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Abstract— This paper presents a new algorithm fowtual  relatively small (to ensure that competition at each node is

exclusionin which each passage through the critical section costsfficient), it is hard to achieve performance that is much
amortizedO(log® logn) RMRs with high probability. The algo- better thanO(logn) RMRS per process.

rithm operates in a standard asynchrondosal spinning shared- S
memory model with an oblivious adversary. It guarantees that Results: This paper represents a departure from pre-

every process enters the critical section with high probability.Vious work in terms of techniques, adversary model, and
The algorithm achieves its efficient performance by exploiting aperformance. We give a mutual exclusion protocol where
connection between mutual exclusion and approximate counting.each process performs or@(log2 logn) amortized RMRs
per passage with high probability. Our protocol is random-
1. INTRODUCTION ized and works against an oblivious adversary; every psoces
o . enters the critical section with high probability.
Coordinating access to shared resources is a fundamental Mutual Exclusion and CountingOur work exploits

pro:olelm ml pa}rallletl cgmplétlgg.Dlpk Te cllgssm pr:oblem Ofa connection between mutual exclusion and approximate
mutual exclusionintroduced by Dijkstra [10], each process counting. It should not be surprising that such a connection

attempts to gain exclusive access to some shared resourcﬁ;{(ists Consider, for example, a standard “mutual excitisio

Whenf[aw_atr a.tprolcesst_gams exclusive access, it can safg echanism found in retail stores everywhere: each customer

exiﬁu € |hscr| 'Cg sechlond ds of it ) takes a number, issued in sequential order, and the customer
ere have been hundreds of papers writtén on mu uaa{re serviced in the order of their numbers. (Lamport fa-

exclusion; see, e.g., [1]_[4_]’ (8], [11_]' [14]_[16_]' [1%erfor- mously exploited this idea in thBakery Algorithm[17].)
mance of a mutual-exclusion algorithm is typically measure oo are several difficulties in putting this connection

in terms ofremote memory referencesRMRs The assump- to good use. First, mutual-exclusion algorithms have gener

tion is that each process has a Iocql memory/cache, Wh'Ch, glly possessed better complexities than counting algosth
can access cheaply, and a read/write shared memory, whigh);, ¢, [5], the best concurrent-counter protocols téxk)

is expensive to _access—these are _the_ RMRs. Pro_cesses tryéps per increment, and even the Eggiroximatecounting
haye th? capacity to pgrformcal_ spmmngfor freg, €., to protocols were just barely sublinear [6]. Thus, it might dav
spin-wait on a local variable unt|I_ It c_hqnges. (Wlthoutabc seemed unlikely that reducing mutual exclusion to counting
spinning, efficient mutual exclusion is impossible [19].) would yield asymptotically good results. It was an exciting

. Until recently, the most efficient mutual-exclusion algo- development when Aspnes et al. [5] gave an elegant wait-
rithms, such as the one by Yang and Anderson [19], uSe?’ree data structure for exact counting with onﬂz(log2 n)

O(logn) RMRs per passage on a systemyoprocesses.  gians per increment an@(logn) steps per read. These
It was recently proved that this bound is optimal for oo nting bounds are still exponentially larger than ourlgoa
deterministic algorithms [8], [11]. In 2009 Hendler and . O(log2 log ) RMRs for mutual exclusion. However, we
Woelfel [14] showed that randomized algorithms can percan |everage the counter construction of [5] to build an
form better than deterministic algorithms by demonstgatin approximate counter in which increment operations take
one that achieve®)(logn/loglogn) expected RMRs per O(log? log n) steps.
passage. A further difficulty is that wait-free counter (and
Most efficient prior solutions (typified by [14], [19]) are gpproximate-counter) constructions only support increne
based on gurnament regonstruction. A process's passage not decrement, operations. Ideally, a process would incre-
begins at the leaf of a tree. Processes compete to climb th@ent a counter on beginning its passage and decrement
tree. When a process reaches the root, it executes its triticg ~qunter on completing its passage. In this case, the
section and then exits the tree, allowing other processes i@yjue of the counter would indicate the number of active

continue competing. Since the degree of the tree must bgocesses. This information would significantly simplifet

. . construction of a mutual exclusion algorithm. Unfortuhgte
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CCF 1114809, CCF 0634793, and CCF 0540897, DOE Grant DE-FG02It @Ppears difficult to support both increment and decrement
08ER25853, and NUS FRC R-252-000-443-133. efficiently (even for exact counters).



This paper takes advantage of the connection betweelocally. If that location in memory ever changes, the cache
(approximate) counting and mutual exclusion by weakenings invalidated, and the process discovers that the memory
what we actually require from the counter, i.e., by relyinghas changed. This wakes/interrupts the process, and the
on an approximate counter with no decrement operation. previously registered callback function is executed. doti

Adversary ModelsWhile we give exponentially better that registering an event and discovering that it has been
bounds than previous papers (e.g., [15], [16], [19]), wetriggered each cost one RMR, while the remaining local
cannot claim that our results subsume these earlier papensionitoring is free. All local spinning will be captured via
because we depart from the adaptive-adversary model, ithis mechanism; every otherad or write operation is
stead assuming an oblivious adversary. It has been conjeassumed to cost an RMR.
tured [18] that for an adaptive adversa®(logn/loglogn) We also assume, without loss of generality, that processes
RMRs per process is a lower bound (for starvation-freecan executecompare-and-swaCAS) operations. We can
algorithms). This would imply that a weaker adversary istransform each CAS operation into a set of read and write
essential to obtain our improved bounds. This paper is theperations using the construction of Golab et al. [12]. They
first to beat theO(logn/loglogn) RMR bound for some show that each CAS operation requir€§1) RMRs! A
adversary. CAS(v, old, new) operation compares and old; if they are

