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Abstract

A mesh is a graph that divides physical space into regularly-stiapgions. Meshes computations
form the basis of many applications, including finite-el@tmethods, image rendering, collision detec-
tion, and N-body simulations. In one important mesh priveiticalled amesh update, each mesh vertex
stores a value and repeatedly updates this value based oalties stored in all neighboring vertices.
The performance of a mesh update depends on the layout ofékh m memory. Informally, if the
mesh layout has good data locality (most edges connect afpaides that are stored near each other in
memory), then a mesh update runs quickly.

This paper shows how to find a memory layout that guarantesshb mesh update has asymptoti-
cally optimal memory performance for any set of memory pa@ns. Specifically, the cost of the mesh
update is roughly the cost of a sequential memory scan. Sonzory layout is calledache-oblivious.
Formally, for ad-dimensional mesk®, block sizeB, and cache sizé (whereM = Q(B?)), the mesh up-
date ofG usesO(1+ |G| /B) memory transfers. The paper also shows how the mesh-upelditerpance
degrades for smaller caches, white= o(BY).

The paper then gives two algorithms for finding cache-obligi mesh layouts. The first layout
algorithm runs in timeD(|G|log? |G|) both in expectation and with high probability on a RAM. It ase
O(1+|G|log?(|G| /M)/B) memory transfers in expectation a@dL+ (|G| /B)(log?(|G| /M) +log|G|))
memory transfers with high probability in the cache-oldlivs and disk-access machine (DAM) models.
The layout is obtained by finding a fully balanced decompasitree of G and then performing an
in-order traversal of the leaves of the tree.

The second algorithm computes a cache-oblivious layout®AM in time O(|G| log|G|loglog|G|)
both in expectation and with high probability. In the DAM acache-oblivious models, the second lay-
out algorithm use®(1+ (|G|/B)log(|G|/M) min{loglog|G|,log(|G| /M)}) memory transfers in expec-
tation andO(1+ (|G|/B)(log(|G|/M)min{loglog|G|,log(|G| /M)} +log|G|)) memory transfers with
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high probability. The algorithm is based on a new type of degosition tree, here called ralax-
balanced decomposition tree. Again, the layout is obtained by performing an in-ordevéraal of the
leaves of the decomposition tree.

1 Introduction

A mesh is a graph that represents a division of physical space into regiolhsg samplices. Simplices
are typically triangular (in 2D) or tetrahedral (in 3D). They aml shaped, which informally means that
they cannot be long and skinny, but must be roughly the same size in &ayialir. Meshes form the basis
of many computations such as finite-element methods, image rendering, calletisction, and N-body
simulations. Constant-dimension meshes have nodes of constant-degree.

In one important mesh primitive, each mesh vertex stores a value and dipegi@ates this value based
on the values stored in all neighboring vertices. Thus, we view the mesheiglated grapl = (V,E,w,e)
(w:V — R, e:E— R"). For each verteke V, we repeatedly recompute its weightas follows:

W = Z Wi &j .
(i,))eE

We call this primitive amesh update. Expressed differently, a mesh update is the sparse matrix-vector
multiplication, where the matrix is the (weighted) adjacency matri®aind vectors are the vertex weights.

On arandom access machine (RAM) (a flat memory model), a mesh update runs in linear time, regard-
less of how the data is laid out in memory. In contrast, on a modern computer tignegichical memory,
how the mesh is laid out in memory can affect the speed of the computationrsiddstaT his paper studies
themesh layout problem, which is how to lay out a mesh in memory, so that mesh updates run rapidly on a
hierarchical memory.

We analyze the mesh layout problem in tifiek-access machine (DAM) model [2] (also known as
the I/O-model) and in thecache-oblivious (CO) model [17]. The DAM model is an idealized two-level
memory hierarchy. These two levels could represent L2 cache and mainrgenan memory and disk,
or any other pair of levels. The small level (herein caltadhe) has sizeM, and the large level (herein
calleddisk) has unbounded size. Data is transferred between the two levels in kbske B; we call
thesememory transfers. Thus, a memory transfer is a cache-miss if the DAM represents L2 cadhaain
memory and is a page fault, if the DAM represents main memory and disk.

A memory transfer has unit cost. The objective is to minimize the number of menaosférs. Focusing
on memory transfers, to the exclusion of other computation, frequentlyde®a good model of the running
time of an algorithm on a modern computer. T¢aehe-oblivious model is essentially the DAM model,
except that the values @& andM are unknown to the algorithm or the coder. The main idea of cache-
obliviousness is this: If an algorithm performs an asymptotically optimal numi@emory transfers on a
DAM, but the algorithm is not parameterized BandM, then the algorithm also performs an asymptotically
optimal number of memory transfers on an arbitrary unknown, multilevel mehiergrchy.

The cost of a mesh update in the DAM and cache-oblivious models depariisyv the mesh is laid out
in memory. An update to a megh= (V,E) is just a graph traversal. If we sto@s vertices arbitrarily in
memory, then the update could cost as muclg¥ |+ |E|) = O(|G|) memory transfers, one transfer for
each vertex and each edge. In this paper we achieve@fiy+ |G|/B) memory transfers. This is the cost
of a sequential scan of a chunk of memory of S¥¢G|), which is asymptotically optimal.

Our mesh layout algorithms extend earlier ideas from VLSI theory. Cldsgical-layout algorithms
turn out to have direct application in scientific and I/O-efficient computinihcdigh these diverse areas



may appear unrelated, there are important parallels. For example, in agsbdayout, vertices are stored

in (one-dimensionalinemory locationso that most mesh edges are short; in a good VLSI layout, graph
vertices are assigned to (two-dimensiorai)p locationsso that most edges are short (to cover minimal
area).

Results

We give two algorithms for laying out a constant-dimension well-shaped BeshV, E) so that updates
run in®(1+ |G| /B) memory transfers, which ®(1+ [V| /B) since the mesh has constant degree.

Our first layout algorithm runs in tim&(|G|log?|G|) on a RAM both in expectation and with high
probability! In the DAM and cache-oblivious models, the algorithm u€gs+ (|G|/B)log?(|G|/M))
memory transfers in expectation a@d1+ (|G|/B)(log?(|G|/M) + log|G|)) memory transfers with high
probability. The layout algorithm is based on decomposition trees and fudnpdad decomposition trees [7,
24]; specifically, our mesh layout is obtained by performing an in-or@etsal of the leaves of a fully-
balanced decomposition tree. Decomposition trees were developed sieg@des ago as a framework for
VLSI layout [7, 24], but they are well suited for mesh layout. Howetlee, original algorithm for building
fully-balanced decomposition trees is too slow for our uses (it appeaus io 1imeO(]G|e(b)), whereb is
the degree bound of the mesh). Here we develop a new algorithm thateisdad simpler.

Our second layout algorithm, this paper’s main result, runs in @f|&|log|G|loglog|G|) on a RAM
both in expectation and with high probability. In the DAM and cache-obliviowxlels, the algorithm
usesO(1+ (|G| /B)log(|G| /M) min{loglog|G|,log(|G| /M)}) memory transfers in expectation a1 +
(IG]/B)(log(|G| /M) min{loglog|G|,log(|G| /M) } +1og|G|)) memory transfers with high probability.

The algorithm is based on a new type of decomposition tree, which we celbve-balanced decom-
position tree. As before, our mesh layout is obtained by performing an in-orderrsat/ef the leaves of a
relax-balanced decomposition tree. By carefully relaxing the requireroéascomposition trees, we can
retain asymptotically optimal mesh updates, while improving construction by reeéotyarithmic factor.

The mesh-update guarantees requitallacache assumption on the memory system thist = Q(BY),
whered is the dimension of the mesh. We also show how the performance degradasdth caches,
whereM = o(B?). If the cache only has siz®(B%~¢), then the number of memory transfers increases to
O(1+ |G| /BY#/9),

In addition to the main results listed above, this paper has contributions exgdredond 1/O-efficient
computing. First, our algorithms for building fully-balanced decompositiorstage faster and simpler than
previously known algorithms. Second, our relax-balanced decomposiges may permit some existing
algorithms based on decomposition trees to run more quickly. Third, the tegwsiq this paper yield
simpler and improved methods for generatiaway partitions of meshes, earlier shown in [23]. More
generally, we cross-pollinate several fields, including 1/0-efficiembmating, VLSI layout, and scientific
computing.

