
Communication-Aware Processor Allocation for

Supercomputers�

Michael A. Bender1, David P. Bunde2, Erik D. Demaine3, Sándor P. Fekete4,
Vitus J. Leung5, Henk Meijer6, and Cynthia A. Phillips5

1 Department of Computer Science,
SUNY Stony Brook, Stony Brook, NY 11794-4400, USA.

bender@cs.sunysb.edu.
2 Department of Computer Science,

University of Illinois, Urbana, IL 61801, USA.
bunde@uiuc.edu.

3 MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA.

edemaine@mit.edu.
4 Dept. of Mathematical Optimization,
Braunschweig University of Technology,

38106 Braunschweig, Germany.
s.fekete@tu-bs.de.

5 Discrete Algorithms & Math Department,
Sandia National Laboratories, Albuquerque, NM 87185-1110, USA.

{vjleung, caphill}@sandia.gov.
6 Dept. of Computing and Information Science,

Queen’s University,
Kingston, Ontario, K7L 3N6, Canada.

henk@cs.queensu.ca.

Abstract. We give processor-allocation algorithms for grid architec-
tures, where the objective is to select processors from a set of available
processors to minimize the average number of communication hops.
The associated clustering problem is as follows: Given n points in �d, find
a size-k subset with minimum average pairwise L1 distance. We present a
natural approximation algorithm and show that it is a 7

4
-approximation

for 2D grids. In d dimensions, the approximation guarantee is 2 − 1
2d

,
which is tight. We also give a polynomial-time approximation scheme
(PTAS) for constant dimension d and report on experimental results.

1 Introduction

We give processor-allocation algorithms for grid architectures. Our objective
is to select processors to run a job from a set of available processors so that the
average number of communication hops between processors assigned to the job
is minimized. Our problem is restated as follows: given a set P of n points in
�d, find a subset S of k points with minimum average pairwise L1 distance.
� Extended Abstract. A full version is available as [5].

Motivation: Processor Allocation in Supercomputers. Our algorithmic work is
motivated by a problem in the operation of supercomputers. The supercomputer
for which we targeted our simulations and experiments is called Computational
Plant or Cplant [7, 25], a commodity-based supercomputer developed at San-
dia National Laboratories. In Cplant, a scheduler selects the next job to run
based on priority. The allocator then independently places the job on a set of
processors which exclusively run that job to completion. Security constraints
forbid migration, preemption, or multitasking. To obtain maximum throughput
in a network-limited computing system, the processors allocated to a single job
should be physically near each other. This placement reduces communication
costs and avoids bandwidth contention caused by overlapping jobs. Experiments
have shown that processor allocation affects throughput on a range of architec-
tures [3,17,20,21,23]. Several papers suggest that minimizing the average number
of communication hops is an appropriate metric for job placement [16, 20, 21].
Experiments with a communication test suite demonstrate that this metric cor-
relates with a job’s completion time [17].

Early processor-allocation algorithms allocate only convex sets of processors
to each job [6, 9, 18, 29]. For such allocations, each job’s communication can
be routed entirely within processors assigned to that job, so jobs contend only
with themselves. But requiring convex allocations reduces the achievable system
utilization to levels unacceptable for a government-audited system [15,26].

A Free processor

Allocated processor

Fig. 1. Illustration of MC: Shells around processor A for a 3 × 1 request.

Recent work [8,17,19,22,26] allows discontiguous allocation of processors but
tries to cluster them and minimize contention with previously allocated jobs.
Mache, Lo, and Windisch [22] propose the MC algorithm for grid architectures:
For each free processor, algorithm MC evaluates the quality of an allocation
centered on that processor. It counts the number of free processors within a
submesh of the requested size centered on the given processor and within “shells”
of processors around this submesh. The cost of the allocation is the sum of the
shell numbers in which free processors occur; see Figure 1 reproduced from [22].
MC chooses the allocation with lowest cost. Since users of Cplant do not request
processors in a particular shape, in this paper, we consider MC1x1, a variant in
which shell 0 is 1 × 1 and subsequent shells grow in the same way as in MC.