An oblivious adversary models many but not all sourcesequal, then it atomically sets to new.
of asynchrony. Specifically, it models asynchrony whose
sources are independent of the choices made by the mutual- 2. ALGORITHM OVERVIEW

exclusion protocql (e.g., speed changes caused by. other\we now give an overview of the mutual exclusion al-
programs competing for CPU cycles or memory bandwidth) g rithm. We begin with high-level ideas. We progressively

It might be interesting to execute our algorithm in parallel 5 mmarize problems and their solutions until the full algo-
with an existing algorithm [15], [16], [19] that can toleeat |ithm comes into focus.

an adaptive adversary (using a simple lock to mediate
winners of the two protocols). The resulting combination2.1. High-level Ideas

would be fast when the adversary is oblivious, while still .
. . Assume that we have a countéithat supports both incre-
guaranteeing good results when the adversary is not. ) .
] : ) ment and decrement operations. In this case, every process
Model: We considern processes, each of which ac- . . S
e . -~ incrementsC when it begins its passage and decreménts
cesses the critical section at most once. (This simplifies . : . ; :
; . when it completes its passage. At any given time, reading
the presentation, because we can associate each passage

. . i . yields a count of the number of active processes.
with a unique process. Generalizing to a polynomial number After incrementing countef’. a process reads the counter
of accesses per process follows trivially.) Each process 9 -ap

takes an arbitrary (unbounded) number of steps, and th%r;:.j lﬁs_es thedv?luel o f||nd_a ffee Spr?.lt in waiting array_z:l,th .
oblivious adversary(acting as a scheduler) decides, forrvréctolser:]tse? thgrcqt?(?alsp;ré??l?\lsv :a?:'fpégﬁesietigvc?tlmm elr
each execution, the order in which processes take steps. Aéi riicay section. Specificatly, 1

oblivious adversary makes these choices with full knowsedg S ;?t%r?sev?lrl;%’ ]tﬂhesrllottze_np;ﬁgeasrsr;ang%Téytigagghﬁiéfrm a
of the initial state, including the mutual-exclusion praig poti ' (k) : Y. ol u

but without knowing the outcomes of random coin flips accurately estimates the number of active processes, at mos

of the processes. Thus, an oblivious adversary scheduléﬁrC(()jnsmlnt ftr)ac:]lon of the ft'r@t(k) sk!otbs_l_a;re‘l}illf;_ hde?”ce each ¢
determines the entire schedule prior to the execution. random probe has a constant probability ot1inding an empty

Since modern architectures cache memory aggressiveISIOt' Once the process finds a spot, it goes to sleep, spinning

we model memory accesses as perdhehe-coherenfCC) ij'l itis awakened. . . . .

model. Each process keeps a local cache of some variabl SWhen a process exits the_ critical section, It searches

from the shared memory. Whenever the value of a variabl or a replaceme.n.t brocess in the arraly handlng. off

is cached locally, a process can read it for free. Whenever (éontrol of the critical se(_:t|on. It proceeds by reading the

variable is written, all caches except for that of the wgtin counterC—assume that is the valu.e ret“rf‘ed by’'—and

process are invalidated; the next read by each processp([excese""r(:hIng randomly for a process in the f'@?‘(tk) .SIOIS OT

for the writing process) costs a normal shared memor)}he array. If there aré active processes waiting in the first

access, i.e.. an RMR. O(k) sl_o_ts of the array, each random probe has a constant
We make use of local (cached) memory for the purposé’rc.)pab'“ty of finding an QCCUP'ed slot. At this point, the

of spinning. While executing the protocol, processes ma}pxmng process removes ltself from the arrdy wakes the

registerevents, meaning they indicate a location in memoryprocess occupying the selected slot, and decrements. the

to monitor, and &allbackfunction to execute if that location counterC'.

in me_mory IS mOd'f'ed-_DU“”Q rggl_stratlorj, this memQW IS 1Their implementation istrongly linearizableand hence can be safely
read into cache, at which point it is continually monitored used in the presence of an oblivious adversary; see [13].



There are problems with this basic protocol. First, weexecutingCAS(A[¢],0,p). When theCAS succeeds, process
have to address how theery firstprocess enters the critical p increments counteivin-count. It then tries to acquire the
section. Second, we have to cope with the case when mariyck. If the process succeeds, it enters the critical section.
processes have incremented the counter, but not yet joingdtherwise, it spins on the array sldf/].

the array. Third, we can only use counters that increment, A processp exits the critical section as follows. First,

not decrement. sets the array slofi[(] « —1, indicating that the slot is

In Section 2.2 we provide a base protocol that addresseg,, empty. Nextp releases the lock. Finally, repeats the
these issues. '_I'h_e resulting protocol is |neﬁ|C|ent, buisHl following steps: (i) it reads; < C.read(); (ii) it readscs
trates the basic ideas of our protocol. In Section 2.3, W‘?‘om-count.read(); (iii) if ¢1 > c2, thenp exits; otherwise,

show how to replace the exact counters used in Section 2-8\/) it chooses a random locatiohin the rangel .. ©(c;);

with approximate counters. and (v) if A[¢/] > 0, then it signals to the process spinning

Finally, in Section 2.4, we address the problem of decre—atA[g] to wake up and exits. Otherwisg,repeats (1)—(v).
menting counters as follows. We maintain two separate

counts: the (approximate) number of increments and the |MiS Protocol ensures mutual exclusion, as no process
(exact) number of decrements. As long as the numbefnters the critical section without acquiring the lock. The
of increments is sufficiently larger than the number ofProtocol also guarantees liveness: Assume propessins
decrements, then we can ignore the decrements and thgrever. Sincep fails to acquire the lock, we know that at
counter still yields a constant-factor approximation. When!€@St One process succeeds in entering the critical section
the number of decrements becomes sufficiently large wiket ¢ be the last process to exit the critical section. Observe
reset the counters, beginning a new epoch. " thatg necessarily releases the lock at some point afteies
This resetting r;owever createschicken-and-egg prob- to acquire it. Sincey is the last process to exit the critical
lem the first step that a process takes in an epoch mugiection. it does not find (and awaken) another process in
be awrite—a process mushake a mark-specifically, one | US, We conclude thatexits on findinge; > c,. This exit
that is visible to other processes. If the first step iea, ~ cONdition implies that some process has incremented,