2 Geometric Separatorsand Decomposition Trees

In this section we review the geometric-separator theorem [27], whichse€far partitioning constant-
dimensional meshes. We then review decomposition trees [24]. Finally, ove Isbw to use geometric
separators to build decomposition trees for well shaped meshes.

IFor input sizeN and evenE, we say thaE occurswith high probability if for any constant > 0 there exists a proper choice
of constants defining the event such thaf Py > 1 —N~°.



Geometric Separators

A finite-element mesh is a decomposition of a geometric domain into a collection abmdsjoint sim-
plices (e.g., triangles in 2D and tetrahedra in 3D), so that two simplices can onlyentexisa lower dimen-
sional simplex. Each simplicial element of the mesh muswééeshaped. Well shaped means that there is
a constant upper bound to the aspect ratio, that is, the ratio of the rddhesgmallest ball containing the
element to the radius of the largest ball contained in the element [33].

A partition of a graphG = (V,E) is a division ofG into disjoint subgraph&y = (Vo,Ep) andG; =
(V1,E1) such thavpnVi = 0, andVoUV1 = V. Go andG; is ap-partition of G if they are a partition oG
and|Vo|, V1| < B|V|. We letE(Go,G1) denote the set of edges @ crossing fromvp to V4, andE(v,G;)
denote the set of edges @ connecting vertex to the vertices of5;. For a functionf, G = (V,E) has
a family of (f,[)-partitions if for each subsef C V and induced grapkes = (Vs,Es), graphGs has a
B-partition of Gg, = (VSO, ESJ) andGg, = (Vsg,, E81> such thaqu— Eg, — E81| < f(’VSD

The following separator theorem of Miller, Teng, Thurston, and Vaya3isshows that meshes can be
partitioned efficiently:

Theorem 1 (Geometric Separators[27]) Let G= (V,E) be a well shaped finite-element mesh in d di-
mensions (d> 1). For constantse (0 < € < 1) and de,d) depending only ore and d, a(f(N) =
O(N¥Y4) (d+ 14 ¢)/(d+2))-partition of G can be computed in(@|G| + c(¢,d)) time with probability

at leastl/2.

The separator algorithm from [27] works as follows. First, project therdinates of the vertices of
the input graphG onto the surface of a unit sphere(id+ 1)-dimensions. The projection of each point is
independent of all other input points and takes constant time. Sample taromgmber of points from all
projected points uniformly at random. Compute a centerpoint of the sampiets.pQA centerpoint of a
point set ind-dimensions is a point such that every hyperplane through the centedbdites the point
set approximately evenly, i.e., in the ratio@fo 1 or better.) Rotate and then dilate the sampled points.
Both the rotation and dilation are functions of the centerpoint and the dimedsi®hoose a random great
circle on this unit sphere. (4reat circle of a sphere is a circle on the sphere’s surface that evenly splits
the sphere.) Map the great circle back to a sphere inlttlienensional space by reversing the dilation, the
rotation, and the projection. Now use this new sphere to divide the verticetha edges of the input graph.

Now more mechanics of the algorithm. MeShs stored in an array. Each vertex®fis stored with its
index (i.e., name), its coordinates, and all of its adjacent edges, includirigdbx and coordinates of all
neighboring vertices. (This mesh representation means that each etlgedst&ice, once for each of the
edge’s two vertices.)

To run the algorithm, scan the vertices and edgés after obtaining the sphere separator. During the
scan, divide the vertices into two se@y, containing the vertices inside the new sphere @pdcontaining
the vertices outside the sphere. Mark an edge as “crossing” if the edgses fromGg to G;. Verify
that the number of crossing edg@s(Go, G1)|, is O(\G|l’1/d), and if not, repeat. The cost of this scan is
O(|G|/B+ 1) memory transfers.

The geometric separator algorithm has the following performance:

Corollary 2 Let G= (V,E) be a well shaped finite-element mesh in d dimensions )i For constants
€ (0< e < 1) and de,d) depending only or and d, the geometric-separator algorithm finds (#iN) =
O(N¥Y4) (d+1+¢)/(d+2))-partition of G. The algorithm runs in QG|) on a RAM and uses @+
|G|/B) memory transfers in the DAM and cache-oblivious models, both in expectatibwith probability



at leastl/2. With high probability, the geometric-separator algorithm completes(i&Qog|G|) on a RAM
and uses QL+ |G|log|G|/B) memory transfers in the DAM and cache-oblivious models.

Proof A linear scan ofG takes timeO(|G|) and uses an asymptotically optimal number of memory
transfers. We expect to find a good separator after a constant nwhbéals, and so the expectation
bounds follow by linearity of expectation. The probability that after seleatingG| candidate separators,
none are good is at mosf2°9/¢ = |G| ~°. Thus, with high probability, the geometric separator algorithm
completes inO(|G|log|G|) on a RAM and use®(1+ |G|log|G|/B) memory transfers in the DAM and
cache-oblivious models. The separator algorithm is cache-oblivioos #iis not parameterized [B/or M.

|

Decomposition Trees

A decomposition tree Tg of a graphG = (V, E) is a recursive partitioning d&. The root ofTg is G. Root

G has left and right childrefsy andG;, and grandchildregg, Go1, G10, G11, and so on recursively down
the tree. Graph& andG; partitionG, graphsGgp andGop; partitionGg, and so on. More generally, a node
in the decomposition tree is denotég (G, C G), wherep is a bit string representing the path to that node
from the root. We calp theid of G,. We say that a decomposition treefisalanced if for all siblings
Gpo = (Vpo, Epo) andGp1 = (Vp1, Ep1) in the tree|Vpo|, |Vp1| < B|Vp|. We say that a decomposition tree is
balanced if B = 1/2. For a functionf, graph G hasan f decomposition tree if for all (nonleaf) node<s,

in the decomposition tre¢k (Gpo, Gp1)| < f(|Vp|). A B-balancedf decomposition tree is abbreviated as an
(f,B)-decomposition tree.

For a parent nod&p and its childrenGy andGpy, there are several categories of edgeser edges
connect vertices that are both @ or both inGp;. Crossing edges connect vertices il to vertices
in Gp1. Outgoing edges of Gpo (resp.Gp1) connect vertices iy (resp.Gpy) to vertices in neither set,
i.e., to vertices irG — Gp. Outer edges of Gpo (resp.Gp;) connect vertices il (resp.Gpy) to vertices
in G—Gpo (resp. G— Gpy); thus an outer edge is either a crossing edge or an outgoing edge. More
formally, inner(Gpo) = E(Gpo, Gpo), crossing(Gp) = E(Gpo, Gp1), outgoing(Gpo) = E(Gpo, G — Gp), and
outer(Gpo) = E(Gpo, G— Gpo)-

We build a decomposition treks of meshG recursively. First we run the geometric separator algorithm
on the rootG to find the left and right childrerzg andG;. Then we recursively build the decomposition
tree rooted aGy and then the decomposition tree roote@at (Thus, the right child ofig is not processed
until the whole left subtree is built.)

The decomposition tree is encoded as follows. Each leaf Ggder T stores the single vertexand
the bit stringq (the root-to-leaf path). The leaf nodesTf are stored contiguously in an arrag. The bit
stringq contains enough information to determine which nodes (subgrapfs)@intainv — specifically
any nodeGg, whereq'is a prefix ofqg (includingq). As mentioned earlier, each vertex is stored along with
its coordinates, adjacent edges, and coordinates of all neighboriticegenG. (Recall that each edge is
therefore stored twice, once for each of the edge’s vertices.) Egdead G is a crossing edge for exactly
one node in the decomposition tr&g. In Tg, each edge also stores the ig of the tree nodé&, for which
eis a crossing edge. The bit strings on nodes and edges thereformsartaugh information to determine
which edges are crossing, inner, and outer for which tree nodesifiSally, e € crossing(Gp). Let p be a
prefix of p that is strictly shorterf # p); thene € inner(Gp). Let p be bit string representing a nodeig
wherep is a strictly shorter prefix op {p # p). Thene € outer(Gp). If PO andpl represent nodes ifg,
thene € outgoing(Ggo) or e € outgoing(Gpa).



