposition tree can be
computed in time O(|G| log|G|) both in expectation and with high probability. The decomposition tree can
be computed in the DAM and cache-oblivious models using O(1+(|G|/B) log(|G|/M)) memory transfers
in expectation and O(1+(|G|/B) log|G|) memory transfers with high probability.

Proof We first establish that the tree construction takes timeO(|G| log|G|) on a RAM in expectation. The
height of the decomposition tree isO(log|G|), and the total size of all subgraphs at each height isO(|G|).
Since the decomposition of a subgraph takes expected linear time, the time bounds follow by linearity of
expectation.

We next establish that the tree construction usesO(1+(|G|/B) log(|G|/M)) expected memory transfers
in the DAM and cache-oblivious models. Because we build the decomposition tree recursively, we give
a recursive analysis. The base case is when a subtree first has size less thanM. For the base case, the
cost to build the entire subtree isO(M/B) because this is the cost to read all blocks of the subtree into
memory. Said differently, once a subgraph is a constant fraction smaller than M, the cost to build the
decomposition tree from the subgraph is 0, because all necessary memoryblocks already reside in memory.
For the recursive step, recall that when a subgraphGp has size greater thanM, the decomposition of a
subgraph takes expectedO(|Gp|/B) memory transfers, because this is the cost of a linear scan. Thus,
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there areO(log(|G|/M)) levels of the tree with subgraphs bigger thanM, so the algorithms uses expected
O(1+(|G|/B) log(|G|/M)) memory transfers.

We next establish the high-probability bounds. We show that the building process usesO(|G| log|G|)
time on a RAM andO(1+ |G| log|G|/B) memory transfers in the DAM and the cache-oblivious models
with high probability.

First consider all nodes that have sizeΩ(|G|/ log|G|). There areΘ(log|G|) such nodes. To build these
nodes, we require a total ofΘ(log|G|) good separators. We can view finding these separators as a coin-
flipping game, where we needΘ(log|G|) heads; by Lemma 3 we requireΘ(log|G|) coin flips. However,
separators near the top of the tree are more expensive to find than separators deeper in the tree. We bound
the cost to find all of these separators by the cost to build the root separator. Thus, building these nodes
uses timeO(|G| log|G|) andO(1+ |G| log|G|/B) memory transfers with high probability. This is now the
dominant term in the cost to build the decomposition tree.

Further down the tree, where nodes have sizeO(|G|/ log|G|), the analysis is easier. Divide the nodes to
be partitioned into groups whose sizes are within a constant factor of eachother. Now each group contains
Ω(log|G|) elements. Thus, by Lemma 3 the time to build the rest of the tree with high probability equals
the time in expectation, which isΘ(|G| log|G|).

We now finish the bound on the number of memory transfers. As above, because we build the decom-
position tree recursively, subtrees a constant fraction smaller thanM are build for free. Also, because each
group containsΩ(log|G|) elements, the cost to build these lower levels in the tree with high probability
equals the expected cost, which isO(1+(|G|/B) log(|G|/M)). This cost is dominated by the cost to build
the nodes of sizeΩ(|G|/ log|G|).

3 Fully-Balanced Decomposition Trees for Meshes

In this section we define fully-balanced partitions and fully-balanced decomposition trees. We give al-
gorithms for generating these structures on a well shaped meshG. As we show in Section 4, we use
a fully-balanced decomposition tree of a meshG to generate a cache-oblivious mesh layout ofG. Our
construction algorithm is an improvement over [7, 24] in two respects. Firstthe algorithm is faster, requir-
ing only O(|G| log2 |G|) operations in expectation and with high probability,O(1+(|G|/B) log2(|G|/M))
memory transfers in expectation, andO(1+(|G|/B)(log2(|G|/M)+ log|G|)) memory transfers with high
probability. Second, the result is simplified, no longer relying on a complicatedtheorem of [18].

This section makes it easier to present the main result of the paper, which appears in Section 5.

Fully-Balanced Partitions

To begin, we define a fully-balanced partition of a subgraphGp of G. A fully-balanced f -partition of
Gp ⊆ G is a partitioning ofGp = (Vp,Ep) into two subgraphsGp0 = (Vp0,Ep0) andGp1 = (Vp1,Ep1) such
that

• |crossing(Gp)| ≤ f (|Vp|),

• |Vp0|= |Vp1|±O(1), and

• |outgoing(Gp0)|= |outgoing(Gp1)|±O(1).

We give the following result before presenting our algorithm for computingfully-balanced partitions.
The existence proof and time complexity comprise the easiest case in [18].
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Figure 1: Unfilled beads represent blue elements and filled beads represent red elements. Pick an arbitrary
initial bisectionA andĀ of the necklace. HereA contains more than half of all blue beads. (We can focus
exclusively on blue beads because ifA contains half of the blue beads to within one, it also contains half of
red beads to within one.) We “turn” the bisection clockwise so thatA takes one bead from̄A and relinquishes
one bead tōA. Thus, the number of blue beads inA can increase/decrease by one or remain the same after
each turn. However, afterN/2 turns,A becomes̄A, which contains less than half of all blue beads. So by a
continuity argument,A contains half of all blue beads after some number of turns. The argument issimilar
for both odd and evenN.

Lemma 5 Given an array L of N elements, where each element is marked either blueor red, there exists a
subarray that contains half of the blue elements to within one and half of redelements to within one. Such
a subarray can be found in O(N) time and O(1+N/B) memory transfers cache-obliviously.

Proof This result is frequently described in terms of “necklaces.” Conceptually,attach the two ends of
the array together to make a necklace. By a simple continuity argument (the easiest case of that in [18]), the
necklace can be split into two pieces,A andĀ, using two cuts such that both pieces have the same number
of blue elements to within one and the same number of red elements to within one. (For details of the
continuity argument, see Figure 1.) Translating back to the array, at least one ofA andĀ does not contain
the connecting point and is contiguous.

To find a good subarray, first scanL to count the number of blue elements and the number of red
elements. Now rescanL, maintaining a window of sizeN/2. The window initially contains the first half of
L and at the end contains the second half ofL. (For oddN, the middle element of the array appears in all
windows.) Stop the scan once the window has the desired number of red andblue elements.