. / 1 H
then a set of slow processes could wake up, take invisibl@Ut NOtcz; p’ will proceed to try to acquire the lock after
steps, sleep until the epoch finishes, wake up in the ne as released it, ensuring that eitp&ior some other process

epoch, take invisible steps, sleep until the epoch finishes‘?mers the critical section after which is a contradiction.

and so on, without accomplishing useful or visible work. Finally, we observe that the algorithm is reasonably effi-
In this case, the total work could grow too large becauseient (i.e., on average each process perfo@$) counter

of the invisibleread operations. On the other hand, if the increments and other operatiores) long asthe number of
first step of a process in an epoch isvéeite, how does the processes that have exited the critical section is at most a
process discover the epoch number (i.e., where to find theonstant fraction of the total number of processes that have
data structure for the given epoch)? We address these issui@sremented countef’. To see this, there are two parts of
in Section 2.4. the protocol that we have to examine.

22 Base Mutual Exclusion Protocol First, looking for a free slot in the array: since a process
reads the counte?' prior to searching for a spot in the array,
either it succeeds with constant probability, or the number
of processes in the system has doubled since it @ath

The basic mutual exclusion protocol consists of four
components: (i) a variabl&ck to guard the critical section;
(i) an array A, which processes use while waiting for o |atter case, we can amortize the cost of the read against
the crmcal_secuon to_ become free; _(||!) a countér that the newly arrived processes.
processes increment immediately on joining the system, and o ) .

(iv) a counterjoin-count that processes increment after they ~>€cond, finding a process in the arrdyafter exiting the
have joined the arrayl (but before any spinning occurs). critical s.ectlon: we search for a processAhonIy_vyhen

The lock is implemented via@AS operation: when a pro- €1 = ¢2 I-€., all the processes that have begun joining have
cessp wants to claim the lock, it executd®AS(lock, 0, ). found a slot_ in the arrayl. Thus, at least a _constant fraction
If the CAS operation succeeds, therhas acquired the lock, ©f the slots in the range from. . ©(c, ) are either marked by
When a process wants to release the lock, it simply writes ~ Processes that are spinning, or by processes that havdylrea

to lock. The counter€’ andjoin-count can be implemented exited the critical section. If the number of processes that
using the construction in [5]. have completed is at most a constant faction of the number

A processp enters the critical section as follows. First, Of Processes that have begun joining, then each probe in
it increments the countef’. It then repeats the following NaS & constant probability of finding & spinning process.
until it succeeds in claiming a slot id: (i) it reads value On the other hand, if most of the processes have already
k < C.read(); (ii) it chooses a random locatiohin arrayA  completed the critical section (and the arrdyis empty),
in the rangel .. ©(k); and (iii) it attempts to claim slot by  then this protocol becomes inefficient.



2.3. Approximate Counters it simply chooses one of the three counters at random to

We now observe that we can replace the exact countefgcrement. In epocl, we read from counte€’[e mod 3],
with approximate counters. In Section 4, we show howWith constant probability, a process performing an incneime
to implement approximate counters where each incremerfthooses the correct counter for the current epoch. Thus, the
and read operation requires at mogflog® log n) steps. Al- value r_ead_from counte€'[e mod 3] remains a constant-
though the exact counter works even with a strong adversarfiPProximation of the correct count. (Notice that a further
our approximate counter requires a weaker adversary. ~ Problem is ensuring that one write step by a process is
Replacing the exact counter with the approximate countepufficient to ensure that it is counted, as incrementing the
creates two potential problems. First, we use the valiead ~ counter may take more than one step; this is achieved by a
from the countelC' to find a spot in the array. Since the helping mechanismand is explained further in Section 5.)
counter is within a constant factor of the correct value, it Each epoch maintains its own specific copy of counter
remains easy to see that the rarige ©(k) is big enough Jjoin-counter and arrayA. After. processp increments the
to contain all the processes that have joined. randomly selected count&?[-], it reads the epoch counter
The second problem arises when a process exits thand proceeds to use the correct instance of the data seuctur
critical section, since the values ande, may each be offby ~ Whenever an epoch ends, the couid@fe—1) mod 3] is
a constant factor. Instead of exiting when> c», a process cleared, and the epoch counter is incremented. At the same
exits if for some constartt < ¢ < 1 (which depends on the time, all the processes spinning in the artayfor the old
approximation factor of the counters), the vatye> ¢, /e. epoch are awakened, and repeat the entire protocol in the
In this case, at least one process has increme@teshd  New epoch (i.e., incrementing([-], joining A, incrementing
not join-count, and hence it is safe for a process leavingjoin-counter). Since the counte€’[-] is a good approxima-
the critical section to exit. Otherwise, if; < cy/c, we tion of the total number of processes that have tageen

know that someO(c;) processes have completed joining One stepand we use the value of countéf ] to determine
and hence we can find one in the arrdyin the range when to end the epoch, we can amortize the work done by
1..6(c;). Thus, using approximate counters instead ofProcesses moving from one epoch to the next against the
exact counter, the mutual exclusion protocol maintains th&vork done by processes that complete in that epoch.

properties previous|y discussed. The remaining prOblem is that, since we choose a counter
] (1 at random, the estimate is good only after a polylogarith-
2.4. Resetting the Counters mic number of processes join. (The estimate can be too low;