Thus, decomposition tregs is laid out in memory by storing the leaves in order in an atrgy We
do not need to store internal nodes explicitly because the bit strings @s raodl edges encode the tree
structure.

Here are a few facts about our layout®. Given any two node§&, andGq of Lg, the common prefix
of pandq is the smallest node il containing all vertices in botls, andGq. All the vertices in any node
Gy of T are stored in a single contiguous chunk of the array. Thus, we can idétis,,, which edges are
inner, crossing, outer, and outgoing by performing a single linear scsinedO(|Gp) ).

We construct the decomposition trég by recursively partitioning of5. While Tg is in the process
of being constructed, its encoding is similar to the above, except that (&f addeGq may contain more
than one vertex, and (2) some edges may not yet be labelled as croBbimgy.when the process begins,
Tg is just a single leaf comprisinG. The nodes are stored in a single array of €¥§5|) and are stored
in an arbitrary order. Then we run the geometric separator algorithm. Wadmd a good separator, we
partition G into Gy and G;, and we storésg beforeG; in the same array. We label vertices @f with
bit string 0 and vertices dB; with bit string 1. We then run through and label all crossing edges with the
appropriate bit string (for the leaf node, the empty string). Now the nodeadh ofGy andG; are stored
in an arbitrary order, but the subarray contain@gis stored before the subarray containidg We then
apply the geometric separator algorithm &§. We partition intoGgg and Go1, label vertices inGg with
00 or 01, and label all crossing edges@yf with the bit string 0; we then do the same 859 and so on
recursively until all leaf nodes are graphs containing a single vertex.

We now give the complexity of building the decomposition tree. Our high-piibtyabounds are based
on the following observation involving a coin with a constant probability ofdsedn order to get at least
one head with probability at least11/poly(N), ©(logN) flips are necessary and sufficient. In order to get
O(logN) heads with probability at least-11/poly(N), the asymptotics do not chang®(logN) flips are
still necessary and sufficient. The following lemma can be proved by Gffidrounds (or otherwise):

Lemma 3 Consider S> clogN flips of a coin with a constant probability of heads, for sufficiently large
constant c. With probability at leadt— 1/poly(N), ©(S) of the flips are heads.

Theorem 4 Let G= (V,E) be a well shaped finite-element mesh in d dimensions )l Mesh G has a

(2d + 3)/(2d + 4)-balanced-@V |*¥/?) decomposition tree. On a RAM, the decomposition tree can be
computed in time QG| log|G|) both in expectation and with high probability. The decomposition tree can
be computed in the DAM and cache-oblivious models usifigid|G|/B)log(|G|/M)) memory transfers

in expectation and A+ (|G|/B)log|G|) memory transfers with high probability.

Proof We first establish that the tree construction takes Wi&|log|G|) on a RAM in expectation. The
height of the decomposition tree @log|G|), and the total size of all subgraphs at each heighi(i&|).
Since the decomposition of a subgraph takes expected linear time, the timestollow by linearity of
expectation.

We next establish that the tree construction B¢+ (|G|/B)log(|G|/M)) expected memory transfers
in the DAM and cache-oblivious models. Because we build the decomposiderrdcursively, we give
a recursive analysis. The base case is when a subtree first hasssizhdaM. For the base case, the
cost to build the entire subtree @(M/B) because this is the cost to read all blocks of the subtree into
memory. Said differently, once a subgraph is a constant fraction smallerMhahe cost to build the
decomposition tree from the subgraph is 0, because all necessary naouky already reside in memory.
For the recursive step, recall that when a subgr@gthas size greater thavl, the decomposition of a
subgraph takes expect&||G,|/B) memory transfers, because this is the cost of a linear scan. Thus,
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there areO(log(|G|/M)) levels of the tree with subgraphs bigger thdnso the algorithms uses expected
O(1+(|G|/B)log(|G|/M)) memory transfers.

We next establish the high-probability bounds. We show that the buildingepsouse®(|G|log|G|)
time on a RAM andO(1+ |G|log|G|/B) memory transfers in the DAM and the cache-oblivious models
with high probability.

First consider all nodes that have si2€|G| /log|G|). There aré(log|G|) such nodes. To build these
nodes, we require a total &(log|G|) good separators. We can view finding these separators as a coin-
flipping game, where we nedfl(log|G|) heads; by Lemma 3 we requi@(log|G|) coin flips. However,
separators near the top of the tree are more expensive to find thaatsepdeeper in the tree. We bound
the cost to find all of these separators by the cost to build the root $epafdus, building these nodes
uses timeO(|G|log|G|) andO(1+ |G|log|G|/B) memory transfers with high probability. This is now the
dominant term in the cost to build the decomposition tree.

Further down the tree, where nodes have 61¢&| /log|G|), the analysis is easier. Divide the nodes to
be partitioned into groups whose sizes are within a constant factor ofotfaeh Now each group contains
Q(log|G|) elements. Thus, by Lemma 3 the time to build the rest of the tree with high probabiliayseq
the time in expectation, which B(|G|log|G|).

We now finish the bound on the number of memory transfers. As abovauseaeve build the decom-
position tree recursively, subtrees a constant fraction smallethare build for free. Also, because each
group containg)(log|G|) elements, the cost to build these lower levels in the tree with high probability
equals the expected cost, whichd§1+ (|G| /B)log (|G| /M)). This cost is dominated by the cost to build
the nodes of siz&(|G| /log|G|). &

3 Fully-Balanced Decomposition Trees for Meshes

In this section we define fully-balanced partitions and fully-balanced rdposition trees. We give al-
gorithms for generating these structures on a well shaped BeshAs we show in Section 4, we use
a fully-balanced decomposition tree of a m&sho generate a cache-oblivious mesh layouGof Our
construction algorithm is an improvement over [7, 24] in two respects. fhesalgorithm is faster, requir-
ing only O(|G|log? |G|) operations in expectation and with high probabil®(1 + (|G| /B)log?(|G| /M))
memory transfers in expectation, a@d1+ (|G|/B)(log? (|G|/M) +log|G|)) memory transfers with high
probability. Second, the result is simplified, no longer relying on a compligchtsmrem of [18].
This section makes it easier to present the main result of the paper, wipiearapn Section 5.

Fully-Balanced Partitions

To begin, we define a fully-balanced partition of a subgr&ghof G. A fully-balanced f-partition of
Gp C Gis a partitioning ofG, = (V;, Ep) into two subgraph&po = (Vpo, Epo) andGpr = (Vp1, Ep1) such
that

e |crossing(Gp)| < f(|Vpl),

e |Vpo| = [Vp1| =0(1), and

e |outgoing(Gpo)| = |outgoing(Gp1)| £ O(1).

We give the following result before presenting our algorithm for compuflitig-balanced patrtitions.

The existence proof and time complexity comprise the easiest case in [18].

7



Figure 1: Unfilled beads represent blue elements and filled beadseapred elements. Pick an arbitrary
initial bisectionA andA of the necklace. HerA contains more than half of all blue beads. (We can focus
exclusively on blue beads becaus@itontains half of the blue beads to within one, it also contains half of
red beads to within one.) We “turn” the bisection clockwise soAtakes one bead fromand relinquishes

one bead td\. Thus, the number of blue beadsArcan increase/decrease by one or remain the same after
each turn. However, aftéi/2 turns,A becomes\, which contains less than half of all blue beads. So by a
continuity argumentA contains half of all blue beads after some number of turns. The argum&ntiiar

for both odd and eveN.

Lemmab5 Given an array L of N elements, where each element is marked eitheobiad, there exists a
subarray that contains half of the blue elements to within one and half aflesdents to within one. Such
a subarray can be found in @) time and @1+ N/B) memory transfers cache-obliviously.

Proof  This result is frequently described in terms of “necklaces.” Conceptuatiych the two ends of
the array together to make a necklace. By a simple continuity argument (ibstezse of that in [18]), the
necklace can be split into two piecésandA, using two cuts such that both pieces have the same number
of blue elements to within one and the same number of red elements to within onedetfids of the
continuity argument, see Figure 1.) Translating back to the array, at leasifé andA does not contain
the connecting point and is contiguous.

To find a good subarray, first scanto count the number of blue elements and the number of red
elements. Now rescdn maintaining a window of sizbdl/2. The window initially contains the first half of
L and at the end contains the second half of For oddN, the middle element of the array appears in all
windows.) Stop the scan once the window has the desired number of rédugnelements.