Since only linear scans are used, the algorithm is cache-oblivious and requiresΘ(1+N/B) memory
transfers.

We now present an algorithm for computing fully-balanced partitions. Given Gp ⊆ G, and a( f (N) =
O(Nα),β)-partitioning geometric separator,FullyBalancedPartition (Gp) computes a fully-balanced( f (N)=
O(Nα))-partitionGpx andGpy of Gp.
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FullyBalancedPartition(Gp)

1. Build a decomposition tree— Build a decomposition treeTGp of Gp using the( f (N) = O(Nα),β)-
partitioning geometric separator.

2. Build a red-blue array— Build an array of blue and red elements based on the decomposition tree
TGp. Put a blue element for each leafGq in TGp; thus there is a blue element for each vertexv in
Gp. Now insert some red elements after each blue element. Specifically, after theblue element
representing vertexv, insertE(v,G−Gp) red elements. Thus, the blue elements represent vertices in
Gp = (Vp,Ep) for a total of|Vp| blue elements, while the red elements represent edges to vertices in
G−Gp, for a total ofE(Gp,G−Gp) red elements.

3. Find a subarray in the red-blue array— Find a subarray of the red-blue array based on Lemma 5.
Now partition the vertices inGp based on this subarray. Specifically, put the vertices representing
blue elements in the subarray in setVpx and put the remaining vertices inGp in setVpy.

4. Partition Gp — ComputeGpx andGpy from Vpx andVpy. This computation also means scanning
edges to determine which edges are internal toGpx andGpy and which have now become external.

We first establish the running time ofFullyBalancedPartition(Gp).

Lemma 6 Given a graph Gp that is a subgraph of a well shaped mesh G,FullyBalancedPartition(Gp)
runs in O(|Gp| log|Gp|) on a RAM, both in expectation and with high probability (i.e., probability at
least 1− 1/poly(|Gp|)). In the DAM and cache-oblivious models,FullyBalancedPartition(Gp) uses
O(1+(|Gp|/B) log(|Gp|/M)) memory transfers in expectation and O(1+ |Gp| log|Gp|/B) memory trans-
fers with high probability.

Proof According to Theorem 4, Step 1 ofFullyBalancedPartition (Gp) (computingTGp) takes time
O(|Gp| log|Gp|) on a RAM, both in expectation and with high probability. In the DAM and cache-
oblivious models, this steps requiresO(1+(|Gp|/B) log(|Gp|/M)) memory transfers in expectation and
O(1+ |Gp| log|Gp|/B) memory transfers with high probability. Steps 2-4 ofFullyBalancedPartition (Gp)
each require linear scans of an array of sizeO(|Gp|), and therefore are dominated by Step 1.

We next establish the correctness ofFullyBalancedPartition(Gp). In the following, let constantb repre-
sent the maximum degree of meshG.

Lemma 7 Given a well shaped mesh G and a subgraph Gp ⊆ G, FullyBalancedPartition generates a fully-
balanced partition of Gp.

Proof By the way that we generateVpx andVpy, we have

||Vpy|− |Vpx|| ≤ 1.

This is because the number of blue elements in the subarray is exactly|Vpx|, and the number of blue elements
within and without the subarray differ by at most one.

We next show that
||outgoing(Gpy)|− |outgoing(Gpx)|| ≤ 2b+1. (1)

To determine|outgoing(Gpx)| and|outgoing(Gpy)|, modify the subarray as follows. Remove from the sub-
array any red elements at the beginning of the subarray before the firstblue elementin the subarray. Then
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(a) An example subgraphGp of meshG. SubgraphGp

has eight vertices, ten edges, and eight outer edges
(i.e.,

∣

∣outer(Gp)
∣

∣ = 8).

(4,8)
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1,6 5,7
(1,5)(6,7)

2,4,8
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8

3

2

(2,3)(3,8)

(2,4)(2,8)

(1,2) (4,7)

(1,6)

4

(b) A decomposition tree of the subgraphGp from (a). Building this
decomposition tree is the first step forFullyBalancedPartition(Gp).
The crossing edges at each node are indicated by lines between
the two children. Thus,crossing((Gp)0) = {(1,5),(6,7)} and
crossing((Gp)101) = {(4,8)}. Observe that each edge inGp is a
crossing edge for exactly one node in the decomposition tree.

361 5 7 2 4 8

(c) The red-blue array forGp. The blue elements have a dark shade. The red elements have a light shade. There is
one blue element for each vertex inGp. There is one red element for each outgoing edge inGp. Since element 1
is adjacent to two edges inouter(Gp), there are two red elements after it in the red-blue array. The figure indicates
a subarray containing half of the blue elements and half of the red elementsto within one. The red-blue array is
used to make the fully-balanced partition ofGp. Specifically,Gpx will contain vertices 2, 5, 6, and 7 andGpy will
contain vertices 1, 3, 4, and 8. PartitionGpx inherits three outer edges fromGp, and partitionGpy inherits five outer
edges fromGp. This particular subarray means that two paths in the decomposition tree willbe cut. One path,
separating element 1 from 6, goes from node(Gp)00 to the root. The other path, separating element 2 from 4, goes
from node(Gp)10 to the root. The edges that are cut by this partition are the crossing edges of these nodes, i.e.,
E(Gpx,Gpy) = {(1,6),(1,5),(6,7),(1,2),(4,7),(2,3),(3,8),(2,4),(2,8)}. If Gp is a node in the fully-balanced
decomposition tree, then its left child will beGpx and its right child will beGpy.

Figure 2: The steps of the algorithmFullyBalancedPartition(Gp) run on a sample graph.

add to the subarray any red elements before the first blue elementafter the subarray. The number of red
elements now in the subarray is|outgoing(Gpx)| and the number of red elements not in the subarray is
|outgoing(Gpy)|. This modification can only increase or decrease|outgoing(Gpx)| and|outgoing(Gpy)| each
by b, establishing (1).