Finally, we address the issue of efficiency. We keep dt can never be more than a factor »ftoo big.) Thus, we
count LCount of the number of processes that have com-only rely on the counte€|:] when at least” = ©(log* n)
pleted the critical section. Wheltount reaches a constant processes have joined it. To cope with this problem, we will
fraction of C, we reset the data structure and begin a newn parallel execute a second (deterministic) mutual exafus
epoch We cannot, however, simply create a new copy ofinstance which onlyl” processes are allowed to use. We can
the data structure (i.e., count&rsjoin-count, array A) for ~ construct this secondary instance using existing teclesiqu
the new epoch and move all the processes to the new datehere each process performs at mOgtog 7') steps.
structure. The (chicken-and-egg) problem is as follows. There are also three places we rely on countg}. First,

Assume that in every epoch at leagt = O(log®n)  when we are searching for a spot in the arrgyif the value
processes complete (for reasons to be explained latery, Thuread from the counter is smaller thdh we round the value
there may beO(n/T) epochs. If each epoch has its own up to7. Second, when we are searching for a process in the
data structure (i.e., counters and arrays), then the fiegt st array A, if the value read from the counter is smaller than
a process takes in an epoch must be to read some epoale round the value up t@. Finally, when comparing; and
counter that specifies which data structure to use. Consides, (to determine if a process exiting the critical section can
some®(n) processes that read the epoch counter withousafely depart), we simply exit if the countey < ©(T): in
modifying the data structure in any other way, and thenthat case, it is safe to assume that gieall mutexinstance
stall until the epoch ends. Since the large batch of stalleavill send a process into the critical section.
processes is invisible, each epoch must come to an end after
some7’ processes join, enter the critical section, and leave. 3. BACKGROUND
The total number of steps taken by the batch of stalling This section describes four basic building blocks.
processes, afte®(n/T) epochs, is9(n?/T), which is too i
much. 3.1. Max-Registers

Instead, we insist that in its first step in an epoch, a A max-register is an object that stores the largest value
processmakes a marki.e., begins by incrementing counter ever written to it. A max-register supports two operations:
C. We instantiate three copies of countérwhich we call  read andwrite, where theread operations returns the largest
C[0], C[1] andC[2]. When a process increments cour@ér  value ever written. A max-register is parameterized by



a value vnax that specifies the maximum allowed value. 4. APPROXIMATEACTIVITY COUNTER
Aspnes et al. [5] describe a max-register in which each

operation has cosD(10g tmar)- This section describes an approximate activity counter,

approx-counter, that counts the number of processes that
3.2. Exact Activity Counter have executed @in operation. It also supports @ear that
An activity counter has a set of por&s and supports two resets the counter to zero; however, we require thatlte
operations: (ijoin(p), for some porfp € P, and (ii) read(). operation is never executed by more than one process con-
The read operation returns a count of the number of porteurrently. With high probability, theead operation returns a
for which there has been at least gni operation. (If there constant-fraction approximation of the number of procgsse
are twojoin operations executed on the same port, then théhat have joined the counter since it was last cleared.
count is only incremented by one.) The counter construction  Basic Idea: Here we adapt a standard trick: Af< n
in [5] immediately yields an exact activity counter with tos independent variable§Xy, ..., X;) are each exponentially
O(log | P|) to read andD(log” | P|) to increment. distributed on the rangf., ..., logn], then in expectation,
max(X,;) = logk (to a suitable approximation). If each
. joining process chooses a value at random according to
We also need a traditional counter that returns the eXghe exponential distribution and writes that value to a max-
act number of increments. The maximum value of theregister, then the max-register stores an estimate of the
counter will be bounded.by some small valu.gé.,x. The  qumber of processes that have joined.
bounded-counter construction uses an exact activity counter To achieve a high-probability estimate of the number of

of size2vax. To_increment the counter, a process repea_tedl;roins, we modify this scheme slightly: a joining processyon!
chooses and joins a popte {1..., 2umax} at random until \yites 3 valuej to the max-register if at leagbg n other

it finds one that is free, or it discovers that the counterprocesses have also randomly selectedor each of the

has exceedgdmax. NOt_'(,:e that each attempt to find a port log n possible values of, we use an activity counter to de-
sugceedzc;/}f[[th plr ?batb'“ty Ef‘arl],easﬂ' r is that it returns the€MINE Whether sufficiently many processes have chgsen
portn:u?nbelrlocrr:imi?j uerejr%g tlr?ecﬁ\lj:rr]eerrr];t ia; zling/e #rhnjs i? Observe'that the.approximate counter dpes not work if the
will return a valid port identifier to at least,, ' and ét most’ adversary 'S adaptive, begause an adaptive adversary could
o processes a bias the estimate by delaying the small number of processes
mar i ' that randomly select large values.
a I;gtmg?z }.é}siurgre;gg:s SC(;TF;E tiéeln. tl;c;r e(;/oeg(c(,kfj_r Detailed Description:The counter is parameterized by
Join op ’ y y a constant. The data structure consists of four parts: (i) a
rpjax—registelM , (i) an array oflog n exact activity counters,
each withclog®n ports, (i) a two-dimensional array of

3.3. Small Bounded Counter

ters: the bounded counter does not require the calling psoce its I that tai bit f A i
to provide a port number, and counts every increment; thé’I S at contains one bit for every port on every countet,

exact activity counter assumes the caller has a port numbez?nd (V) a bounded counter. To clear the_ counter, we S'F"P'y
and counts the number of ports that have been joined. allocate new memory for the max-register, exact activity
counters, and bounded counter, thus allowing each to be

3.4. Deterministic Mutual Exclusion “atomically” cleared. (Thus we can view/ andC and sC
When there are only a small (e.g., polylogarithmic) num-as “pointers” to the specified data structures.’) The array
ber of active processes, we rely on a deterministic mutuals cleared sequentially (so that there is no need to read a

exclusion protocol (e.g., [19]). The protocol has ports,  pointer to find the location of arrag).