Until recently, processor allocation on the Cplant system was not based on
the locations of the free processors. The allocator simply verified that enough
processors were free before dispatching a job. The current allocator uses space-
filling curves and 1D bin-packing techniques based upon work of Leung et al. [17].

Related Algorithmic Work. Krumke et al. [16] consider a generalization of our
problem on arbitrary topologies for several measures of locality, motivated by
allocation on the CM5. They prove it is NP-hard to approximate average pairwise
distance in general, but give a 2-approximation for distances obeying the triangle
inequality.

A natural special case of the allocation problem is the unconstrained problem,
in the absence of occupied processors: For any number k, find k grid points
minimizing average pairwise L1 distance. For moderate values of k, these sets
can be found by exhaustive search; see Figure 2. The resulting shapes appear to
approximate some “ideal” rounded shape, with better and better approximation
for growing k. Karp et al. [14] and Bender et al. [4] study the exact nature of
this shape. Surprisingly, the resulting convex curve can only be described by
a differential equation; the closed-form solution is unknown. The complexity of
this special case remains open, but its mathematical difficulty emphasizes the
hardness of obtaining good solutions for the general constrained problem.

25/15=1.666

124/55=2.25496/45=2.133

374/136=2.750 632/210=3.009563/190=2.963496/171=2.900433/153=2.830

227/91=2.494 272/105=2.590 318/120=2.650

38/21=1.809 72/36=2.00054/28=1.928

16/10=1.6008/6=1.3334/3=1.3331/1=1.000

188/78=2.410152/66=2.303

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

w
(x

)

x

w(x)
circle

Fig. 2. (Left) Optimal unconstrained clusters for small values of k; numbers shown
are the average L1 distances, with truncated decimal values. (Right) Plot from [4] of a
quarter of the optimal limiting boundary curve; the dotted line is a circle.

In reconfigurable computing on field-programmable gate arrays (FPGAs),
varying processor sizes give rise to a generalization of our problem: place a
set of rectangular modules on a grid to minimize the overall weighted sum of
L1 distances between modules. Ahmadinia et al. [1] give an optimal Θ(n log n)
algorithm for finding an optimal feasible location for a module given a set of
n existing modules. At this point, no results are known for the general off-line
problem (place n modules simultaneously) or for on-line versions.

Another related problem is min-sum k-clustering: separate a graph into k
clusters to minimize the sum of distances between nodes in the same cluster. For
general graphs, Sahni and Gonzalez [24] show it is NP-hard to approximate this
problem to within any constant factor for k ≥ 3. In a metric space, Guttmann-
Beck and Hassin [12] give a 2-approximation, Indyk [13] gives a PTAS for k = 2,
and Bartel et al. [2] give an O((1/ε) log1+ε n)-approximation for general k.

Fekete and Meijer [11] consider the problem of maximizing the average L1

distance. They give a PTAS for this dispersion problem in �d for constant d,
and show that an optimal set of any fixed size can be found in O(n) time.

Our Results. We develop algorithms for minimizing the average L1 distance be-
tween allocated processors in a mesh supercomputer. A greedy heuristic we an-
alyze called MM and a 3D version of MC1x1 have been implemented on Cplant.
In particular, we give the following results:

– We prove that MM is a 7
4 -approximation algorithm for 2D grids, reducing

the previous best factor of 2 [16], and we show that this analysis is tight.
– We present a simple generalization to general d-dimensional space with fixed

d and prove that the algorithm gives a 2− 1
2d -approximation algorithm, which

is tight.
– We give an efficient polynomial-time approximation scheme (PTAS) for

points in �d for constant d.
– Using simulations, we compare the allocation performance of our algorithm

to that of other algorithms. As a byproduct, we get insight on how to place
a stream of jobs in an online setting.