Now, following [7,24], we show that

E(Gpx,Gpy)≤ c|Vp|
α(1+βα)/(1−βα). (2)

By selecting a subarray of the red-blue array, we effectively make two cuts on the leaves of the decompo-
sition treeTGp. (The only time when there is apparently a single cut is if the subarray is the first half of the
array. In this case, the second cut separates the first leaf from the last.) Consider one of these cuts. The array
is split between two consecutive leaves ofTGp. Denote byP the root of the smallest subtree ofTGp containing
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these two leaves; see Figure 2(c). We consider the upward pathP,P1,P2, . . . ,Gp in the decomposition tree
TGp from P up to the rootGp of TGp. Each node in the decomposition tree on this path is a subgraph ofG
that is being split into two pieces.

We now count the number of edges that get removed as a result of these splits:

|crossing(P)∪ crossing(P1)∪ crossing(P2)∪ . . .∪ crossing(Gp)| ≤

logβ |V|

∑
i=0

c
(

|V|/βi)α

≤ c|V|α/(1−βα) . (3)

As reflected in (3), each node along the path has a different depth, which gives a geometric series.
The number of edges that cross fromGpx to Gpy, E(Gpx,Gpy), is the number of edges that get removed

when both cuts get made. However, doubling (3) overestimatesE(Gpx,Gpy) by an amount|crossing(Gp)|
since the rootGp can only be cut once. Thus, doubling (3) and subtracting|crossing(Gp)|, we establish (2).

Fully-Balanced Decomposition Trees

A fully-balanced decomposition tree of a graphG is a decomposition tree ofG where the partition of every
node (subgraph) in the tree is fully-balanced.

We build a fully-balanced decomposition treeBTG of G recursively. First we apply the algorithmFully-
BalancedPartition on the rootG to find the left and right children,G0 andG1. We next recursively build the
fully balanced decomposition tree rooted atG0 and the fully-balanced decomposition tree rooted atG1.

Theorem 8 (Fully-Balanced Decomposition Tree for a Mesh) A fully-balanced decomposition tree of a
mesh G of constant dimension can be computed in time O(|G| log2 |G|) on a RAM both in expecta-
tion and with high probability. The fully-balanced decomposition tree can be computed in the DAM
and cache-oblivious models using O(1+(|G|/B) log2(|G|/M)) memory transfers in expectation and
O(1+(|G|/B)(log2(|G|/M)+ log|G|)) memory transfers with high probability.

Proof We first establish that the construction algorithm takes expected timeO(|G| log2 |G|) on a RAM. By
Lemma 6, for any nodeGp in the decomposition tree, we needO(|Gp| log|Gp|) operations to build the left
and right children,Gp0 andGp1, both in expectation and with probability at least 1−1/poly(|Gp|). Since the
left and right children,|Gp0| and the|Gp1|, of every nodeGp differ in size by at most 1,BTG hasΘ(log|G|)
levels. If |Gp| denotes the size of a node at leveli, then leveli has construction timeO(|G| log|Gp|). Thus,
the construction-time bound follows by linearity of expectation.

We next establish that the construction algorithm usesO(1+ |G| log2(|G|/M)/B) expected memory
transfers in the DAM and cache-oblivious models. Because we build the decomposition tree recursively,
we give a recursive analysis. The base case is when a nodeGp has size less thanM while its parent node
is greater thanM. Then the cost to build the entire subtreeTGp is only O(M/B), because this is the cost to
read all blocks ofGp into memory. Said differently, once a node is a constant fraction smaller thanM, the
cost to build the fully-balanced decomposition tree is 0 because all necessary memory blocks already reside
in memory. There are thereforeΘ(log|G|− logM) levels of the fully-balanced decomposition tree having
nonzero construction cost. Each level uses at mostO((|G|/B) log(|G|/M)) memory transfers. Thus, the
time bounds follows by linearity of expectation.
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We next establish the high-probability bounds. In the following analysis, weexamine, for each nodeGp

in the fully-balanced decomposition tree, the decomposition treeTGp that is used to build that node. We then
group the nodes of all the decomposition trees by size and count the numberof nodes in each group.

As an example, suppose that|G| is a power of two and all splits are even. There is one node of size|G|
— the root node of the decomposition treeTG. There are four nodes of size|G|/2 — two nodes inTG, one
node inTG0, and one node inTG1. There are 12 node of size|G|/4 — four nodes inTG, two nodes inTG0,
two node inTG1, and one node in each ofTG00, TG01, TG10, andTG11.

In general, let groupi contain all decomposition tree nodes having size in the range(|G|/2i , |G|/2i−1].
Then groupi containsΘ(i2i) nodes.

Analyzing each group separately, we show that the construction algorithmtakes timeO(|G| log2 |G|) on
a RAM with high probability. First, consider theΘ(log|G|) largest nodes (those most expensive to build),
i.e., those in the smallest cardinality groups. As analyzed in Theorem 4, building these nodes takes time
O(|G| log|G|) with high probability.

We analyze the rest of the node constructions group by group. Since each groupi containsΘ(i2i−1)
nodes, each successive group contains more nodes than the total number of nodes in all smaller groups. As
a result, there areΩ(log|G|) nodes in each of the rest of the groups. Thus, by Lemma 3, the time to build the
rest of the tree with high probability is the same as the time in expectation, which isO(|G| log2 |G|). Thus,
we establish high-probability bounds on the running time.

We now show that the construction algorithm takesO(1+(|G|/B)(log2(|G|/M)+ log|G|)) memory
transfers with high probability. First consider theΘ(log|G|) largest nodes (those most expensive to build).
As analyzed in Theorem 4, building these nodes usesO(1+ |G| log|G|/B) memory transfers with high
probability. Now examine all remaining nodes. We consider each level separately. Each group contains
Ω(log|G|) nodes. Thus, by Lemma 3, the high-probability cost of building the decomposition trees for all
remaining nodes matches the expected cost, which isO(1+(|G|/B) log2(|G|/M)) memory transfers. Thus,
with high probability, the construction algorithm takesO(1+(|G|/B)(log|G|+ log2(|G|/M))) memory
transfers with high probability, as promised.

k-Way Partitions

We observe one additional benefit of Theorem 8. In addition to providinga simpler and faster algorithm for
constructing fully-balanced decomposition trees, we also provide a new algorithm for k-way partitioning,
as described in [23]. For any positive integerk > 1, ak-way partition of a graphG = (V,E), is ak-tuple
(V1,V2, . . . ,Vk) (hence(G1,G2, . . . ,Gk)) such that∪1≤i≤kVi =V andVi ∩Vj = /0 for i 6= j,1≤ i, j ≤ k. For any
β ≥ 1, (V1,V2, . . . ,Vk) is a (β,k)-way partition if |Gi | ≤ β⌈|G|/k⌉, for all i ∈ {1, . . . ,k}. It has been shown
in [23] that every well shaped mesh ind dimensions has a(1+ ε,k)-way partition, for anyε > 0, such that
maxi{outer(Gi)}= O((|G|/k)1−1/d).