i.e., can be accessed by up|fo| different processes, where ~ We define a threshold” = ©(log" n) differentiating

|P| will be polylogarithmic. It supports two operations: (i) “small activity” and “normal activity”: when there are fewe
join(p, on-win-mutex), which accesses the mutual exclusionthan 7" active processes, we rely on the bounded counter,;
object on portp and executes the functioon-win-mutex ~ when there are more thdfi active processes, we rely on
when the critical section is obtained; and (#ve(p), which  the estimate derived from the max-regisidrand the exact
indicates that the process on ppris leaving. The protocol —activity counters. This is necessary since the estimaieater
consists of a tree withP| leaves where each node has a lockin this fashion is only accurate when a polylogarithmic
that can be claimed (and released) via a CAS operation. Onumber of processes have joined.

joining port p, a process claims the lock at the leaf. It then Joining the approximate counter consists of two parts:
attempts to walk up the tree as in [19], claiming each lock ora pre-join and ajoin. In the pre-join a process chooses
the leaf-to-root path. If a lock is already taken, the prgces an exact activity counter at random using an exponential
spins locally, waiting for it to become free. When a procesdistribution, and it chooses a port on that counter using
leaves (or completes the critical section), it walks dowa th a uniform distribution. It then marks the bit in arraly
tree, releasing the locks. associated with this counter and port. By making this mark



immediately during thepre-join, slower processes can have
their join finished by faster processes. After the-join, a
process callgoin specifying the previously chosen counter
and port. The process then checks whether the bit in the arrg
L remains set (i.e., there has been no intervening clear), an
if so, the process joins the specified exact activity counte
at the specified port. If the counter value is sufficiently, big
then the process writes the counter id to the max-registe
Finally, the process, increments the bounded counter.

A read operation examines both the bounded counter an

the approximate counter. If the bounded counter exceeds the

threshold?’, then it returns the maximum @f and2™ log n,
wherem is the value read from the max-register. Otherwise
it simply returns the value of the bounded counter.

One risk is that a slow process may never get counted!

The arrayL is the location where a process first “makes its
mark.” The help procedure is executed by faster processes
ensuring that every process that makes a mark is counted. ]
help, a process chooses a random entry in the atragnd
if there is a mark, then it completes the join for the process
that made a mark there. Afté¥(log* n) helping operations,
with high probability, every process that has made a marl}
has been counted.
Analysis: We now argue that the counter returns a

constant factor approximation.

Lemma 2:For every constant, there exists a constant
0 < 0 < 1 (as a function ot) such that: Let: be the value
returned by someead() operationr. Assume that there are
no clear operations concurrent with. Let x be the most
recentclear operation that completed (if any exists) prior to
the beginning ofr. If there exists a set gb processes that
begin executing thgoin procedure afterlear operations,
and completed th@in procedure prior to thesad operation
7, thenz > dp with probability at leastl /n°. O

Lemma 3:For every constant > 3, there exists a
constanty > 1 (as a function ofc) such that: Letz be the
value returned by somead() operationr. Let x be the most
recentclear operation (if any exists) that completed prior to
the beginning ofr. Let P be the set ofoin operations that
end afterx begins and begin no later than when tked
operation ends. Then < ~|P| with probability at least
1—1/n°. O
Next, we show that if there is sufficient helping, every
process is counted (even those that are slow).

Lemma 4:For every constant, there exists a constant

10bject approx-counter(c)

2 /] Threshol d between small & normal activity:
3 thresholdT = ©(log" n)
W M : max-register(logn), initially 0

/l Array of activity ctrs, counting to clog?n:
C[1..logn] : basic-counter({1..clog?n})

/I L[i][5] is value in jth leaf of the ith ctr:
L[1..logn][1..clog?®n] : two-dim array of bits
sC : bounded-counter(T")

6
Iz
8
r.o
10
juprocedure pre-join() // Indicate intent to join.
12 // Random exponential |y distributed choice:
Choosei € {1..logn}: Pr(i) = 1/2¢
/I Random uni formy distributed choice:
Choosej € {1..clog?n}: Pr(j) = 1/clog®n
L[i,j] <1 [/l Process nmakes its mark.
return (i,j) // Return counter and port.
18
19procedure join((z, 7)) // Join counter i at port j.
20 /] Copy in case of concurrent clear:
2 '« copy of pointer toC/:]
M’ + copy of pointer toM
S’ + copy of pointer tosC'
/[t the mark is still there:
if L[z,7] =1 then
C'.join(j) Il Join ctr i at port j.
/[''f ctr is big, then wite max-register.
if (C’.read() > clogn) then M". write(i)
S’ join()

a1procedure check((i, 7)) return (L[i, j] = 1)
32
s3procedure read() // Read approx counter.
3 v1 < sC.read()
3B vg < M.read()
3 if v1 > T then return max(vi,2%2 logn)
37 elsereturn v,
38
39 // Hel p those that have not finished joining.
soprocedure help()
41 /[ Pick a randomctr i and leaf j to help join.
42 Choosei € {1..logn}: Pr(i) =1/logn
43 Choosej € {1..clog?n}: Pr(j) = 1/clog’n
if L[, j] =1 then
Cli.join(7)
if (C[i].read() > clogn) then M.write(i)

45
46
47

48 /[ The clear operation cannot be called concurrently.

s9procedure clear() // dearing is not atomic.