Since only linear scans are used, the algorithm is cache-oblivious godeag©(1+ N/B) memory
transfersl

We now present an algorithm for computing fully-balanced partitions. 16®&eC G, and a(f(N) =
O(N%), B)-partitioning geometric separatéyllyBalancedPartition (Gp) computes a fully-balanced (N) =
O(N?))-partition Gpx andGpy of Gp.



FullyBalancedPartition(Gp)

1. Build a decomposition tree- Build a decomposition tregg, of Gy using the(f(N) = O(N®),B)-
partitioning geometric separator.

2. Build a red-blue array— Build an array of blue and red elements based on the decomposition tree
Tg,. Put a blue element for each le@f in Tg,; thus there is a blue element for each vener
Gp. Now insert some red elements after each blue element. Specifically, afteluthelemen
representing vertey, insertE(v,G — Gp) red elements. Thus, the blue elements represent vertices in
Gp = (Vp, Ep) for a total of|Vp| blue elements, while the red elements represent edges to vertjces in
G — Gy, for a total ofE(Gp, G — Gp) red elements.

3. Find a subarray in the red-blue array- Find a subarray of the red-blue array based on Lemma 5.
Now partition the vertices i, based on this subarray. Specifically, put the vertices representing
blue elements in the subarray in $g% and put the remaining vertices @, in setVpy.

4. Partition Gy — ComputeGpy and Gpy from Vx andVpy. This computation also means scanning
edges to determine which edges are intern&@gpandGy and which have now become external.

We first establish the running time BiillyBalancedPartition(Gp).

Lemma6 Given a graph G that is a subgraph of a well shaped mesh Ka|lyBalancedPartition(Gp)
runs in |Gp|log|Gp|) on a RAM, both in expectation and with high probability (i.e., probability at
least 1 — 1/poly(|Gp|)). In the DAM and cache-oblivious modelBullyBalancedPartition(Gp) uses
O(1+ (|Gp|/B)log(|Gp|/M)) memory transfers in expectation and1o- |Gp|log|Gp|/B) memory trans-
fers with high probability.

Proof  According to Theorem 4, Step 1 @fullyBalancedPartition (Gp) (computingTg,) takes time
O(|Gp|log|Gp|) on a RAM, both in expectation and with high probability. In the DAM and cache-
oblivious models, this steps requir€g1+ (|Gp|/B)log(|Gp|/M)) memory transfers in expectation and
O(1+|Gp|log|Gp|/B) memory transfers with high probability. Steps 2-4railyBalancedPartition (Gp)
each require linear scans of an array of §Gy|), and therefore are dominated by Stejll.

We next establish the correctnesdaflyBalancedPartition(Gp). In the following, let constarit repre-
sent the maximum degree of meSh

Lemma7 Given a well shaped mesh G and a subgraghdGG, FullyBalancedPartition generates a fully-
balanced partition of G.

Proof By the way that we generatgy andVyy, we have
[Vpyl = [Vl | < 1.

This is because the number of blue elements in the subarray is e}ggtlyand the number of blue elements
within and without the subarray differ by at most one.
We next show that
||outgoing(Gpy)| — |outgoing(Gpx)|| < 2b+1. 1)

To determingoutgoing(Gpy)| and|outgoing(Gpy)|, modify the subarray as follows. Remove from the sub-
array any red elements at the beginning of the subarray before thelfiestlementn the subarray. Then
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(a) Anexample subgrapBp of meshG. SubgraplGp  (b) A decomposition tree of the subgra@y from (a). Building this
has eight vertices, ten edges, and eight outer edges decomposition tree is the first step feullyBalancedPartition(Gp).
(i.e.,|outer(Gp)| =8). The crossing edges at each node are indicated by lines between
the two children. Thuscrossing((Gp)o) = {(1,5),(6,7)} and
crossing((Gp)101) = {(4,8)}. Observe that each edge @, is a
crossing edge for exactly one node in the decomposition tree.

@ 0O 0®e 006 ®0Oee 606 OO0

(c) The red-blue array fop. The blue elements have a dark shade. The red elements have a light Jtere is
one blue element for each vertex@p. There is one red element for each outgoing edgégnSince element 1
is adjacent to two edges uter(Gp), there are two red elements after it in the red-blue array. The figuresiregic
a subarray containing half of the blue elements and half of the red eletoentithin one. The red-blue array is
used to make the fully-balanced partition@g. Specifically,Gpx will contain vertices 2, 5, 6, and 7 arahy will
contain vertices 1, 3, 4, and 8. PartitiGpy inherits three outer edges froB)p, and partitionGpy inherits five outer
edges fromGp. This particular subarray means that two paths in the decomposition trekendlit. One path,
separating element 1 from 6, goes from ng@g oo to the root. The other path, separating element 2 from 4, goes
from node(Gp)10 to the root. The edges that are cut by this partition are the crossing efitiese nodes, i.e.,
E(Gpx, Gpy) = {(1.6),(1,5),(6,7),(1,2),(4,7),(2,3),(3,8),(2,4),(2,8)}. If Gp is a node in the fully-balanced
decomposition tree, then its left child will &y« and its right child will beGpy.

Figure 2: The steps of the algorithfallyBalancedPartition(Gp) run on a sample graph.

add to the subarray any red elements before the first blue eleaftenthe subarray. The number of red
elements now in the subarray fisutgoing(Gpx)| and the number of red elements not in the subarray is
loutgoing(Gpy)|. This modification can only increase or decrepsggoing(Gpy)| and|outgoing(Gpy)| each
by b, establishing (1).

Now, following [7, 24], we show that

E(Gpx, Gpy) < clVp|*(1+B%)/(1—B%). (@)

By selecting a subarray of the red-blue array, we effectively make tsan the leaves of the decompo-
sition treeTg,. (The only time when there is apparently a single cut is if the subarray is sédif of the
array. In this case, the second cut separates the first leaf from thedaasider one of these cuts. The array
is split between two consecutive leavedgf. Denote byP the root of the smallest subtreeTf, containing
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these two leaves; see Figure 2(c). We consider the upward@iP», ..., G, in the decomposition tree
Tg, from P up to the rootG,, of Tg,. Each node in the decomposition tree on this path is a subgra@h of
that is being split into two pieces.

We now count the number of edges that get removed as a result of fiitgse s

logg V| )
|crossing(P) U crossing(Py) U crossing(P2) U. .. Ucrossing(Gp)| < % C(\V|/B')a

< ov[®/(1-p%). ®3)

As reflected in (3), each node along the path has a different depthh @ivies a geometric series.

The number of edges that cross fr@py to Gpy, E(Gpx, Gpy), is the number of edges that get removed
when both cuts get made. However, doubling (3) overestintat€sy, Gpy) by an amountcrossing(Gp)|
since the rooG, can only be cut once. Thus, doubling (3) and subtradtingsing(Gp)|, we establish (2).
|

Fully-Balanced Decomposition Trees

A fully-balanced decomposition tree of a graphG is a decomposition tree @& where the partition of every
node (subgraph) in the tree is fully-balanced.

We build a fully-balanced decomposition trBég of G recursively. First we apply the algorithRully-
BalancedPartition on the rootG to find the left and right childrerGg andG;. We next recursively build the
fully balanced decomposition tree rootedatand the fully-balanced decomposition tree rooteGat

Theorem 8 (Fully-Balanced Decomposition Treefor a Mesh) A fully-balanced decomposition tree of a
mesh G of constant dimension can be computed in tirfi€&|®g?|G|) on a RAM both in expecta-
tion and with high probability. The fully-balanced decomposition tree can bepoted in the DAM
and cache-oblivious models using(1O- (|G|/B)log?(|G|/M)) memory transfers in expectation and
O(1+ (|G|/B)(log? (|G|/M) + log|G|)) memory transfers with high probability.

Proof  We first establish that the construction algorithm takes expectedd{i@& log? |G|) on a RAM. By
Lemma 6, for any nod&, in the decomposition tree, we ne€d|G,|log|Gp|) operations to build the left
and right childrenG,0 andGpy, both in expectation and with probability at least 1/poly(|Gp|). Since the
left and right children|Go| and the|Gy1|, of every node5,, differ in size by at most 1BTg has©(log|G|)
levels. If|Gp| denotes the size of a node at leyghen leveli has construction tim®(|G|log|Gp|). Thus,
the construction-time bound follows by linearity of expectation.