In addition, we have a number of other results whose details are omitted due
to space constraints: We have a linear-time exact algorithm for the 1D case based
on dynamic programming. We prove that the d-dimensional version of MC1x1
has approximation factor at most d times that of MM. We have an algorithm to
solve the 2-dimensional case for k = 3 in time O(n log n).

2 Manhattan Median Algorithm for Two-Dimensional
Point Sets

2.1 Median-Based Algorithms

Given a set S of k points in the plane, a point that minimizes the total
L1 distance to these points is called an (L1) median. Given the nature of L1

distances, this is a point whose x-coordinate (resp. y-coordinate) is the median
of the x (resp. y) values of the given point set. We can always pick a median
whose coordinates are from the coordinates in S. There is a unique median if k
is odd; if k is even, possible median coordinates may form intervals.

The natural greedy algorithm for our clustering problem is as follows:

Consider the O(n2) intersection points of the horizontal and vertical lines
through the points in P . For each of these points p do:

1. Take the k points closest to p (using the L1 metric), breaking ties
arbitrarily.

2. Compute the total pairwise distance between all k points.

Return the set of k points with smallest total pairwise distance.

We call this strategy MM, for Manhattan Median. We prove that MM is a
7
4 -approximation on 2D meshes. (Note that Krumke et al. [16] call this algorithm
Gen-Alg and show it is a 2-approximation in arbitrary metric spaces.)

2.2 Analysis of the Algorithm

For S ⊆ P , let |S| denote the sum of L1 distances between points in S. For
a point p in the plane, we use px and py to denote its x- and y-coordinates
respectively.

Lemma 1. MM is not better than a 7/4 approximation.

Proof. For a class of examples establishing the lower bound, consider the situa-
tion shown in Figure 3. For any ε > 0, it has clusters of k/2 points at (0, 0) and
(1, 0). In addition, it has clusters of k/8 points at (0,±(1 − ε)), (1,±(1 − ε)),
(2− ε, 0), and (−1+ ε, 0). The best choices of median are (0, 0) and (1, 0), which
yield a total distance of 7k2(1 −Θ(ε))/16. The optimal solution is the points at
(0, 0) and (1, 0), which yield a total distance of k2/4. ��

k/8 points

k/2 points
(1, 1 − ε)(0, 1 − ε)

(1, 0)(0, 0)

(0, −1 + ε) (1, −1 + ε)

(2 − ε, 0)(−1 + ε, 0)

Fig. 3. A class of examples where MM yields a ratio of 7/4.

Now we show that 7/4 is indeed the worst-case bound. We focus on pos-
sible worst-case arrangements and use local optimality to restrict the possible
arrangements until the claim follows.

Let OPT be a subset of P of size k for which |OPT| is minimum. Without
loss of generality assume that the origin is a median point of OPT. This means
that the number of points of OPT with positive or negative x- or y-coordinates
is at most k/2. Let MM be the set of k points closest to the origin. (Since this
is one candidate solution for the algorithm, its sum of pairwise distances is at
least as high as that of the solution returned by the algorithm.)

Without loss of generality, assume that the largest distance of a point in MM
to the origin is 1, so MM lies in the unit circle C. We say that points are either
inside C, on C, or outside C. All points of P inside C are in MM and at least
some points on C are in MM. If there are more than k points on and inside C,
we select all points inside C plus those points on C maximizing |MM|.

Clearly 1 ≤ |MM|/|OPT|. Let ρk be the supremum of |MM|/|OPT| over all
input configurations P . By assuming that ties are broken badly, we can assume
that there is a configuration S ⊆ P for which |MM|/|OPT| = ρk:

Lemma 2. For any n and k, there are point sets P with |P | = n for which
|MM|/|OPT| attains the value ρk.