We now describe ourk-way partition algorithm of a well shaped meshG. The objective is to evenly
divide leaves of a fully-balanced decomposition tree ofG into k parts such that their number of vertices are
the same within one. First build a fully-balanced decomposition tree. Now assign the first|V|/k leaves to
V1, the next|V|/k leaves toV2, and so on.

In fact, we can modify this approach so that it runs faster by observing that we need not build the
complete fully-balanced decomposition tree. First build the topΘ(logk) levels of the tree, so that there
are poly(k) leaves. At mostk of these leaves need to be refined further, since the remaining leaves will all
belong to a single groupVi .
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Ourk-way partition algorithm using fully-balanced decomposition trees is incomparable to the algorithm
of [23]. By building fully-balanced decomposition tree, even a partial one, our algorithm is slower than the
algorithm of [23], which uses geometric separators for partitioning instead. On the other hand, it can be used
to divide the nodes intok sets whose sizes are equal to within an additive one, instead of only asymptotically
the same size as in [23].

4 Cache-Oblivious Layouts

In this section we show how to find a cache-oblivious layout of a meshG. Given such a layout, we show
that a mesh update runs asymptotically optimally inΘ(1+ |G|/B) memory transfers given the tall cache
assumption thatM = Ω(Bd). We also analyze the performance of a mesh update whenM = o(Bd), bounding
the performance degradation for smallerM.

The layout algorithm is as follows.

CacheObliviousMeshLayout(G)

1. Build a f (N) = O(N1−1/d) fully-balanced decomposition treeTG of G, as described in Theorem 8.

2. Reorder the vertices inG according to the order of the leaves inTG. (Recall that each leaf inTG

stores a single vertex inG.) This reorder means: (a) assign new indices to all vertices in the mesh,
and (b) for each vertex, let all neighbor vertices know the new index.

We now describe the mechanics of relabeling and reordering. Each vertex knows its ordering and
location in the input layout; this is the vertex’s index. A vertex also knows the index of each of its
neighboring vertices. When we change a vertex’s index, we apprise allneighbor vertices of the change.
These operations entail a small number of scans and cache-oblivious sorts [9, 11, 17, 30], for a total cost of
O((|G|/B) logM/B(|G|/B) memory transfers. This cost is dominated by the cost to build the fully-balanced
decomposition tree. (Thus, a standard merge sort, which does not minimize thenumber of memory transfers,
could also be used.)

The cleanest way to explain is through an example. Suppose that we have input graph G =
{{a,b,c,d} ,{(a,c),(a,d),(b,c),(c,d)}}, which is laid out in input order:

(a,c),(a,d),(b,c),(c,a),(c,b),(c,d),(d,a),(d,c) .

Suppose that the leaves of fully-balanced decomposition tree are in the order of a,c,d,b. This means that
the renaming of nodes is as follows:[a : 1], [c : 2], [d : 3], [b : 4]. (For clarity, we change indices from letters
to numbers.) We obtain the reverse mapping[a : 1], [b : 4], [c : 2], [d : 3] by sorting cache-obliviously. We
change the labels on the first component of the edges by array scans:

(a= 1,c),(a= 1,d),(b= 4,c),(c= 2,a),(c= 2,b),(c= 2,d),(d = 3,a),(d = 3,c) .

We then sort the edges by the second component,

(c= 2,a),(d = 3,a),(c= 2,b),(a= 1,c),(b= 4,c),(d = 3,c),(a= 1,d),(c= 2,d) ,

and change the labels on the second component of the edge by another scan:

(c= 2,a= 1),(d = 3,a= 1),(c= 2,b= 4),(a= 1,c= 2),(b= 4,c= 2),(d = 3,c= 2),

(a= 1,d = 3),(c= 2,d = 3) .
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We get
(2,1),(3,1),(2,4),(1,2),(4,2),(3,2),(1,3),(2,3) .

We sort these edges by the first component to get the final layout. The final layout is

(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,2) .

Thus, we obtain the following layout performance:

Theorem 9 A cache-oblivious layout of a well shaped mesh G can be computed in O(|G| log2 |G|)
time both in expectation and with high probability. The cache-oblivious layout algorithm uses O(1+
|G| log2(|G|/M)/B) memory transfers in expectation and O(1+(|G|/B)(log2(|G|/M)+ log|G|)) memory
transfers with high probability.

With such a layout, we can perform a mesh update cache-obliviously.

Theorem 10 Every well shaped mesh G in d dimensions has a layout that allows the meshto be updated
cache-obliviously with O(1+ |G|/B) memory transfers on a system with block size B and cache size M=
Ω(Bd).

Proof We apply the algorithm described above onG to build the layout. Since each vertex ofG has
constant degree boundb, its size is bounded by a constant. Consider a row of nodesGp1,Gp2,Gp3 . . . in TG

at a level such that each nodeGpi usesΘ(M)< M space and therefore fits in a constant fraction of memory.
In the mesh update, the nodes ofG are updated in the order of the layout, which means that first the

vertices inGp1 are updated, then vertices ofGp2, then vertices ofGp3, etc. To update vertices ofGpi , the
vertices must be brought into memory, which uses at mostO(1+M/B) memory transfers. In the mesh
update, when we update a vertexu, we accessu’s neighbors. If the neighborv of u is also inGpi , i.e., edge
(u,v) is internal toGpi , then accessing this neighbor uses no extra memory transfers. On the other hand, if
the neighborv is not in Gpi , then following this edge requires another transfer hence an extra blockto be
read into memory.