We next establish that the construction algorithm ud¢s+ |G|log? (|G|/M)/B) expected memory
transfers in the DAM and cache-oblivious models. Because we build ttengeosition tree recursively,
we give a recursive analysis. The base case is when a@ptias size less thad while its parent node
is greater thaM. Then the cost to build the entire subtrgs; is only O(M/B), because this is the cost to
read all blocks of5,, into memory. Said differently, once a node is a constant fraction smalleiMhane
cost to build the fully-balanced decomposition tree is 0 because all negessmory blocks already reside
in memory. There are therefo®(log|G| —logM) levels of the fully-balanced decomposition tree having
nonzero construction cost. Each level uses at métG| /B)log(|G|/M)) memory transfers. Thus, the
time bounds follows by linearity of expectation.
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We next establish the high-probability bounds. In the following analysissxaenine, for each node,
in the fully-balanced decomposition tree, the decompositionTiggéhat is used to build that node. We then
group the nodes of all the decomposition trees by size and count the nafimimates in each group.

As an example, suppose th& is a power of two and all splits are even. There is one node of Gize
— the root node of the decomposition trge There are four nodes of siz6&|/2 — two nodes iflg, one
node inTg,, and one node ifig,. There are 12 node of siz&|/4 — four nodes iflg, two nodes inlg,,
two node inTg,, and one node in each ®&,,, Tey,, Te,,, andTg,,.

In general, let group contain all decomposition tree nodes having size in the r&i@j¢2', |G| /2'-1].
Then grougd containg®(i2') nodes.

Analyzing each group separately, we show that the construction algaates timeO(|G|log?|G|) on
a RAM with high probability. First, consider th@(log|G|) largest nodes (those most expensive to build),
i.e., those in the smallest cardinality groups. As analyzed in Theorem 4, lgutlise nodes takes time
O(|G|log|G|) with high probability.

We analyze the rest of the node constructions group by group. Sicbegeaupi containsO(i2'~1)
nodes, each successive group contains more nodes than the total mfimbaes in all smaller groups. As
aresult, there ar@(log|G|) nodes in each of the rest of the groups. Thus, by Lemma 3, the time to build the
rest of the tree with high probability is the same as the time in expectation, wht@log? |G|). Thus,
we establish high-probability bounds on the running time.

We now show that the construction algorithm tak®d + (|G|/B)(log?(|G|/M) +log|G|)) memory
transfers with high probability. First consider t&¢log|G|) largest nodes (those most expensive to build).
As analyzed in Theorem 4, building these nodes Bgks+ |G|log|G|/B) memory transfers with high
probability. Now examine all remaining nodes. We consider each levetaepa Each group contains
Q(log|G|) nodes. Thus, by Lemma 3, the high-probability cost of building the decatigrotees for all
remaining nodes matches the expected cost, whieiiis- (|G| /B)log? (|G| /M)) memory transfers. Thus,
with high probability, the construction algorithm tak€g1+ (|G| /B)(log|G| + log? (|G| /M))) memory
transfers with high probability, as promisdll.

k-Way Partitions

We observe one additional benefit of Theorem 8. In addition to provigisighpler and faster algorithm for
constructing fully-balanced decomposition trees, we also provide a nesitalg for k-way partitioning,
as described in [23]. For any positive inteder 1, ak-way partition of a graphG = (V,E), is ak-tuple
(V1,V2,...,Vk) (henceg(Gy, Gy, ..., Gk)) such thatyi1<i<kV; =V andViNV; = 0fori # j,1 <i, j <k. Forany
B>1, (Vi,Va,..., W) is a(B,k)-way partition if |Gj| < B[|G| /K], for alli € {1,...,k}. It has been shown
in [23] that every well shaped meshdndimensions has €L+ €,k)-way partition, for any > 0, such that
max {outer(Gj)} = O((|G| /k)*1/9).

We now describe ouk-way partition algorithm of a well shaped me&h The objective is to evenly
divide leaves of a fully-balanced decomposition tre€&anto k parts such that their number of vertices are
the same within one. First build a fully-balanced decomposition tree. Nowres=dirst|V| /k leaves to
Vi, the nextV| /k leaves td/,, and so on.

In fact, we can modify this approach so that it runs faster by observiaigvie need not build the
complete fully-balanced decomposition tree. First build the@fogk) levels of the tree, so that there
are polyk) leaves. At mosk of these leaves need to be refined further, since the remaining leaved will a
belong to a single grouy.
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Ourk-way partition algorithm using fully-balanced decomposition trees is incorhfi@athe algorithm
of [23]. By building fully-balanced decomposition tree, even a partial one algorithm is slower than the
algorithm of [23], which uses geometric separators for partitioning inst@adhe other hand, it can be used
to divide the nodes intk sets whose sizes are equal to within an additive one, instead of only asipalbto
the same size as in [23].

4 Cache-Oblivious Layouts

In this section we show how to find a cache-oblivious layout of a n@@sksiven such a layout, we show
that a mesh update runs asymptotically optimally@ifl + |G| /B) memory transfers given the tall cache
assumption tha¥l = Q(BY). We also analyze the performance of a mesh update Whero(B?), bounding
the performance degradation for smallér

The layout algorithm is as follows.

CacheObliviousMeshLayout(G)
1. Build af(N) = O(N¥/9) fully-balanced decomposition trdig of G, as described in Theorem 8.

2. Reorder the vertices i@ according to the order of the leavesTg. (Recall that each leaf ifig
stores a single vertex i@.) This reorder means: (a) assign new indices to all vertices in the mesh,
and (b) for each vertex, let all neighbor vertices know the new index.

We now describe the mechanics of relabeling and reordering. Each \kertevs its ordering and
location in the input layout; this is the vertex’s index. A vertex also knows tlexrof each of its
neighboring vertices. When we change a vertex’s index, we appriseiglhbor vertices of the change.
These operations entail a small number of scans and cache-oblivitsi$%4d.1, 17, 30], for a total cost of
O((|G[/B)logy (|G| /B) memory transfers. This cost is dominated by the cost to build the fully-baance
decomposition tree. (Thus, a standard merge sort, which does not minimiagativer of memory transfers,
could also be used.)

The cleanest way to explain is through an example. Suppose that we hawve graphG =
{{a,b,c,d},{(a,c),(a,d),(b,c),(c,d)}}, which is laid out in input order:

(a,c),(a,d),(b,c),(c,a),(c,b),(c,d),(d,a),(d,c).

Suppose that the leaves of fully-balanced decomposition tree are in thieddl ¢, d,b. This means that
the renaming of nodes is as follows:: 1],[c: 2],[d : 3], [b: 4]. (For clarity, we change indices from letters
to numbers.) We obtain the reverse mappiag1l|,[b: 4],[c: 2],[d : 3] by sorting cache-obliviously. We
change the labels on the first component of the edges by array scans:

(a=1,¢),(a=1,d),(b=4,c),(c=2,a),(c=2b),(c=2,d),(d=3,a),(d=3,c).
We then sort the edges by the second component,
(c=2,a),(d=3,a),(c=2,b),(a=1,c),(b=4,c),(d=3,c),(a=1,d),(c=2,d),
and change the labels on the second component of the edge by anatier sc
(c=2a=1),(d=3a=1),(c=2,b=4),(a=1c=2),(b=4,c=2),(d=3,c=2),
(a=1,d=3),(c=2,d=23).
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We get
(2,1),(3,1),(2,4),(1,2),(4,2),(3,2),(1,3),(2,3).

We sort these edges by the first component to get the final layout. Taiéefjout is
(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,2)..
Thus, we obtain the following layout performance:

Theorem 9 A cache-oblivious layout of a well shaped mesh G can be computed(|@|l6y?|G|)
time both in expectation and with high probability. The cache-oblivious laytggrighm uses Q1 +
|G|log?(|G| /M) /B) memory transfers in expectation and10- (|G| /B)(log?(|G| /M) + log|G|)) memory
transfers with high probability.

With such a layout, we can perform a mesh update cache-obliviously.

Theorem 10 Every well shaped mesh G in d dimensions has a layout that allows thetmbslupdated
cache-obliviously with QL+ |G| /B) memory transfers on a system with block size B and cache size M
Q(BY).