Proof. The set of arrangements of n points in the unit circle C is a compact set
in 2d-dimensional space. By our assumption on breaking ties, |MM|/|OPT| is
upper semi-continuous, so it attains a maximum. ��

For k ≤ 8n/11 we show |MM| is at most 7/4 times larger than |OPT|.
Lemma 3. For k ≤ 8n/11 we have ρk ≤ 7/4.

Sketch of Proof. We assume that we have a point set P for which ρk is equal to
7/4. We can assume without loss of generality that P = MM ∪ OPT. If there
is a point p ∈ P that does not lie in a corner of C or on the origin, we look at
all points that lie on the axis-parallel rectangle through p with corners on C.
We move these points simultaneously, in such a way that they stay on an axis-
parallel rectangle with corners on C. This move changes |MM| by some small
amount δa and |OPT| by some amount δo. However if we move all points in the
opposite direction |MM| and |OPT| change by −δa and −δo respectively. So if
δa/δo 	= ρk, one of these two moves increases |MM|/|OPT|, which is impossible.
If δa/δo = ρk we keep moving the points in the same direction until there is a
combinatorial change in P . We can then repeat this argument until all points of
P lie on a corner of C or on the origin.

It is now not too hard to show that the ratio MM/OPT is maximal if there
are k/2 points at the origin, k/2 points in one corner of C and k/8 points at
each of the other three corners. So we have |MM|/|OPT| = 7/4. Notice that n
has to be at least 11k/8 for this value to be obtained. ��

For larger values of k it can be shown that ρk decreases, so we summarize:

Theorem 1. MM is a 7/4-approximation algorithm for minimizing the sum of
pairwise L1 distances in a 2D mesh.

3 PTAS for Two Dimensions

Let w(S, T) be the sum of all the distances from points in S to points in T .
Let wx(S, T) and wy(S, T) be the sum of x- and y- distances from points in S to
points in T , respectively. So w(S, T) = wx(S, T)+wy(S, T). Let w(S) = w(S, S),
wx(S) = wx(S, S), and wy(S) = wy(S, S). We call w(S) the weight of S.

Let S = {s0, s1, . . . , sk−1} be a minimum-weight subset of P , where k is an
integer greater than 1. We label the x- and y-coordinates of a point s ∈ S by
some (xa, yb) with 0 ≤ a < k and 0 ≤ b < k such that x0 ≤ x1 ≤ . . . ≤ xk−1 and
y0 ≤ y1 ≤ . . . ≤ yk−1. (Note that in general, a 	= b for a point s = (xa, yb).) We
can derive the following equations: wx(S) = (k−1)(xk−1−x0)+(k−3)(xk−2−
x1) + . . . and wy(S) = (k − 1)(yk−1 − y0) + (k − 3)(yk−2 − y1) + . . . We
show that there is a polynomial-time approximation scheme (PTAS), i.e., for
any fixed positive m = 1/ε, there is a polynomial approximation algorithm that
finds a solution within (1 + ε) of the optimum.

The basic idea is similar to the one used by Fekete and Meijer [11] to select a
set of points maximizing the overall distance: We find (by enumeration) a subdi-
vision of an optimal solution into m×m rectangular cells Cij , each containing a

specific number kij of selected points. The points from each cell Cij are selected
in a way that minimizes the total distance to all other cells except for the m− 1
cells in the same “horizontal” strip or the m−1 cells in the same “vertical” strip.
As it turns out, this can be done in a way that the total neglected distance within
the strips is bounded by a small fraction of the weight of an optimal solution,
yielding the desired approximation property. See Figure 4 for the setup.

η2

η1

η0

ξ0 ξ1 ξ2 ξm

ηm

ηm−1

X0 X1 Xm−1

Ym−1

Y0

Y1

ξm−1

C11

C10

C01

C00

Fig. 4. Dividing the point set in horizontal and vertical strips.