We now show thatouter(Gpi ) = O(|Gpi |
1−1/d). Since all subgraphs at the same level of the fully-

balanced decomposition tree are of the same size within one, and outgoing edges of any subgraph are evenly
split, eachGpi has roughly the same number of outer edges. SupposeGpi is in level j. The total number of
their outer edges are at most

|G|1−1/d +2

(

|G|

2

)1−1/d

+4

(

|G|

4

)1−1/d

+ . . .+2 j
(

|G|

2 j

)1−1/d

≤

(

2 j

21/d −1

)(

|G|

2 j

)1−1/d

.

Hence,outer(Gpi ) =O(
(

|G|/2 j
)1−1/d

) =O(|Gpi |
1−1/d) =O(M1−1/d). Therefore the total size of mem-

ory that we need to perform a mesh update of the vertices inGpi is Θ(M+BM1−1/d).
By the tall-cache assumption thatBd ≤ M, i.e.,B≤ M1/d, and for a proper choice of constants, the mesh

update forGpi only usesΘ(M)< M memory. Since updating each nodeGpi of sizeΘ(M) usesO(1+M/B)
memory transfers, and there are a total ofO(|G|/M) such nodes, the update cost isO(1+ |G|/B), which
matches the scan bound ofG, and is optimal.

Thus, for dimensiond= 2, we have the “standard” tall-cache assumption [17], and for higher dimensions
we have a more restrictive tall-cache assumption. We now analyze the tradeoff between cache height and
complexity. Suppose instead of a cache withM = Ω(Bd), the cache is ofM = Ω(Bd−ε). We assume
ε < d−1. We show that the cache performance of mesh update isBε/d away from optimal.
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Corollary 11 Every well shaped mesh G in d dimensions has a vertex ordering that allows the mesh to
be updated cache-obliviously with O(1+ |G|/B1−ε/d) memory transfers on a system with block size B and
cache size M= Ω(Bd−ε).

Proof We apply similar analysis to that in Theorem 10 onG. From Theorem 10, the total size of memory
that we need to update meshGpi is Θ(M+BM1−1/d). SinceM = Ω(Bd−ε), we have

O(M+BM1−1/d) = O(M+M
B

M1/d
)

≤ O(M+M
B

B1−ε/d
)

= O(M+MBε/d) .

Thus, updatingGpi usesO(1+(M+MBε/d)/B) memory transfers, which simplifies toO(1+ |G|/B1−ε/d)
memory transfers.

5 Relax-Balanced Decomposition Trees and Faster Cache-Oblivious Lay-
outs

In this section we give the main result of this paper, a faster algorithm for finding a cache-oblivious mesh
layout of a well-shaped mesh. The main idea of the algorithm is to construct a new type of decomposition
tree, which we call arelax-balanced decomposition tree. The relax-balanced decomposition tree is based on
what we call arelax-balanced partition. We give an algorithm for building an relax-balanced decomposition
tree whose performance is nearly a logarithmic factor faster than the algorithm for building a fully-balanced
decomposition tree. We prove that an asymptotically optimal cache-oblivious mesh layout can be found by
traversing the leaves of the relax-balanced decomposition tree.

Relax-Balanced Partitions

We first define the relax-balanced partition of a subgraphGp of G. A relax-balanced f -partition of Gp ⊆ G
is a partitioning ofGp into two subgraphsGp0 andGp1 such that

• |crossing(Gp)| ≤ f (|Gp|),

• |Gp0|= |Gp1|±O(|Gp|/ log3 |G|), and

• |outgoing(Gp0)|= |outgoing(Gp1)|±O(|outgoing(Gp1)|/ log2 |G|).

We next present an algorithm,RelaxBalancedPartition, for computing balanced partitions. Given
Gp ⊆ G, and a( f (N) = O(Nα),β)-partitioning geometric separator,RelaxBalancedPartition(Gp) computes
a relax-balanced( f (N) = O(Nα))-partitionGpx andGpy of Gp.

We find the relax-balanced partition by building what we call arelax partition tree TGp. We call the top
3log1/β log|G| levels ofTGp theupper tree of TGp and the remaining levels thelower tree of TGp.

We build the upper tree by building the top 3log1/β log|G| levels of a decomposition tree ofGp. By

construction, all leaves of the upper tree (subgraphs ofGp) contain at most|Gp|/ log3 |G| vertices. Outer
edges ofGp are distributed among these leaves. By a counting argument, there are at most log2 |G| leaves
that can contain more than|outer(Gp)|/ log2 |G| outer edges ofGp.
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For each upper-tree leaf having more than|outer(Gp)|/ log2 |G| outer edges, we refine the leaf by build-
ing a decomposition tree on it. We do not refine the other leaves of the upper tree. The union of these
decomposition trees comprise the lower tree.

Relax partition treeTGp has leaves at different depths. Some leaves are subgraphs having a single vertex
while others may have up to|G|/ log3 |G| vertices. The tree is stored in the same format as a standard
decomposition tree. Thus, leaves of the relax partition tree that are not refined contain vertices stored in an
arbitrary order. The relax partition treeTGp of Gp is just a decomposition tree if there are fewer than log3 |G|
vertices.

RelaxBalancedPartition(Gp)

1. Build TGp — Build the relax partition treeTGp from Gp recursively.

2. Build red-blue array— Build an array of vertices by an in-order traversal of leaves ofTGp. Vertices
in leaves that are not refined are laid out arbitrarily. Build a red-blue array and find a subarray in the
red-blue array as described inFullyBalancedPartition.

3. Modify red-blue array– Modify the subarray to satisfy the following constraint. All vertices in an
(unrefined) leaf must stay together, either within or without the subarray.If any cut separates the
vertices, then move the cut leftward or rightward to be in between the leaf node and a neighbor.
Now partition the vertices inGp based on this modified subarray. Put the vertices representing blue
elements that are in the subarray into setVpx and put the vertices representing blue elements that are
outside of the subarray into setVpy.