50 M <+ new(max-register(logn))

st C < new-array(basic-counter(1 .. clog? n))

52 sC < new(bounded-counter(T))

s3 for i =1tologn, j =1tolog’n do L[i,j] < 0

1 < 1 (as a function ofc) such that: Letz be the value
returned by someead() operationr. Let H be a set of
help() operations, wheréH| > 3c2log*n. Assume that

there are no concurrerfear operations, and let be the ~completes, them > +p with probability at leastl — 1/n°.

most recentlear operation that completed (if any exist). ~ Finally, we bound the cost of using the approximate counter:
If there exists a set op > T processes that execute at Lemma 5:Suppose that after each clear operation, there

least the firstwrite step of apre-join operation after the are at leasf)(7') join operations before the nexfear. Then

clear operationx and prior to the first operation i/, and  each pre-join, join, check, read, and help operation has

if the read operationr begins after the last operation i amortized costO(log? logn), with high probability. Each



clear operation has cot§1(log2 n). g processes that have left. (Since there are no concueeret
Note that we only clear the counter on€gT") processes operations, we need not implement a concurrent counter.)
have joined; otherwise, the above bounds may not hold. Next, the process reads the dynamic counter (Line 49)
to check how many processes are currently active. If the
5. DyNAMIC EPOCHBASED COUNTER number of processes that have left has reached a constant
This section describes a dynamic counter that supportfaction of the processes that have joined (Line 53), and if a
bothjoin andleave operations. The basic idea is to divide the leastT processes have left, then the epoch ends: the counter
execution into epochs, where each epoch has an approximdi@r epoche — 1 is cleared, the epoch is incremented, and
counter. As long as the number of processes that have joingstocesses are triggered to join a new epoch. Note that at
an epoch is much larger than the number of processes thigastT processes complete in each epoch.
have left an epoch, then the value returned by the counter  Analysis: We now show that the dynamic counter
remains a good approximation. Whenever the number of dereturns a constant-factor approximation of the number of
parted processes reaches a constant fraction of the pescesactive processes. We first argue that the number of processes
that have joined, then a new epoch is triggered, and all théhat take steps in epoeh-1 is no greater than some constant
processes are awakened and instructed to join the new epodimes the number of processes that complete in epothis
There are two challenges here. First, the dynamic countegillows us to amortize the work done by processes in1
must continue to give good estimates, even as processegainst processes that complete in epechet P. be the
slowly transition from one epoch to the next. Second, aset of processes that execute easd/write step of Line 22
already discussed, theery firststep of a process must be a in epoche.
write operation that “makes a mark.” Hence, a new process Lemma 6:For every constant, there exists a constant
must increment the counter before reading the epoch counter < 1 such that: If¢ is the lastleave operation in epoch,
We solve both problems as follows: instead of allocatingthen at the end of, Lcountle] > ¢|P._1| with probability
one approximate counter per epoch, we use three approxat leastl — 1/n°. |
mate counters, rotating the approximate counter in use for We now show that the dynamic counter returns a value
the current epoch. That s, in epoehwe read from counter  that is at least as large as a constamimes the number of
mod 3. When a process wants to join, it randomly choosegrocesses that completed a join operation in that epoch.
a counter to increment, ensuring that a constant fraction Lemma 7:For every constant, there exists a constant
of joins update the right counter. When we transition from0 < e < 1 such that: For every read operatiorin epoche,
epoche to e + 1, we clear countefe — 1) mod 3, so we  wherez > 0 is the value returned by, if there exists a set
can continue to observe the final count from epeciwhile P C P, of at least48¢T' processes that completeddin in
we transition toe + 1. epoche prior to the beginning of, thenz > ¢|P|. O
Joining: A processp joins the dynamic counter by Next, we show that the counter cannot grow too big: its value
calling the functionjoin(p, f), wheref is a callback function is bounded by the number of processes that have joined in
to be executed when the epoch ends. The first part of ththe most recent three epochs. This follows since the cainter
join procedure chooses an approximate counter to incrememire cleared every three epochs.
(Line 17) and attempts to executee-join on that counter Lemma 8:For every constant, there exists some con-
(Lines 22-27). Thispre-join is where the process performs stanty; > 1 such that: For every read operatierin epoch
its first write, ensuring that it can be counted immediately. e that returns value, if P is the set of processes that take
The pre-join is repeated until it succeeds in making its markone step of goin in epochse — 2 or e — 1 or ¢, where the
in an epoch without the epoch changing. At this point thejoin begins prior to the end of, thenz < ~4|P|. O
join is completed (Line 28), and the process helps each of Finally, we show that the value returned by the dynamic
the three counters (Line 30). Finally, the process registercounter is at most a constant factor greater than the number
the callback function to be triggered when the epoch endf active processes. This lemma relies on two facts: First:
Specifically, if the process joined at epoeh then the at the end of eacleave operation, the value of the leave
callback function is triggered whemew-epoch[e] toggles to  counter is at most a constant fraction of the number of active
true, indicating that the epoch finished, and the procedurgrocesses. This is important, as it ensures that not too many
join returns the value. processes leave during an epoch, and hence we can prove a
Leaving: When a process that joined epoehexits  second claim: everyead operation returns a value at most
the critical section, it executeleave(e). Notice that since some constant times the number of processes active at the
a leave is executed only after a critical section, there areend of the operation. The first claim itself depends on the
never concurrenkeave operations. The process first checks second, however, as the decision to end an epoch depends on
whether the epoch has advanced beyendnd if so, the the value of the counter (Line 53). We must also account for
leave is ignored. Next, the departing process incrementsvhen the number of processes falls below the thresfibld
the leave counter(Line 48) which tracks the number of Let A be the number of active processes at the endaot



10bject dynamic-counter(c)

/] Threshol d between smal |l and normal activity.
thresholdT' = ©(log® n)

C10..2] : approx-counter(c)

/I The epoch is updated by a | eaving process.
epoch : global integer, initiallyl

/l Count # processes that |eave in epoch e:
Leount[1..n] : array of integers, initially alD

/] During epoch e, new-epochle — 1] = true.
new-epoch[1..n] : array of bits, initiallyfalse

/I Proc. p stores epoch it joined in last-epochlp].
last-epoch[1 . .n] : array of int, initially all 0

© 0 N o g b~ wN
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14 /| on-new-epoch is called when epoch ends.
15 procedure join(p, on-new-epoch)

16 [/l Choose approx. counter to increnent.
17 Choosei € {1..3} such thatPr(i) = 1/3
18 done < false

19 while done = false do

20 /I Port b of counter a marked.