For ease of presentation, we assume that k is a multiple of m and m > 2.
Approximation algorithms for other values of k can be constructed in a similar
fashion. Consider a division of the plane by a set of m+1 x-coordinates ξ0 ≤ ξ1 ≤
. . . ≤ ξm. Let Xi := {p = (x, y) | ξi ≤ x ≤ ξi+1} be the vertical strip between
coordinates ξi and ξi+1. By enumeration of possible values of ξ0, . . . , ξm we may
assume that each of the m strips Xi contains precisely k/m points of an optimal
solution. (A small perturbation does not change optimality or approximation
properties of solutions. Thus, without loss of generality, we assume that no pair
of points share either x-coordinate or y-coordinate.)

In a similar manner, assume we know m+1 y-coordinates η0 ≤ η1 ≤ . . . ≤ ηm

so that an optimal solution has precisely k/m points in each horizontal strip
Yi := {p = (x, y) | ηi ≤ y ≤ ηi+1}.

Let Cij := Xi ∩ Yj , and let kij be the number of points in OPT that are
chosen from Cij . Since for all i, j ∈ {1, 2, . . . , m},

∑

0≤l<m

klj =
∑

0≤l<m

kil = k/m,

we may assume by enumeration over the O(km) possible partitions of k/m into
m pieces that we know all the numbers kij .

Finally, define the vector ∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). Our
approximation algorithm is as follows: from each cell Cij , choose kij points that
are minimum in direction ∇ij , i.e., select points p = (x, y) for which (x(2i + 1−
m)k/m, y(2j + 1 − m)k/m) is minimum. For an illustration, see Figure 5.

It can be shown that selecting points of Cij this way minimizes the sum of
x-distances to points not in Xi and the sum of y-distances to points not in Yj .
The details are somewhat technical and are described in the full version of the
paper [5]. We summarize:

Theorem 2. The problem of selecting a subset of minimum total L1 distance
for a set of points in �2 allows a PTAS.

k12 = 4

i = 1,
j = 2,

η3

η2

ξ1 ξ2

“
(2+1−m)k

m
,
(4+1−m)k

m

”

Fig. 5. Selecting points in cell C12.

4 Higher-Dimensional Spaces

Using the same techniques, we also generalize our results to higher dimen-
sions. We start by describing the performance of MM.

4.1
(
2 − 1

2d

)
-Approximation

As in two-dimensional space, MM enumerates over the O(nd) possible medi-
ans. For each median, it constructs a candidate solution of the k closest points.
Lemma 4. MM is not better than a 2 − 1/(2d) approximation.
Proof. We construct an example based on the cross-polytope in d dimensions,
i.e., the d-dimensional L1 unit ball. Let ε > 0. Denote the origin with O and
the ith unit vector with ei. The example has k/2 points at O and O + e1. In
addition, there are k/(4d) points at O − (1 − ε)e1, O + (2 − ε)e1, O ± (1 − ε)ei

for i = 2, . . . , d, and O + e1 ± (1 − ε)ei for i = 2, . . . , d. MM does best with O
or O + e1 as median, giving a total distance of (k2/4) (2 − 1/(2d)) (1 + Θ(ε)).
Optimal is the points at O and O + e1, giving a total distance of k2/4. ��

Establishing a matching upper bound can be done analogously to Section 2.
Lemma 2 holds for general dimensions. The rest is based on the following lemma:

Lemma 5. Worst-case arrangements for MM can be assumed to have all points
at positions (0, . . . , 0) and ±ei, where ei is the ith unit vector.

Sketch of Proof. Consider a worst-case arrangement within the cross-polytope
centered at the origin with radius 1. Local moves consist of continuous changes in
point coordinates, performed in such a way that the number of coordinate values
is kept. This means that to move a point having a coordinate value different from
0, 1,−1, then all other points sharing that coordinate value are moved to keep
the identical coordinates the same, analogous to the proof of Lemma 3.

Note that under these moves, the functions OPT and MM are locally linear,
so the ratio of MM and OPT is locally constant, strictly increasing, or strictly
decreasing. If a move decreases the ratio, the opposite move increases it, contra-
dicting the assumption that the arrangement is worst-case.