Proof We apply the algorithm described above @rto build the layout. Since each vertex Gfhas
constant degree bourl its size is bounded by a constant. Consider a row of nGessy,, Gp, ... in T
at a level such that each no@g, uses9(M) < M space and therefore fits in a constant fraction of memory.

In the mesh update, the nodes@fare updated in the order of the layout, which means that first the
vertices inGp, are updated, then vertices Gf,,, then vertices o5y, etc. To update vertices @p,, the
vertices must be brought into memory, which uses at m@&t+ M/B) memory transfers. In the mesh
update, when we update a verigxve access's neighbors. If the neighbarof uis also inGp,, i.e., edge
(u,v) is internal toGy,, then accessing this neighbor uses no extra memory transfers. On thaantke if
the neighbow is not in Gy, then following this edge requires another transfer hence an extra tuldmk
read into memory.

We now show thabuter(Gp,) = O(|G, [*?). Since all subgraphs at the same level of the fully-
balanced decomposition tree are of the same size within one, and outgoescEday subgraph are evenly
split, eachGp, has roughly the same number of outer edges. SupBgss in level j. The total number of
their outer edges are at most

1-1/d 1-1/d 1-1/d j 1-1/d
110 (1G] c| (18 _ (2 (el
G| +2< 2) +4< 1 o2 (5 < (a1 (5 -

Henceouter(Gp,) = O((|G| /21)" %) = 0(|Gy|*~¥?) = O(ML-1/d). Therefore the total size of mem-
ory that we need to perform a mesh update of the vertic&,is O(M + BML-1/d),

By the tall-cache assumption tHat < M, i.e.,B < M¥/4, and for a proper choice of constants, the mesh
update foiGp, only usesd(M) < M memory. Since updating each no@g of size@(M) usesO(1+M/B)
memory transfers, and there are a totalDgfG| /M) such nodes, the update costO$1 + |G| /B), which
matches the scan bound@f and is optimalll

Thus, for dimension = 2, we have the “standard” tall-cache assumption [17], and for highendiioes
we have a more restrictive tall-cache assumption. We now analyze theftradeeeen cache height and
complexity. Suppose instead of a cache with= Q(B?), the cache is oM = Q(BY¢). We assume
£ < d— 1. We show that the cache performance of mesh upd@&&e4saway from optimal.
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Corallary 11 Every well shaped mesh G in d dimensions has a vertex ordering thatsallmvmesh to
be updated cache-obliviously with(D+ |G| /B'~¢/9) memory transfers on a system with block size B and
cache size M= Q(B4-¢).

Proof We apply similar analysis to that in Theorem 10@GnFrom Theorem 10, the total size of memory
that we need to update me&h, is O(M + BM!~%/9). SinceM = Q(B~¢), we have

- B
B
oM+ MiBlfs/d)

= O(M+MB¥9).

IN

Thus, updatings, usesO(1+ (M +MB®4)/B) memory transfers, which simplifies @(1+ |G| /B ~#/9)
memory transferd

5 Relax-Balanced Decomposition Trees and Faster Cache-Oblivious L ay-
outs

In this section we give the main result of this paper, a faster algorithm fanfjral cache-oblivious mesh
layout of a well-shaped mesh. The main idea of the algorithm is to construmt @&ype of decomposition
tree, which we call aelax-balanced decomposition tree. The relax-balanced decomposition tree is based on
what we call aelax-balanced partition. We give an algorithm for building an relax-balanced decomposition
tree whose performance is nearly a logarithmic factor faster than the algdatibuilding a fully-balanced
decomposition tree. We prove that an asymptotically optimal cache-obliviosis lengout can be found by
traversing the leaves of the relax-balanced decomposition tree.

Relax-Balanced Partitions

We first define the relax-balanced partition of a subgi@plof G. A relax-balanced f-partition of G, C G
is a partitioning ofGp, into two subgraph&po andGp; such that

)1
* |Gpol = |Gpa| + O(|Gp| /10g°| G), and

e |crossing(Gp)| < f(|Gp

e |outgoing(Gpo)| = |outgoing(Gpy)| 4 O(|outgoing(Gp1)| /10g?|G|).

We next present an algorithnRelaxBalancedPartition, for computing balanced partitions. Given
Gp C G, and a(f(N) = O(N), B)-partitioning geometric separat@®elaxBalancedPartition(Gp) computes
a relax-balancedf (N) = O(N®))-partition Gpx andGpy of Gp.

We find the relax-balanced partition by building what we caklax partition tree Tg,. We call the top
3log, glog |G| levels ofTg, theupper tree of Tg, and the remaining levels thewer tree of Tg, .

We build the upper tree by building the top 3{9@I09|G\ levels of a decomposition tree &f,. By
construction, all leaves of the upper tree (subgraphSgfcontain at mostGp]/Iog?’]G\ vertices. Outer
edges ofG,, are distributed among these leaves. By a counting argument, there aret d0gA(B8| leaves
that can contain more thaouter(Gp)| /log? |G| outer edges 0By,
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For each upper-tree leaf having more thauter(Gp)| /log? |G| outer edges, we refine the leaf by build-
ing a decomposition tree on it. We do not refine the other leaves of the ugeer The union of these
decomposition trees comprise the lower tree.

Relax partition tredg, has leaves at different depths. Some leaves are subgraphs haingtparertex
while others may have up t@|/log®|G| vertices. The tree is stored in the same format as a standard
decomposition tree. Thus, leaves of the relax partition tree that are nwdefontain vertices stored in an
arbitrary order. The relax partition trdg,, of Gy, is just a decomposition tree if there are fewer thar? | &y
vertices.

RelaxBalancedPartition(Gp)
1. Build Tg, — Build the relax partition tredg, from Gy, recursively.

2. Build red-blue array— Build an array of vertices by an in-order traversal of leave$xf Vertices
in leaves that are not refined are laid out arbitrarily. Build a red-blueyand find a subarray in the
red-blue array as describedfallyBalancedPartition.

3. Modify red-blue array- Modify the subarray to satisfy the following constraint. All vertices in an
(unrefined) leaf must stay together, either within or without the subaltfegny cut separates the
vertices, then move the cut leftward or rightward to be in between the lea aond a neighboy.
Now partition the vertices i, based on this modified subarray. Put the vertices representing blue
elements that are in the subarray into\§gtand put the vertices representing blue elements that are
outside of the subarray into Séf,.

4. Partition Gy — ComputeGpx and Gpy from Vpx andVpy. This computation also means scanring
edges to determine which edges are intern&gpandGpy and which have now become external.

We first establish the running time BklaxBalancedPartition(Gp).

Lemma 12 Given a subgraph Gof a well shaped mesh GGp| > log®|G|, RelaxBalancedPartition(Gp)
runs in time Q|Gp|loglog|G|) on a RAM and Q1+ (|Gp|/B)min{loglog|G|,log(|Gp|/M)}) memory
transfers in the DAM and cache-oblivious models in expectation. With higbapiiity, it runs in
O(|Gp|log|Gp|) on a RAM and Q1+ |Gp|log|G,|/B) memory transfers in the DAM and cache-oblivious
models.

Proof We establish that the construction algorithm runs in expected@(@,|loglog|G|) on a RAM.
The upper tree ofg, takes expected tim®(|Gp|loglog|G|). There are at most I6¢G| leaves of the upper
tree to be refined. For each of these leaves, we build a decompositioaricethis takes expected time

O((IGyp| /10g*|G|) log(|Gp| /10g®|Gl)) < O(|Gp| / log? |G).-

Thus, the total expected time to refine all leavesO§G|). Steps 2-4 takes linear time. Thus,
RelaxBalancedPartition(Gp) finds a relax-balanced partition in expected ti@gG,|loglog|G|).

We next establish that the construction algorithm uSé&s+ (|Gp|/B) min{loglog|G|,log(|Gp| /M)})
expected memory transfers in the DAM and cache-oblivious models. Bneftgvo cases. The first case is
whenM > |G| /log®|G|. Then some of nodes in the top 3loglog |G| levels of theTg, may be a constant
fraction smaller tham. Such small nodes require no memory transfers to build, because thalyeady
stored in memory. Only the top(log(|Gp|/M)) levels use memory transfers. The rest of the decomposi-
tions are free of memory transfers because all necessary memory bloekdy reside in memory. When a

16



1,2,3,45,6,7,8

1,2) (4,7
5 (1,5,6,7 G20 (2,348
L (1,5)(6,7) (2,3)(3,8)
8 (Le—— 157

(a) Anexample subgrapBp of meshG. SubgraplGp  (b) A relax partition tree of the subgrag, from (a). Building this

has eight vertices, ten edges, and eight outer edges decomposition tree is the first step feelaxBalancedPartition(Gp).