4. Partition Gp — ComputeGpx andGpy from Vpx andVpy. This computation also means scanning
edges to determine which edges are internal toGpx andGpy and which have now become external.

We first establish the running time ofRelaxBalancedPartition(Gp).

Lemma 12 Given a subgraph Gp of a well shaped mesh G,|Gp| ≥ log3 |G|, RelaxBalancedPartition(Gp)
runs in time O(|Gp| log log|G|) on a RAM and O(1+(|Gp|/B)min{log log|G|, log(|Gp|/M)}) memory
transfers in the DAM and cache-oblivious models in expectation. With high probability, it runs in
O(|Gp| log|Gp|) on a RAM and O(1+ |Gp| log|Gp|/B) memory transfers in the DAM and cache-oblivious
models.

Proof We establish that the construction algorithm runs in expected timeO(|Gp| log log|G|) on a RAM.
The upper tree ofTGp takes expected timeO(|Gp| log log|G|). There are at most log2 |G| leaves of the upper
tree to be refined. For each of these leaves, we build a decomposition tree,and this takes expected time

O((|Gp|/ log3 |G|) log(|Gp|/ log3 |G|))≤ O(|Gp|/ log2 |G|).

Thus, the total expected time to refine all leaves isO(|G|). Steps 2-4 takes linear time. Thus,
RelaxBalancedPartition(Gp) finds a relax-balanced partition in expected timeO(|Gp| log log|G|).

We next establish that the construction algorithm usesO(1+(|Gp|/B)min{log log|G|, log(|Gp|/M)})
expected memory transfers in the DAM and cache-oblivious models. Thereare two cases. The first case is
whenM ≥ |Gp|/ log3 |G|. Then some of nodes in the top 3log1/β log|G| levels of theTGp may be a constant
fraction smaller thanM. Such small nodes require no memory transfers to build, because they arealready
stored in memory. Only the topO(log(|Gp|/M)) levels use memory transfers. The rest of the decomposi-
tions are free of memory transfers because all necessary memory blocksalready reside in memory. When a
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(a) An example subgraphGp of meshG. SubgraphGp

has eight vertices, ten edges, and eight outer edges
(i.e.,
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(b) A relax partition tree of the subgraphGp from (a). Building this
decomposition tree is the first step forRelaxBalancedPartition(Gp).
Observe that each edge inGp is a crossing edge for at most one node
in the decomposition tree. Some edges, such as(2,4), are not cross-
ing edges for any node. The top three levels of the decomposition
tree are the upper tree. We refine a leaf of the upper tree if only it has
many (at least three) edges fromouter(Gp). Upper tree leaf(Gp)00
has 4 edges fromouter(Gp). Upper tree leaf(Gp)01 has 1 edge from
outer(Gp). Upper tree leaf(Gp)10 has 1 edge fromouter(Gp). Upper
tree leaf(Gp)11 has 2 edges fromouter(Gp). Thus, only(Gp)00 is
further refined.

48 261 37 5

(c) The red-blue array forGp. The blue elements have a dark shade. The red elements have a light shade. There is one
blue element for each vertex inGp. There is one red element for each outgoing edge inGp. The figure indicates
a subarray containing half of the blue elements and half of the red elementsto within one. However, this subarray
separates element 8 from element 2. This cut is not allowed because 8 and 2 are in the same leaf of the relax
partition tree. Instead the cut is moved left to the first valid position. The newcut separates element 5 from element
8, which is allowed because 5 and 8 are in different leaves of the relax partition tree. Thus,Gpx will contain vertices
5, 6, and 7, andGpy will contain vertices 1, 2, 3, 4, and 8.

Figure 3: The steps of the algorithmRelaxBalancedPartition(Gp) run on a sample graph.

subgraphGp has sizeΩ(M), then the partition of a subgraph takes expectedΘ(|Gp|/B) memory transfers,
because this is the cost of a linear scan. Hence, the total cost isO(1+(|Gp|/B) log(|Gp|/M)).

The second case is whenM < |Gp|/ log3 |G|. Then, the upper tree ofTGp takesO(1+ |Gp| log log|G|/B)
memory transfers in expectation. There are at most log2 |G| leaves of the upper tree ofTGp that need further
refinement, and the leaf sizes are at most|Gp|/ log3 |G|. Building a decomposition tree on one of these
leaves takes

O(1+(|Gp|/ log3 |G|) log(|Gp|/ log3 |G|)/B)≤ O(1+ |Gp|/Blog2 |G|)

memory transfers in expectation. Since there are at most log2 |G| leaves, the total expected number of
memory transfers to construct the lower tree ofTGp is O(|Gp|/B), which is dominated by the cost to build
the upper tree.

Combining the two cases, we obtain that the expected number of memory transfers to build TGp is
O(1+(|Gp|/B)min{log logG, log(|Gp|/M)}).
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We next establish the high-probability bounds. We first consider all nodes that have size
Ω(|Gp|/ log|Gp|). There areO(log|Gp|) such nodes. Building these nodes uses timeO(|Gp| log|Gp|)
andO(1+ |Gp| log|Gp|/B) memory transfers with high probability by Theorem 4.

For the rest of theupper treeof TGp, each level containsΩ(log|Gp|) nodes. Thus, the number of
memory transfers with high probability matches the number of memory transfers inexpectation, which is
O(1+(|Gp|/B)min{log logG, log(|Gp|/M)}). The cost to build the rest of the upper tree is dominated by
the cost to build the largestO(log|Gp|) nodes in the upper tree.

As described above, the expected cost to build the lower tree isO(|Gp|) time andO(|Gp|/B) memory
transfers. The high-probability bounds are at most aO(log|Gp|) factor greater and hence are dominated
by the cost to build the upper tree. Thus, we establish the high probability bounds on time and memory
transfers.

We next establish the correctness ofRelaxBalancedPartition(Gp). In the following, letb represent the
maximum degree of meshG.

Lemma 13 Given a well shaped mesh G and a subgraph Gp ⊆ G, RelaxBalancedPartition(Gp) generates a
relax-balanced partition of Gp.