If the ratio is locally constant during a move, it will continue to be extremal
until an event occurs, i.e., when the number of coordinate identities between
points increases, or the number of point coordinates at 0, 1,−1 increase. While
there are points with coordinates different from 0, 1,−1, there is always a move
that decreases the total degrees of freedom, until all dn degrees of freedom have
been eliminated. Thus, we can always reach an arrangement with point coordi-
nates values from the set {0, 1,−1}. These leaves the origin and the 2d positions
±ei as only positions within the cross-polytope. ��

The restricted set of arrangements can be evaluated with symmetry to yield

Theorem 3. For points lying in d-dimensional space, MM is a 2−1/2d-approxi-
mation algorithm, which is tight.

4.2 PTAS for General Dimensions

Theorem 4. For any fixed d, the problem of selecting a subset of minimum total
L1 distance for a set of points in �d allows a PTAS.
Sketch of Proof. For m = Θ(1/ε), we subdivide the set of n points with d(m+1)
axis-aligned hyperplanes, such that (m + 1) are normal for each coordinate di-
rection. Moreover, any set of (m+1) hyperplanes normal to the same coordinate
axis is assumed to subdivide the optimal solution into k/m equal subsets, called
slices. Enumeration of all possible structures of this type yields a total of nm

choices of hyperplanes in each coordinate, for a total of nmd possible choices.
For each choice, we have a total of md cells, each containing between 0 and k
points; thus, there are O(mkd) different distributions of cardinalities to the dif-
ferent cells. As in the two-dimensional case, each cell picks the assigned number
of points extremal in its gradient direction.

It is easily seen that for each coordinate xi, the above choice minimizes the
total sum of xi-distances between points not in the same xi-slice. The remain-
ing technical part (showing that the sum of distances within slices are small
compared to the distances between different slices) is analogous to the details
described in the full version of the paper [5] and omitted. ��

5 Experiments

The work discussed so far is motivated by the allocation of a single job. In
the following, we examine how well our algorithms allocate streams of jobs; now
the set of free processors available for each job depends on previous allocations.

To understand the interaction between the quality of an individual allocation
and the quality of future allocations, we ran a simulation involving pairs of algo-
rithms. One algorithm, the situation algorithm, places each job. This determines
the free processors available for the next job. Each allocation decision serves as
an input to the other algorithm, the decision algorithm. Each entry in Table 1
represents the average sum of pairwise distances for the decision algorithm with
processor availability determined by the situation algorithm.

Our simulation used the algorithms MC1x1, MM, MM+Inc, and HilbertBF.
MM+Inc uses local improvement on the allocation of MM, replacing an allocated
processor with an excluded processor that improves average pairwise distance
until it reaches a local minimum. HilbertBF is the 1-dimensional strategy of
Leung et al. [17] used on Cplant. The simulation used the LLNL Cray T3D
trace7 from the Parallel Workloads Archive [10]. This trace has 21323 jobs run
on a machine with 256 processors, treated as a 16× 16 mesh in the simulation.

Situation Decision Algorithm
Algorithm MC1x1 MM MM+Inc HilbertBF

MC1x1 5256 5218 5207 5432

MM 5323 5285 5276 5531

MM+Inc 5319 5281 5269 5495

HilbertBF 5090 5059 5046 5207

Table 1. Average sum of pairwise distances when the decision algorithm makes allo-
cations with input provided by the situation algorithm.

In each row, the algorithms are ranked in the order MM+Inc, MM, MC1x1,
and HilbertBF. This is consistent with the worst-case performance bounds; MM
is a 7/4-approximation, MC1x1 is a 7/2-approximation, and HilbertBF has an
unbounded ratio8.

6 Conclusions

The algorithmic work described in this paper is one step toward developing
algorithms for scheduling mesh-connected network-limited multiprocessors. We
have given provably good algorithms to allocate a single job. The next step is to
study the allocation of job sequences, a markedly different algorithmic challenge.