(i.e., |outer(Gp)\ =8). Observe that each edge@yp, is a crossing edge for at most one node
in the decomposition tree. Some edges, suct2ad), are not cross-
ing edges for any node. The top three levels of the decomposition
tree are the upper tree. We refine a leaf of the upper tree if only it has
many (at least three) edges framter(Gp). Upper tree leaf{Gp)oo
has 4 edges frormuter(Gp). Upper tree leafGp)o; has 1 edge from
outer(Gp). Upper tree leafGp)10 has 1 edge fromuter(Gp). Upper
tree leaf(Gp)11 has 2 edges fromuter(Gp). Thus, only(Gp)oo is
further refined.

@00 00@06eeoeeae oo

(c) The red-blue array fdBp. The blue elements have a dark shade. The red elements have a lidgat Share is one
blue element for each vertex @,. There is one red element for each outgoing edg8gn The figure indicates
a subarray containing half of the blue elements and half of the red eletoenithin one. However, this subarray
separates element 8 from element 2. This cut is not allowed becausa® B @e in the same leaf of the relax
partition tree. Instead the cut is moved left to the first valid position. Thequtweparates element 5 from element
8, which is allowed because 5 and 8 are in different leaves of the rettitiqratree. ThusGpx will contain vertices
5, 6, and 7, an€py will contain vertices 1, 2, 3, 4, and 8.

Figure 3: The steps of the algorithRelaxBalancedPartition(Gp) run on a sample graph.

subgraplGy has sizeQ(M), then the partition of a subgraph takes expe@e¢(fs,| /B) memory transfers,
because this is the cost of a linear scan. Hence, the total 00t is (|G| /B)log(|Gp| /M)).

The second case is whéh< |Gp| /log®|G|. Then, the upper tree %, takesO(1+ |Gp|loglog|G|/B)
memory transfers in expectation. There are at mot|®gleaves of the upper tree @&, that need further
refinement, and the leaf sizes are at m@y| /log®|G|. Building a decomposition tree on one of these
leaves takes

O(L+ (|Gp| / log®|G]) log (|G / log®|G]) /B) < O(1+|Gp| /Blog?|Gl)

memory transfers in expectation. Since there are at mo$i@®deaves, the total expected number of
memory transfers to construct the lower treelgf is O(|Gp| /B), which is dominated by the cost to build
the upper tree.

Combining the two cases, we obtain that the expected number of memory tsatwsfauild T, is
O(1+ (IGp|/B) min{loglogG, log(|Gp| /M)}).
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We next establish the high-probability bounds. We first consider all sxatiat have size
Q(|Gp|/log|Gp|). There areO(log|Gp|) such nodes. Building these nodes uses t{eGy|log|Gy|)
andO(1+ |Gp|log|Gp|/B) memory transfers with high probability by Theorem 4.

For the rest of theupper treeof Tg,, each level contain€(log|Gp|) nodes. Thus, the number of
memory transfers with high probability matches the number of memory transfexpettation, which is
O(1+ (|Gp| /B) min{loglogG, log(|Gp| /M)}). The cost to build the rest of the upper tree is dominated by
the cost to build the large§i(log|Gp|) nodes in the upper tree.

As described above, the expected cost to build the lower tr&g|@p|) time andO(|G,| /B) memory
transfers. The high-probability bounds are at mo§i(bg|Gy|) factor greater and hence are dominated
by the cost to build the upper tree. Thus, we establish the high probabilitydscen time and memory
transfersm

We next establish the correctnessRefaxBalancedPartition(Gp). In the following, letb represent the
maximum degree of med<a.

Lemma 13 Given a well shaped mesh G and a subgrapgh®GG, RelaxBalancedPartition(Gp) generates a
relax-balanced partition of G

Proof By the way we construct the relax partition trdg,, nodes that are not refined contain
O(louter(Gp)| /l0g? |G|) outer edges 0By, and their sizes differ b@(|Gp| /log®|G|). Thus, by the way we
generateS,, andGpy, the number of outgoing edges @fx andGpy differ by O(jouter(Gp)| /log? |G|) and
|Gpx| and|Gypy/ differ by O(|Gp| /log®|G|). Recall thabutgoing(Gpx) U outgoing(Gpy) = outer(Gp). Thus,
we have

|loutgoing(Gpx)| = |outgoing(Gpy)| = O(|outgoing(Gpy)| / 10g? |GI).

As shown in Equation (2) from Lemma 7, the number of crossing edges estisfissing(Gp)| <
f(IGpl). m

Relax-Balanced Decomposition Trees

A relax-balanced decomposition tree of a well shaped mesB is a decomposition tree @ where every
partition of every nod&,, in the tree is relax-balanced.

We construct a relax-balanced decomposition tre& oécursively. First we apply the algorithRe-
laxBalancedPartition on the rootG to get the left and right childrerg andG;. We next recursively build
the (left) subtree rooted &g and then the (right) subtree rooted&t

Theorem 14 (Relax-Balanced Decomposition Treefor a Mesh) A relax-balanced decomposition tree of
a well shaped mesh G of constant dimension can be computed in tii@€lay|G|loglog|G|) on a RAM
both in expectation and with high probability. The relax-balanced decoitiposee can be computed in the
DAM and cache-oblivious models using13- (|G|/B)log(|G|/M) min{loglog|G|,log(|G| /M)}) memory
transfers in expectation and (®+ (|G|/B)(log(|G|/M)min{loglog|G|,log(|G| /M)} +log|G|)) memory
transfers with high probability.

Proof When|G| < M, the construction algorithm take&3(|G|) time andO(|G| /B) memory transfers,
both in expectation and with high probability. We consi@(G|) = Q(M) in the following analysis.
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We first analyze the expected running time of the algorithm on a RAM. Thstieartion time of each
nodeGp is O(|Gp|loglog|G|), and there ar®(log|G|) levels in the relax-balanced decomposition tree.
Thus, by linearity of expectation, the expected running tim@(i$3| log|G| loglog| G| ).

We show that the construction algorithm us¥4 + (|G| /B) log(|G| /M) min{loglog|G|,log(|G|/M)})
memory transfers in the DAM and cache-oblivious models. We analyze kngesmall nodes in
the relax-balanced decomposition tree differently. There are two caJdwe first case is when a
tree nodeGy, is large, i.e.,|Gp| > log®|G|. In this case,RelaxBalancedPartition(Gp) uses expected
O(1+ (|Gp| /B) min{loglog|G|,log(|Gp| /M)}) memory transfers by Lemma 12. Since all nodes a con-
stant factor smaller thaM can be constructed with no memory transfers, we only need consides nbde
sizeQ(M). There aré(log(|G| /M)) levels of nodes of siz&(M). So the construction of all nodes larger
than log |G| takesO(1+ (|G| /B)log(|G| /M) min{loglog|G|,log(|G| /M)}) expected memory transfers.

The second case is wheé@p| < log®|G|. In this case, we build a complete decomposition tree at
each node. Therefore by Lemma 6, the cost to build one of these no@¢$-is(|Gp|/B)log(|Gp|/M))
in expectation. As before, nodes a constant factor smaller khazan be constructed with no mem-
ory transfers. Therefore, the number of levels containing nodes efkm@tweenQ(M) and less than
log®|G| is at mostO(log(log®|G|/M)). Thus, the construction of all nodes of sig¥log®|G|) uses
O(1+ (|G| /B)log?(log®|G|/M)) memory transfers in expectation, which is dominated by the first case.