Proof By the way we construct the relax partition treeTGp, nodes that are not refined contain
O(|outer(Gp)|/ log2 |G|) outer edges ofGp, and their sizes differ byO(|Gp|/ log3 |G|). Thus, by the way we
generateGpx andGpy, the number of outgoing edges ofGpx andGpy differ by O(|outer(Gp)|/ log2 |G|) and
|Gpx| and|Gpy| differ by O(|Gp|/ log3 |G|). Recall thatoutgoing(Gpx)∪outgoing(Gpy) = outer(Gp). Thus,
we have

|outgoing(Gpx)|= |outgoing(Gpy)|±O(|outgoing(Gpy)|/ log2 |G|).

As shown in Equation (2) from Lemma 7, the number of crossing edges satisfies |crossing(Gp)| ≤
f (|Gp|).

Relax-Balanced Decomposition Trees

A relax-balanced decomposition tree of a well shaped meshG is a decomposition tree ofG where every
partition of every nodeGp in the tree is relax-balanced.

We construct a relax-balanced decomposition tree ofG recursively. First we apply the algorithmRe-
laxBalancedPartition on the rootG to get the left and right children,G0 andG1. We next recursively build
the (left) subtree rooted atG0 and then the (right) subtree rooted atG1.

Theorem 14 (Relax-Balanced Decomposition Tree for a Mesh) A relax-balanced decomposition tree of
a well shaped mesh G of constant dimension can be computed in time O(|G| log|G| log log|G|) on a RAM
both in expectation and with high probability. The relax-balanced decomposition tree can be computed in the
DAM and cache-oblivious models using O(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)}) memory
transfers in expectation and O(1+(|G|/B)(log(|G|/M)min{log log|G|, log(|G|/M)}+ log|G|)) memory
transfers with high probability.

Proof When |G| ≤ M, the construction algorithm takesO(|G|) time andO(|G|/B) memory transfers,
both in expectation and with high probability. We considerO(|G|) = Ω(M) in the following analysis.
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We first analyze the expected running time of the algorithm on a RAM. The construction time of each
nodeGp is O(|Gp| log log|G|), and there areO(log|G|) levels in the relax-balanced decomposition tree.
Thus, by linearity of expectation, the expected running time isO(|G| log|G| log log|G|).

We show that the construction algorithm usesO(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)})
memory transfers in the DAM and cache-oblivious models. We analyze largeand small nodes in
the relax-balanced decomposition tree differently. There are two cases.The first case is when a
tree nodeGp is large, i.e., |Gp| ≥ log3 |G|. In this case,RelaxBalancedPartition(Gp) uses expected
O(1+(|Gp|/B)min{log log|G|, log(|Gp|/M)}) memory transfers by Lemma 12. Since all nodes a con-
stant factor smaller thanM can be constructed with no memory transfers, we only need consider nodes of
sizeΩ(M). There areO(log(|G|/M)) levels of nodes of sizeΩ(M). So the construction of all nodes larger
than log3 |G| takesO(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)}) expected memory transfers.

The second case is when|Gp| < log3 |G|. In this case, we build a complete decomposition tree at
each node. Therefore by Lemma 6, the cost to build one of these nodes isO(1+(|Gp|/B) log(|Gp|/M))
in expectation. As before, nodes a constant factor smaller thanM can be constructed with no mem-
ory transfers. Therefore, the number of levels containing nodes of size betweenΩ(M) and less than
log3 |G| is at mostO(log(log3 |G|/M)). Thus, the construction of all nodes of sizeO(log3 |G|) uses
O(1+(|G|/B) log2(log3 |G|/M)) memory transfers in expectation, which is dominated by the first case.

Now we establish the high probability bounds. We analyze the largestΘ(log|G|) nodes and the
remaining nodes of the relax-balanced decomposition tree separately. Anylevel of the relax-balanced
decomposition tree below the largestΘ(log|G|) nodes hasΩ(log|G|) nodes. Hence, for each level,
the construction cost with high probability matches the construction cost in expectation, which is
O(|G| log log|G|) expected time andO(1+(|G|/B)min{log log|G|, log(|G|/M)}) expected memory trans-
fers. Since the construction algorithm is recursive, a relax-balanced partition of nodes a constant frac-
tion smaller thanM uses no memory transfers. Hence, all levels of the relax-balanced decomposition tree
other than the largestΘ(log|G|) nodes can be constructed inO(|G| log|G| log log|G|) time in a RAM and
O(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)}) memory transfers with high probability.

For the largestΘ(log|G|) nodes of the relax-balanced decomposition tree, we establish the high proba-
bility bounds using a different approach. Similar to the proof of Theorem 8, we examine each relax partition
tree that is used to build each node of the relax-balanced decomposition tree, and we examine all nodes
within all of these relax partition trees. However, now there are upper trees and lower trees; we examine the
nodes within upper and lower trees separately.

We look at the upper trees of the relax partition trees of the largestΘ(log|G|) nodes of the relax-balanced
decomposition tree. There areΘ(log|G|) upper trees, which are complete binary trees. Following a similar
analysis to that in the proof of Theorem 8, the construction of the largestΘ(log|G|) nodes from among the
Θ(log|G|) upper trees takesO(|G| log|G|) time and usesO(1+ |G| log|G|/B) memory transfers with high
probability.

For the rest of the nodes in the upper trees, the high probability bounds match the expectation bounds,
both in time and memory transfers by Theorem 8. Therefore building the nodes in the rest of the upper trees
takesO(|G| log2 log|G|) time and usesO(|G| log2 log|G|/B) memory transfers with high probability. This
cost is dominated by the construction cost of the largestΘ(log|G|) nodes of the upper trees.

We now focus on the lower trees of the relax partition trees of the largestΘ(log|G|) nodes of the relax-
balanced decomposition tree. We show that the cost to build all of the lower trees takes timeO(|G| log|G|)
and usesO(1+ |G| log|G|/B) memory transfers with high probability (i.e., probability 1− 1/poly(|G|)).
With high probability, the lower tree of a partition treeTGp of a subgraphGp can be computed inO(|Gp|) on
a RAM and withO(|Gp|/B) memory transfers in the DAM and the cache-oblivious models. Given a node
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Gp and its relax partition treeTGp, there are two cases. The first case is when there areΩ(log|G|) leaves
of the upper tree ofTGp that need to be refined. Thus, with high probability, the construction cost of the
lower tree ofTGp matches the expected construction cost, which is inO(|Gp|) time andO(|Gp|/B) memory
transfers, as analyzed in Lemma 12.