21 /l First RVR occurs here in pre-join.

22 (a,b) « C[i].pre-join()

23 last-epoch[p] <— epoch Il Read epoch.

24 /I Check that ctr has not been cleared and
25 /l that the epoch has not changed.

26 done + C[i].check({a,b)) and

27 last-epoch[p] = get-epoch()

28 C[i].join({a,b)) /l Finish join port b, ctr a.
29 /[ Help increnent counters

30 C[0].help(); C[1].help(); C[2].help()

31 /I Moni tor last-epoch[ p] .

32/l call on-new-epoch when epoch changes.

33 register (when(new-epoch[last-epoch[p||=true))
4 do on-new-epoch(last-epoch[p] + 1))

35 return(last-epoch[p]) I/ Return epoch nunber.
36

37 procedure read()

38 e < epoch Il Read current counter.
39 v < Cle mod 3].read()

40 /l1f epoch changed, return -1.

a1 if epoch = e then return v

42 esereturn —1

44 [/ The leave operation cannot be called concurrently.
ssprocedure leave(e) // Leave after exiting critical sec.
46 if epoch = e then

47 /I I ncrement count of departed procs:

48 Lcount[epoch| <— Lcount[epoch] + 1

49 total < read() // Read dynanic counter.

50 /I 't # departures is above threshold,

51 /I and # departures is a |arge-enough

52 /l fraction of arrivals, epoch ends.

53 if (Lecount[epoch] > X - total) and
(Lcount|epoch] > T) then

54 /l O ear counter for previous epoch.

55 C[(epoch — 1) mod 3].clear()

56 epoch < epoch + 1 [l I ncrement epoch.

57 /I Trigger wake-up of all procs.

58 new-epoch|epoch — 1] <+ true

59
60 procedure get-epoch()
61 return epoch

¢ in epoche, and letA, be the number of active processes
at the end ofr. Note that\ < 1 is defined in Line 53, and
its precise value is fixed t®(1/~1) in the proof.
Lemma 9:For every constant, there exists a constant
£ > 1 such that for every epoctt
1) For everyleave operation¢ in epoche: Leountle] <
max(4\3]A¢|,T) at the end of, with probability at
leastl — 1/n°.
2) For everyread operationT in epoche that returns
value z, thenz < fmax(|A,|,T), with probability at
leastl — 1/n°. O

6. MUTUAL EXCLUSION ALGORITHM

We now give the mutual exclusion algorithm. To ensure
safety, the protocol guards the critical section witlioak.

A process can enter the critical section only after writing
its identifier to the lock with a CAS operation. We use a
dynamic countelC to track the number of active processes
and to define the epoch structure. When each competing
process finishes joining epocle, it attempts to find a slot

in a dense arrayl[e]. The arraysiot[p] stores the slot in the
array Ale] thatp is currently holding. For each epoehwe

also maintain a second approximate counténCount|e],
which counts the number of processes that have successfully
found a slot in the arraydle]. (The differenceC' minus
joinCount[e] indicates how many processes have begun but
not yet finished joining.)

For when there are only a small humber of processes,
each epoch also has a deterministgmall mutual exclusion
object sMutex]e] with only ©(T) ports (i.e., it costs each
processO(logT) to use). A bounded counterC[e] (with
max value©(T')) assigns the firs®(T") processes to join
an epoch to ports.

Competing for the Critical SectionWhen a process
p is first activated or awakened to join a new epoph,
executes theompete procedure. The first step is to clear all
events registered in prior epochs. Nexexecutes goin on
the dynamic counter (Line 24) with the call-back function
compete as a parameter. This callback function indicates
that when the next epoch begins, the progeshould call
compete again. Note that this is the first place where process
p performs an RMR after awakening, and critically, that the
RMR is awrite to memory that makes a mark, allowing the
other processes to obserys existence.

Next, proces® loops (Lines 28-31): it reads the dynamic
counterC, and attempts to claim (via &AS) a random
location in the arrayd[e], selecting within a subarray based
on the value returned bg', but always of size)(T"). The
density of C' is determined by the accuracy of the counter
C' ideally, a constant-fraction of the slots in the artaje]
are full. This allowsp to readily find a free slot. Next, in
Line 34, the procesp increments the countgoinCount|e],
indicating that it has successfully joined arraye].