The difference between making a single allocation and a sequence of allo-
cations is already illustrated by the diagonal entries in Table 1, where the free
processors depend on the same algorithm’s previous decisions. These give the
ranking (from best to worst) HilbertBF, MC1x1, MM+Inc, and MM. The lo-
cally better decisions of MM+Inc seem to paint the algorithm into a corner over
time. Figures 1 and 2 help explain why. When starting on an empty grid, MC
produces connected rectangular shapes. Locally, these shapes are slightly worse
than the round shapes produced by MM, but rectangles have better packing
properties because they avoid small patches of isolated grid nodes.

We confirmed this behavior over an entire trace using Procsimity [27, 28],
which simulates messages moving through the network. We ran the NASA Ames
iPSC/860 trace7 from the Parallel Workloads Archive [10], scaling down the
number of processors for each job by a factor of 4. This made the trace run

7 We thank Moe Jette and Bill Nitzberg for providing the LLNL and NASA Ames
iPSC/860 traces, respectively, to the Parallel Workloads Archive.

8 On an N × N mesh, the approximation ratio can be Ω(N).

on a machine with 32 processors, allowing us to find the greedy placement that
minimizes average pairwise distance at that step. For average job flow time,
MC1x1 was best, followed by MM, and then greedy. We did not run MM+Inc
in this simulation. HilbertBF was much worse than all three of the algorithms
mentioned in part due to difficulties using it on a nonsquare mesh.

Thus, the online problem in an iterated scenario is the most interesting open
problem. We believe that a natural attack may be to consider online packing of
rectangular shapes of given area. We plan to pursue this in future work.

Acknowledgments

We thank Jens Mache for informative discussions on processor allocation.
Michael Bender was partially supported by Sandia and NSF Grants EIA-0112849
and CCR-0208670. David Bunde was partially supported by Sandia and NSF
grant CCR 0093348. Sándor Fekete was partially supported by DFG grants FE
407/7 and FE 407/8. Henk Meijer was partially supported by NSERC. Sandia is
a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under contract DE-AC04-
94AL85000.

References

1. A. Ahmadinia, C.Bobda, S. Fekete, J.Teich, and J. der Veen. Optimal routing-
conscious dynamic placement for reconfigurable computing. In International Con-
ference on Field-Programmable Logic and its applications, volume 3203 of LNCS,
pages 847–851. Springer, 2004.

2. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric
spaces. In Proc. 33rd Symp. on Theory of Computation, pages 11–20, 2001.

3. S. Baylor, C. Benveniste, and Y. Hsu. Performance evaluation of a massively paralel
I/O subsystem. In R. Jain, J. Werth, and J. Browne, editors, Input/Output in
parallel and distributed computer systems, volume 362 of The Kluwer International
Series in Engineering and Computer Science, chapter 13, pages 293–311. Kluwer
Academic Publishers, 1996.

4. C. M. Bender, M. A. Bender, E. D. Demaine, and S. P. Fekete. What is the optimal
shape of a city? J. Physics A: Mathematical and General, 37:147–159, 2004.

5. M. A. Bender, D. P. Bunde, E. D. Demaine, S. P. Fekete, V. J. Leung, H. Mei-
jer, and C. A. Phillips. Communication-aware processor allocation for super-
computers. Technical Report cs.DS/0407058, Computing Research Repository,
http://arxiv.org/abs/cs.DS/0407058, 2004.

6. S. Bhattacharya and W.-T. Tsai. Lookahead processor allocation in mesh-
connected massively parallel computers. In Proc. 8th International Parallel Pro-
cessing Symposium, pages 868–875, 1994.

7. R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Mac-
cabe, and R. Riesen. Massively parallel computing using commodity components.
Parallel Computing, 26(2-3):243–266, 2000.