The second case is when there areO(log|G|) leaves of the upper tree ofTGp that need to be refined.
The construction cost of a single leaf isO(|Gp|/ log2 |G|) time andO(|Gp|/Blog2 |G|) memory transfers in
expectation. Thus, the construction cost to refine a single leaf with high probability isO(|Gp|/ log|G|) time
andO(|Gp|/Blog|G|) memory transfers and the construction cost to refine all leaves with high probability is
O(|Gp|) time andO(|Gp|/B) memory transfers. Thus, all lower trees of the relax partition trees of the largest
Θ(log|G|) nodes of the relax-balanced decomposition tree can be constructed inO(|G|) time andO(|G|/B)
memory transfers with high probability, which is dominated by the construction ofall upper trees.

Hence, with high probability, the construction algorithm runs inO(|G| log|G| log log|G|) time on a
RAM and usesO(1+(|G|/B)(log(|G|/M)min{log log|G|, log(|G|/M)}+ log|G|)) memory transfers in
the DAM and the cache-oblivious models.

We now show that a relax-balanced decomposition tree can serve the same purpose as a fully-balanced
decomposition tree in giving cache-oblivious layout. The crucial property is the following.

Lemma 15 Given a relax-balanced decomposition tree of graph G, all nodes on anylevel of the relax-
balanced decomposition tree contain the same number of vertices to within ano(1) factor and all outgoing
degrees are the same size to within an o(1) factor.

Proof From the definition of relax-balanced, for any subgraphGp and its two childrenGp0 and Gp1

|outgoing(Gp0)| = |outgoing(Gp1)| ±O(|outgoing(Gp1)|/ log2 |G|), and|Gp0| = |Gp1| ±O(|Gp|/ log3 |G|).
Thus, for constantc, the ratio of the outgoing degree or the size between any two subgraphs atdepthi is at
most(1+ c/ log2 |G|)i and(1+ c/ log3 |G|)i . Since there areO(log|G|) levels, these quantities differ by at
most ano(1) factor, as promised.

Similar to Section 4, to find a cache-oblivious layout of a well shaped meshG, we build a relax-balanced
decomposition tree ofG. The in-order traversal of the leaves gives the cache-oblivious layout. Lemma 15
guarantees that we can apply the same analysis from Section 4 to show that we have a cache-oblivious
layout.

We thus obtain the following result:

Theorem 16 A cache-oblivious layout of a well shaped mesh G can be computed in time
O(|G| log|G| log log|G|) on a RAM both in expectation and with high probability. The
cache-oblivious layout can be computed in the DAM and cache-oblivious models using
O(1+(|G|/B) log(|G|/M)min{log log|G|, log(|G|/M)}) memory transfers in expectation and
O(1+(|G|/B)(log(|G|/M)min{log log|G|, log(|G|/M)}+ logG)) memory transfers with high prob-
ability.

6 Applications and Related Work

Applications of Mesh Update

The mesh update problem appears in many scientific computations and ranks among most basic primitives
for numerical computations. In finite-element and finite-difference methods, one must solve very large-
scale sparse linear systems whose underlying matrix structures are meshes[27]. In practice, these linear
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systems are solved by conjugate gradient or preconditioned conjugate gradient methods [15, 31]. The most
computational intensive operation of conjugate gradient is a matrix-vector multiplication operation [6, 15,
36, 37] which amounts to a mesh update in finite-element applications. The iterative conjugate gradient
method repeatedly performs mesh updates. Mesh update is also the key operation in fast multipole methods
(FMM) for N-body simulation [19, 20], especially when particles are not uniformly distributed [32]. The
partitioning and layout techniques presented here also apply to the adaptive quadtrees or octtrees used in
non-uniform N-body simulation.

Related Work

The cache-oblivious memory model was introduced in [17, 30], and cache-oblivious algorithms have been
developed for many scientific problems such as matrix multiplication, FFT, and LUdecomposition [8, 17,
30,35], Now the area of cache-oblivious data structures and algorithmsis a lively field.

There are other approaches to achieving good locality in scientific computations. One alternative to the
cache-oblivious approach is to write self-tuning programs, which measure the memory system and adjust
their behavior accordingly. Examples include scientific applications such asFFTW [16], ATLAS [39], and
self-tuning databases (e.g., [38]). The self-tuning approach can be complementary to the cache-oblivious
approach. For example, some versions of FFTW [16] begin optimization starting from a cache-oblivious
algorithm.

Methods exploiting locality for both sequential (out-of-core) and parallelimplementation of iterative
methods for sparse linear systems have long history in scientific computing. Various partitioning algorithms
have been developed for load balancing and locality on parallel machines [21, 22, 27, 31], and algorithms
that have good temporal locality have been proposed and implemented for theout-of-core sparse linear
solvers [34]. A mesh update can be viewed as a sparse matrix-dense vector multiplication, and there exist
upper and lower bounds on the I/O complexity of this primitive [6]. However,these bounds apply to any
type of matrix, whereas special structure of well-shaped meshes enablesmore efficient mesh updates.

Since the mesh-update problem is reminiscent of graph traversal, we briefly summarize a few results in
external-memory graph traversal. The earliest papers in this area apply togeneral directed graphs [1,12,13,
29] and others focus on more specialized graphs, such as planar directed graphs [4] or undirected graphs
perhaps of bounded degree [5, 14, 25, 26, 28]. The problem of cache-oblivious graph traversal and related
problems is addressed by [3,10]. There are also external-memory and cache-oblivious algorithms for other
common graph problems, but such citations are beyond the scope of this paper.

The problem of cache-oblivious mesh layouts is first described in [40].This paper gives no theoretical
guarantees either on the traversal cost or the cost to generate the mesh layout, however. It does propose
heuristics for mesh layout that give good running times, in practice, for a range of types of mesh traversals.
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