10bject mutual-exclusion(c) a5 procedure small-mutex-win(p, €)
2 constantT = O(log" n) 46 CAS(lock,0,p) Il Try to claiml ock.
3 constants, as defined in Lemma 9 47 [[1f p gets lock, attenpt to enter critical sec.
4 constant, as defined in Lemma 2 48 if lock = p then mutex-win(p,e)
5 constants, as defined in Lemma 7 49 e€else /l1f lock frees, try again.
6 /l Lock to guard critical section. 50 register(when (lock = 0)) do small-mutex-win(p, €))
7 lock : process identifier, initially zero 51
8 C : dynamic-counter(c), dynamic counter 52 // Try to enter critical section for epoch e.
9 /l'1n epoch e, spinin Al until awakened: 53 procedure mutex-win(p, €)
10 Af[l..n][1..0(n)]: 2D array 54 CAS(lock, 0, p)
11/l Slot in A where pis currently spinning: 55 if (lock = p) and (C.getEpoch() =e) then
12 slot[l..n] : array of integers, one per process 56 Il Sstop anything that can interrupt process.
13 /] Counts # processes that have finished joining: 57 clear-registered-events(p)
14 joinCount[l..n]:approx-counter(c), one per epoch 58 Execute critical section.
15 [/ Used to claima port in small nutex instance: 59 sMutex|e].leave() // Exit small nutex instance.
16 sC[1..n] : bounded-counter((48cS/e)T’) 60 C.leave(e) [/ Leave dynamic counter.
17 I/ Small nutex instances: 61 Ale, slot[p]] +~ 0 [/l Gear array slot.
18 sMutez[1..n] : array of deterministic mutual exclusion 62 CAS(lock,p,0) Il Rel ease I ock.
instances of siz€96¢3/e)T 63 done < false // Find process to handoff to.
19 64 while done = false do
20 procedure compete(p) 65 vy 4— C.read()
21 // Stop interrupts fromearlier epoch events. 66 vy 4 joinCountle].read()
22 clear-registered-events(p) 67 /It small # of participants:
23 [/ Join dynamic ctr: callback function is compete. 68 if v1 < (328v/6)T then done < true
24 e < C.join(p, compete(p)) 69 /[''f we know > 1 processes are joining: €lse
25 done < false if v1 > 2(8/0)ve then done + true
26 While done = false do 70 else
27 /I Read dynanic counter. 71 Randomly choosé € {1..Awvs}.
28 v — max(C.read(), (48¢c/e)T) 72 x  Ale, ]
29 Randomly chooselot[p] € {1..(4/¢e)v} 73 if >0 then done <— CAS(Ale, 1], x,p)
30 / daimslot in array A.
31 done < CAS(Ale, slot[p]], 0, p)
32 /[ Count procs that finished joining the array.
3 (a,b) = joinCount|e].pre-join() process awakens it by modifying its slot in the arcaj).
u  joinCountle] join((a,)) Procesg then checks whether thieck is available, and if
35/l First ©(T) processes join the small nutex. o L . .
% s sCle]join() so, it trl(_es to acquire it and executeutex-win. After trying
37 if s >0 then to acquire the lock, procegs can safely spin, waiting for
38 sMutez|e].join(s, small-mutex-win(p, €)) either a new epoch or to be awakened via the aday
39 Register an interrupt if aslot in A is updated. On Winning the LockWhen process is awakened via
" reg'séeor (r\‘r/1V:teer:<(—€v[iiy(;locf)[)pH changes)) the arrayA, it executesnutex-win. The first action by is to
2 CAS(lock,0,p) Il Tr’y to claimlock. try to acquire thdock. If it fails, then it continues spinning.
43 Il1f p gets lock, attempt to enter critical sec. If it succeeds, and if the epoch has not changed, then it
a4 if lock = p then mutex-win(p,e) clears all registered events and enters the critical sectio

(Note that up until this point, it may be interrupted by other
events, e.g., a new epoch or a newtex-win.)

Whenp exits the critical section, it leaves the small mutual

The next part of thecompete procedure copes with the exclusion instancesMutez|e], it leaves the countef’, and
case when there are a small number of processes active indeparts from the arrayl[e]. (Note that it does not matter
epoche. Procesg increments the small counter’, and if  in which wayp won the critical section.) It then releases the
it is one of the firstO(T") processes to do so (i.e., if it gets |ock on Line 62, allowing others to enter the critical sestio
back a values > 0) then it competes in the small mutual  The remainder of thenutex-win procedure ensures that
exclusion instance for epoehi.e., sMutez[e]. The function  some other process will later enter the critical section. If
small-mutex-win(p, e) is passed as the callback function to the number of processes in epoetis small, i.e., they are
be executed iy wins the sMutez|e] instance. Ifp wins, it all contained insMutez|e], then there is no need to do any
continually tries to get the lock until it succeeds or a newfyrther work. (This is checked on Line 68.) On the other
epoch begins. At any given time, at most one process hagand, if there are processes that have entered, but not yet
won the sMutex instance and is waiting for the lock. finished joining the arrayd[e] (and not yet begun to spin),

In the last part of thecompete procedure, procesp  then procesp can safely exit. (This is checked on Line 69.)
registers an event, i.e., to cathutex-win if some other Otherwise, procesg must find some process in the array



and wake it. A key technical challenge is ensuring that this [5] J. Aspnes, H. Attiya, and K. Censor, “Max registers, counters,
array remains dense, and hence that spinning processes are and monotone circuits,” ifProceedings of the 28th Annual

easy to find, even as some processes may not yet have joine
the arrayAle], and other processes may have already left the
system. Fortunately, if there afe(T") processes that have
joined epocte, and if all of those processes have completed
joining the arrayAle], then we can be sure that the array is

dense, and hence with constant probability, progessll
find a spinning process (Lines 71-73).

Analysis: Mutual exclusion follows trivially from the
use of a lock to protect the critical section.

Theorem 10:For every execution, no two processes enter [8]

the critical section at the same time. O
The second key claim is that there is no deadlock.

Theorem 11:Every process eventually enters the critical [9]

section, with high probability. O
We now examine the performance of the protocol.
Theorem 12:In each execution there at@(nlog® logn)

RMRs, with high probability. O

7. CONCLUSION

We have presented a new mutual exclusion algorithm

with amortizedO(log? log n) RMRs per process, with high
probability.

explore intermediate adversaries (see, e.g., [7], [9]).

Second, we ensure only that all processes enter the critical

section with high probability (rather than with probalyilit).

This weakening does not seem fundamental. By detectin
when the counter’s value is too big or too small, it may be

possible to avoid deadlock in all cases.
It would also be interesting to consider otHecal spin-

ning models. It seems likely that the results here extend t416]
the DSM (dynamic shared memory) model, but there are

subtle differences to resolve.
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