
How Data Center Size Impacts the Effectiveness of Dynamic Power
Management

Anshul Gandhi and Mor Harchol-Balter

Abstract—Power consumption accounts for a significant por-
tion of a data center’s operating expenses. Sadly, much of this
power is wasted by servers that are left on even when there is
no work to do.

Dynamic power management aims to reduce power wastage
in data centers by turning servers off when they are not needed.
However, turning a server back on requires a setup time, which
can adversely affect system performance. Thus, it is not obvious
whether dynamic power management should be employed in a
data center.

In this paper, we analyze the effectiveness of dynamic power
management in data centers under an M/M/k model via Matrix-
analytic methods. We find that the effectiveness of even the
simplest dynamic power management policy increases with the
data center size, surpassing static power management when
the number of servers exceeds 50, under realistic setup costs
and server utilizations. Furthermore, we find that a small en-
hancement to traditional dynamic power management, involving
delaying the time until a server turns off, can yield benefits over
static power management even for data center sizes as small as
4 servers.

I. INTRODUCTION

Energy costs for data centers continue to rise every year,
already exceeding $19 billion annually and resulting in 11
million tons of CO2 emissions [4]. The sad part is that much
of this power is wasted. Servers are only busy less than 30%
of the time on average [1], [2], [7], but they are often left
on, while idle, utilizing 60% or more of peak power when
in the idle state.

For example, for the Intel Xeon E5520 servers in our lab,
power is burned at a rate of 200 Watts when running at peak
frequency and 140 Watts when idle. If the average utilization
of a data center is 30% and the data center is provisioned
for peak utilization, then 70% of servers are sitting idle on
average, but are still burning power at a rate of 140 Watts.

It seems that the solution should be simple: turn off servers
when they are not in use. This is known as dynamic power
management. However, turning off servers necessitates a
high setup overhead to get them back on again, which is
prohibitive for response times, and can waste yet additional
power. As an example, for the Intel Xeon E5520 servers in
our lab, the setup cost required to turn on a server which
is off is 260 seconds, during which time power is burned
at the peak rate of 200 Watts. This setup cost is particularly

This work was supported by NSF:CNS-1116282 and by Intel Research,
Pittsburgh.

Anshul Gandhi is a PhD student in the Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, 15213.
anshulg@cs.cmu.edu

Mor Harchol-Balter is an Associate Professor of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 15213.
harchol@cs.cmu.edu

formidable in light of the fact that the typical job size (service
requirement) is about 1 second. Given such a high setup cost
(both in time and energy), it is not at all obvious whether
one should turn off servers when idle.

The standard industry approach is to simply leave all
servers on all the time, even if only 30% of the servers are
being used on average. We refer to this static power manage-
ment policy as AlwaysOn. AlwaysOn has the advantage of
achieving low response times. While AlwaysOn seems to
be very wasteful of power, it is not obvious that it actually
uses more power than a policy which turns off idle servers,
given a setup cost that is very high relative to job size and
interarrival time.

In this paper, we start by defining a policy On/Off which
turns servers off when they are idle, and we provide analytical
results comparing AlwaysOn and On/Off in server farms.
Our analysis is based on Matrix-analytic methods, which are
numerical methods for analyzing complex Markov chains
which repeat and are unbounded in only one dimension. We
find that for smaller server farms, On/Off is often actually
worse than AlwaysOn with respect to both mean response
time and mean power, even when utilization is low (30%
utilization). This leads us to speculate on whether On/Off
ever makes sense. We therefore consider larger and larger
server farms, while keeping the utilization fixed at 30%.
We find that as the size of the server farm grows, On/Off
becomes more and more desirable, eventually outperforming
AlwaysOn by a factor of 2 or more in power, while
achieving response times comparable to AlwaysOn.

One of the problems with On/Off for smaller server
farms is that it is too quick to turn off servers when they are
idle, resulting in a (big) setup cost when new work comes
in (this is less of a problem in larger server farms because
there it is more likely that there is a server available when
new work comes in). To mitigate this problem, we introduce
an enhancement to On/Off, which we call DelayedOff.
The idea is simple: when a server goes idle, instead of
turning off immediately, the server waits for some time twait,
in case a job arrives. We develop an approximation for
choosing twait, and then show (again using Matrix-analytic
methods) that, using the right twait, the DelayedOff policy
vastly improves upon the performance of On/Off. As with
On/Off, we find that DelayedOff is most beneficial as
the size of the server farm grows, however unlike On/Off,
we find that DelayedOff is already superior to AlwaysOn
for small server farms.