Now we establish the high probability bounds. We analyze the lai@é@sig|G|) nodes and the
remaining nodes of the relax-balanced decomposition tree separately.leyaiyof the relax-balanced
decomposition tree below the largeStlog|G|) nodes ha€)(log|G|) nodes. Hence, for each level,
the construction cost with high probability matches the construction cost iectdon, which is
O(|G|loglog|G|) expected time an®(1+ (|G| /B) min{loglog|G|,log(|G| /M)}) expected memory trans-
fers. Since the construction algorithm is recursive, a relax-balanagdign of nodes a constant frac-
tion smaller tharM uses no memory transfers. Hence, all levels of the relax-balancedhdesdion tree
other than the large€®(log|G|) nodes can be constructed®{|G|log|G|loglog|G|) time in a RAM and
O(1+ (|G| /B)log(|G| /M) min{loglog|G|,log(|G| /M)}) memory transfers with high probability.

For the larges®©(log|G|) nodes of the relax-balanced decomposition tree, we establish the higi prob
bility bounds using a different approach. Similar to the proof of Theorgwe8examine each relax partition
tree that is used to build each node of the relax-balanced decompositiparicegve examine all nodes
within all of these relax partition trees. However, now there are uppes &nee lower trees; we examine the
nodes within upper and lower trees separately.

We look at the upper trees of the relax partition trees of the la@@sy |G| ) nodes of the relax-balanced
decomposition tree. There aBlog|G|) upper trees, which are complete binary trees. Following a similar
analysis to that in the proof of Theorem 8, the construction of the la@@ésy|G|) nodes from among the
O(log|G|) upper trees take®(|G|log|G|) time and use®©(1+ |G|log|G|/B) memory transfers with high
probability.

For the rest of the nodes in the upper trees, the high probability boundh thatexpectation bounds,
both in time and memory transfers by Theorem 8. Therefore building thesnodee rest of the upper trees
takesO(|G|log?log|G|) time and use®(|G|log?log|G|/B) memory transfers with high probability. This
cost is dominated by the construction cost of the lar@gkig|G|) nodes of the upper trees.

We now focus on the lower trees of the relax partition trees of the la@ésg|G|) nodes of the relax-
balanced decomposition tree. We show that the cost to build all of the lovesrtikes tim®©(|G|log|G|)
and useO(1+ |G|log|G|/B) memory transfers with high probability (i.e., probability-11/poly(|G|)).
With high probability, the lower tree of a partition trég, of a subgraplG, can be computed i@(|Gp|) on
a RAM and withO(|G,| /B) memory transfers in the DAM and the cache-oblivious models. Given a node
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Gp and its relax partition tre&g,, there are two cases. The first case is when ther®day |G|) leaves
of the upper tree ofg, that need to be refined. Thus, with high probability, the construction daseo
lower tree ofTg, matches the expected construction cost, which 8(iiGp|) time andO(|Gp| /B) memory
transfers, as analyzed in Lemma 12.

The second case is when there @gog|G|) leaves of the upper tree 0%, that need to be refined.
The construction cost of a single leai@§|Gp| / log?|G|) time andO(|Gp| /Blog?|G|) memory transfers in
expectation. Thus, the construction cost to refine a single leaf with higiapiidy is O(|Gy| /log|G|) time
andO(|Gp| /Blog|G|) memory transfers and the construction cost to refine all leaves with hibalpitiy is
O(|Gp|) time andO(|Gp| /B) memory transfers. Thus, all lower trees of the relax partition trees of thedtr
O(log|G|) nodes of the relax-balanced decomposition tree can be construg¢(h) time andO(|G| /B)
memory transfers with high probability, which is dominated by the constructiall apper trees.

Hence, with high probability, the construction algorithm runsGf{G|log|G|loglog|G|) time on a
RAM and usesO(1-+ (|G| /B)(log(|G| /M) min{loglog|G|,log(|G| /M)} +1og|G|)) memory transfers in
the DAM and the cache-oblivious model.

We now show that a relax-balanced decomposition tree can serve the sgrosgas a fully-balanced
decomposition tree in giving cache-oblivious layout. The crucial ptypethe following.

Lemma 15 Given a relax-balanced decomposition tree of graph G, all nodes ornlemsy of the relax-
balanced decomposition tree contain the same number of vertices to witbiil gpfactor and all outgoing
degrees are the same size to within dft)dactor.

Proof  From the definition of relax-balanced, for any subgr&ghand its two childrenGy, and Gy,
loutgoing(Go)| = |outgoing(Gpy)| = Of|outgoing(Ga)| / 10g?|Gl), and|Gpo| = |Gpa| + O(|Gp| /106%|G)-
Thus, for constant, the ratio of the outgoing degree or the size between any two subgragéptht is at
most(1+c/log?|G|)' and(1+c/log®|G|). Since there ar®(log|G|) levels, these quantities differ by at
most ano(1) factor, as promiseda

Similar to Section 4, to find a cache-oblivious layout of a well shaped i@esle build a relax-balanced
decomposition tree db. The in-order traversal of the leaves gives the cache-obliviousitay@emma 15
guarantees that we can apply the same analysis from Section 4 to showetlaiver a cache-oblivious
layout.

We thus obtain the following result:

Theorem 16 A cache-oblivious layout of a well shaped mesh G can be computed in time
O(|G|log|G|loglog|G|) on a RAM both in expectation and with high probability. The
cache-oblivious layout can be computed in the DAM and cache-obliviowxlels using
O(1+ (|G|/B)log(|G|/M)min{loglog|G|,log(|G|/M)}) memory transfers in expectation and
O(1+(|G|/B)(log(|G|/M)min{loglog|G|,log(|G| /M)} +1ogG)) memory transfers with high prob-
ability.

6 Applicationsand Related Work

Applications of Mesh Update

The mesh update problem appears in many scientific computations and naoikg enost basic primitives
for numerical computations. In finite-element and finite-difference methaaks must solve very large-
scale sparse linear systems whose underlying matrix structures are rfiZghds practice, these linear
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systems are solved by conjugate gradient or preconditioned conjugaliergrmethods [15, 31]. The most
computational intensive operation of conjugate gradient is a matrix-vecthiptimation operation [6, 15,
36, 37] which amounts to a mesh update in finite-element applications. Theviecatjugate gradient
method repeatedly performs mesh updates. Mesh update is also the kafyoopiarfast multipole methods
(FMM) for N-body simulation [19, 20], especially when particles are nufarmly distributed [32]. The
partitioning and layout techniques presented here also apply to the adgptdtrees or octtrees used in
non-uniform N-body simulation.

Related Wor k

The cache-oblivious memory model was introduced in [17, 30], andecablivious algorithms have been
developed for many scientific problems such as matrix multiplication, FFT, anddddmposition [8, 17,
30, 35], Now the area of cache-oblivious data structures and algorighanssely field.

There are other approaches to achieving good locality in scientific compwa@ore alternative to the
cache-oblivious approach is to write self-tuning programs, which medakermemory system and adjust
their behavior accordingly. Examples include scientific applications suEfragv [16], ATLAS [39], and
self-tuning databases (e.g., [38]). The self-tuning approach caonrbplementary to the cache-oblivious
approach. For example, some versions of FFTW [16] begin optimizatiotingtdrom a cache-oblivious
algorithm.

Methods exploiting locality for both sequential (out-of-core) and paraigementation of iterative
methods for sparse linear systems have long history in scientific computingu¥gartitioning algorithms
have been developed for load balancing and locality on parallel macl#te2d, 27, 31], and algorithms
that have good temporal locality have been proposed and implemented fouttoé-core sparse linear
solvers [34]. A mesh update can be viewed as a sparse matrix-dernise meidtiplication, and there exist
upper and lower bounds on the 1/0O complexity of this primitive [6]. Howetlezse bounds apply to any
type of matrix, whereas special structure of well-shaped meshes enatefficient mesh updates.

Since the mesh-update problem is reminiscent of graph traversal, we Briefmarize a few results in
external-memory graph traversal. The earliest papers in this area apgpeoal directed graphs [1,12,13,
29] and others focus on more specialized graphs, such as planaediggaphs [4] or undirected graphs
perhaps of bounded degree [5, 14, 25, 26, 28]. The problemabfeeablivious graph traversal and related
problems is addressed by [3, 10]. There are also external-memoryaahd-oblivious algorithms for other
common graph problems, but such citations are beyond the scope of tkis pap

The problem of cache-oblivious mesh layouts is first described in [B@is paper gives no theoretical
guarantees either on the traversal cost or the cost to generate the ymsh tewever. It does propose
heuristics for mesh layout that give good running times, in practice, fange of types of mesh traversals.
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