8. C. Chang and P. Mohapatra. Improving performance of mesh connected multicom-
puters by reducing fragmentation. Journal of Parallel and Distributed Computing,
52(1):40–68, 1998.

9. P.-J. Chuang and N.-F. Tzeng. An efficient submesh allocation strategy for mesh
computer systems. In Proc. Int. Conf. Dist. Comp. Systems, pages 256–263, 1991.

10. D. Feitelson. The parallel workloads archive. http://www.cs.huji.ac.il/labs/

parallel/workload/index.html.
11. S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight

cliques. Algorithmica, 38:501–511, 2004.
12. N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum sum

p-clustering. Disc. Appl. Math., 89:125–142, 1998.
13. P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.

In Proc. 40th Ann. IEEE Symp. Found. Comp. Sci. (FOCS), pages 154–159, 1999.
14. R. M. Karp, A. C. McKellar, and C. K. Wong. Near-optimal solutions to a 2-

dimensional placement problem. SIAM Journal on Computing, 4:271–286, 1975.
15. P. Krueger, T.-H. Lai, and V. Dixit-Radiya. Job scheduling is more important

than processor allocation for hypercube computers. IEEE Trans. on Parallel and
Distributed Systems, 5(5):488–497, 1994.

16. S. Krumke, M. Marathe, H. Noltemeier, V. Radhakrishnan, S. Ravi, and
D. Rosenkrantz. Compact location problems. Th. Comp. Sci., 181:379–404, 1997.

17. V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal, J. Mitchell,
C. Phillips, and S. Seiden. Processor allocation on Cplant: achieving general pro-
cessor locality using one-dimensional allocation strategies. In Proc. 4th IEEE In-
ternational Conference on Cluster Computing, pages 296–304, 2002.

18. K. Li and K.-H. Cheng. A two-dimensional buddy system for dynamic resource
allocation in a partitionable mesh connected system. Journal of Parallel and Dis-
tributed Computing, 12:79–83, 1991.

19. V. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous processor allocation
algorithms for mesh-connected multicomputers. IEEE Transactions on Parallel
and Distributed Computing, 8(7), 1997.

20. J. Mache and V. Lo. Dispersal metrics for non-contiguous processor allocation.
Technical Report CIS-TR-96-13, University of Oregon, 1996.

21. J. Mache and V. Lo. The effects of dispersal on message-passing contention in
processor allocation strategies. In Proc. Third Joint Conf. on Information Sciences,
Sessions on Parallel and Distributed Processing, volume 3, pages 223–226, 1997.

22. J. Mache, V. Lo, and K. Windisch. Minimizing message-passing contention in
fragmentation-free processor allocation. In Proc. 10th Intern. Conf. Parallel and
Distributed Computing Systems, pages 120–124, 1997.

23. S. Moore and L. Ni. The effects of network contention on processor allocation
strategies. In Proc. 10th Int. Par. Proc. Symp., pages 268–274, 1996.

24. S. Sahni and T. Gonzalez. p-complete approximation problems. JACM, 23(3):555–
565, 1976.

25. Sandia National Laboratories. The Computational Plant Project. http://www.cs

.sandia.gov/cplant.
26. V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson, and P. Sadayappan. Se-

lective buddy allocation for scheduling parallel jobs on clusters. In Proc. 4th IEEE
International Conference on Cluster Computing, 2002.

27. University of Oregon Resource Allocation Group. Procsimity. http://www.cs.

uoregon.edu/research/DistributedComputing/ProcSimity.html%.
28. K. Windisch, J. Miller, and V. Lo. Procsimity: An experimental tool for processor

allocation and scheduling in highly parallel systems. In Proc. Fifth Symp. on the
Frontiers of Massively Parallel Computation, pages 414–421, 1995.

29. Y. Zhu. Efficient processor allocation strategies for mesh-connected parallel com-
puters. J. Parallel and Distributed Computing, 16:328–337, 1992.