Fig. 1. Illustration of our model.

II. MODEL, POLICIES, AND METRICS

A. Model

We assume a server farm with k servers, specifically,
an M/M/k, where all servers are homogeneous, as shown
in Figure 1. Job sizes (service times) are Exponentially-
distributed with mean E [S] = 1

µ , where µ is the speed of
each server. Arrivals occur according to a Poisson Process
with rate λ. The utilization of the server farm is:

ρ =
λ

kµ

Throughout the paper we set ρ = 30%. The Setup time is
denoted by random variable Tsetup, which is Exponentially-
distributed with rate α, where mean setup time is tsetup = 1

α .
We typically assume tsetup = 100 seconds. Power is con-
sumed at a rate of Pidle = 140 Watts when a server is idle,
and consumed at a rate of Pmax = 200 Watts when a server
is busy or is in setup mode. We assume that zero time is
required to turn off a server.

B. The policies

We consider one static power management policy and two
dynamic power management policies:

• AlwaysOn: This policy assumes that all k servers are
on all the time. A server may be either busy or idle.

• On/Off: Under this policy, servers are either off, in
setup, or busy. When a new job arrives, if there is a
server that is off, then the job puts that server into setup
mode; if all k servers are already busy or in setup, then
the job simply waits in the queue. Most servers do not
require the full Exp(α) time to set up. The reason is
that, whenever a busy server, b, frees up, if there is a
job waiting on a server s to setup, the job will move to
server b; at this point server s is given to a waiting job
in the queue, or is shut off if there is no waiting job.

• DelayedOff: Under this policy, servers are either off,
in setup, busy, or idle (in wait mode). This policy is
identical to On/Off, except that when a server would
normally turn off under On/Off, the server instead
goes into a wait mode. The wait duration is denoted

Fig. 2. Markov chain for On/Off. Tsetup ∼ Exp(α).

by the random variable Twait which is Exponentially-
distributed with rate β, where the mean wait duration is
twait =

1
β . If a job arrives during the Twait period, the

job takes over the waiting server, which now becomes
busy; otherwise, the server is turned off after the Twait
period.

Figure 2 shows the Markov chain for On/Off. Each state
takes the form (x, y), where x denotes the number of busy
servers and y denotes the total number of jobs in the system.
Clearly y ≥ x. Observe that the number of servers in setup
is then min{y − x, k − x}.

Suppose for example, that we are in state (2, 5), where
k = 10. Then there are no jobs in the queue and there are
3 servers in setup. Hence with rate 3α one of the servers
finishes setting up, moving us to (3, 5). Alternatively, with
rate 2µ, a job completes at one of the busy servers, so one of
the 3 jobs in setup moves there and the server in setup shuts
off, putting us in state (2, 4). Finally, with rate λ a new job
arrives which forces another server into setup mode, moving
us to state (2, 6).

Now suppose that we are in state (2, 5), where k = 4.
Then there is a job in the queue, and there are 2 servers in
setup and 2 busy servers. Now, with rate 2α we move to
(3, 5); with rate 2µ, we move to (2, 4); and with rate λ we
move to state (2, 6).

Figure 3 shows the Markov chain for DelayedOff. Here
the state takes the form (x, y), where x denotes the number
of servers that are busy or waiting to turn off, and y denotes
the total number of jobs in the system. Observe that there are
two distinct regions to the Markov chain. In the region where
y > x, there are x servers which are busy, y − x servers in
setup, and no servers waiting to turn off. In the region where
y < x, there are y servers busy, x−y servers waiting to turn
off, and no servers in setup.

The Markov chains in Figures 2 and 3 both have a finite
number of rows, k, and an infinite number of columns.
Importantly, both Markov chains repeat after the kth column.
This repeating property allows us to analyze both of these
chains via Matrix-analytic methods, which are numerical
methods tailored to such chains (see [5]). Once we obtain

Fig. 3. Markov chain for DelayedOff. Tsetup ∼ Exp(α) and Twait ∼
Exp(β).

the limiting probability for each state, πx,y , we can easily
compute mean response time and mean power consumption,
as described in Section II-C.

C. Performance metrics

There are two performance metrics we care about: (i)
mean response time, Tavg, defined as the time from when
a job arrives until it completes service, and (ii) mean power
consumption, Pavg , which takes into account that power is
consumed at a different rate depending on what mode the
server is in. These are obtained from the limiting probabilities
of the above Markov chains as follows:

TOn/Offavg =
1

λ

∑
x,y

πx,y · y

POn/Offavg =
∑
x,y

πx,y ·min{y, k} · Pmax

TDelayedOffavg =
1

λ

∑
x,y

πx,y · y

PDelayedOffavg =
∑
x,y

πx,y · (min{y, k} · Pmax

+ max{x− y, 0} · Pidle)

Clearly, if one only wants to minimize Tavg , then one
should leave on as many servers as possible. On the other
hand, if one only wants to minimize Pavg, then one should
turn all servers off. A common metric which takes both these
metrics into account is the Performance-per-Watt metric,
PPW , defined as:

PPW =
1

Tavg · Pavg

Higher PPW is better since it says that either Tavg , or Pavg,
or both are lower.

To compare our dynamic power management algorithms
with the static AlwaysOn algorithm, we look at the Normal-
ized Performance-per-Watt, NPPW , defined as the PPW
for the dynamic algorithm in question, divided by PPW for
AlwaysOn:

NPPW =
PPWDynamic

PPW AlwaysOn

Here “Dynamic” can denote either On/Off or
DelayedOff. When NPPW exceeds 1, we say that
the dynamic power management algorithm is superior to
AlwaysOn. An NPPW of 1.2 says that the dynamic
algorithm improves upon AlwaysOn by 20%, while an
NPPW of 0.2 says that the AlwaysOn algorithm is 5
times better than the dynamic algorithm.

III. AlwaysOn VERSUS On/Off

This section compares AlwaysOn with On/Off for
server farms of different sizes, where utilization is held fixed
at ρ = 30%.

A. A simple example

It should be obvious that AlwaysOn is superior to
On/Off with respect to Tavg . What is far less obvious is
what happens to Pavg . We start with a simple example to
illustrate this point. Consider a small server farm with k = 10
servers, each of which serve jobs at a rate of µ = 1 job/sec.
Arrivals enter according to a Poisson Process with rate λ = 3
jobs/sec, so the server farm utilization is 30%. The setup time
is Exponentially-distributed with mean tsetup = 1

α = 100
seconds.

Under the above configuration parameters, we find that
On/Off performs worse than AlwaysOn both with respect
to mean response time, Tavg and mean power, Pavg . The
results of our analysis are shown in Figure 4.

B. The effect of job size and setup time

We now repeat the analysis from Figure 4, on a wider range
of job sizes, ranging from E [S] = 1 second to E [S] = 10
seconds and a wider range of setup times, ranging from
tsetup = 20 seconds to tsetup = 100 seconds. As before,

Fig. 4. Comparison of AlwaysOn and On/Off for k = 10, tsetup =
100s and E [S] = 1s. On/Off is worse for both Tavg and Pavg .

(a) TOn/Off
avg (in s) (b) POn/Off

avg (in watts) (c) PPWOn/Off (in (s · watts)−1)

(d) TAlwaysOn
avg (in s) (e) PAlwaysOn

avg (in watts) (f) PPWAlwaysOn (in (s · watts)−1)

Fig. 5. Results for On/Off and AlwaysOn for k = 10 servers and ρ = 30%.

(a) k = 10 (b) k = 25 (c) k = 50

Fig. 6. NPPW of AlwaysOn vs. On/Off for a range server farm sizes, where ρ = 30%. Lighter regions indicate the superiority of On/Off over
AlwaysOn.

we still assume a small server farm of k = 10 servers
only. Figures 5(a), 5(b) and 5(c) show the performance
of On/Off under all these settings with respect to mean
response time, mean power, and PPW respectively. Observe
that the response time numbers of On/Off are much lower
than the average setup time, indicating that servers typically
do not wait anywhere near their full setup time, and yet
jobs are clearly delayed, with slowdown factors as high as
12.5. Figures 5(d), 5(e) and 5(f) show the corresponding
performance of AlwaysOn (note that AlwaysOn is not
affected by tsetup). We see that only when setup time is
very low (≤ 20 seconds) and job size is relatively high
(≥ 9 seconds) does the PPW for On/Off approach that
of AlwaysOn (and actually surpasses AlwaysOn). This
is a little surprising because the benefits with respect to
power savings are apparent throughout most of the space,
for larger job sizes. The problem is that response time is
heavily penalized under On/Off, due to the setup overhead.

Low setup times clearly favor On/Off because there is
less overhead involved in turning the server on. High job
sizes also favor On/Off, because when utilization is fixed
and job sizes increase, then interarrival times also increase,
making it more advantageous to turn off servers.

C. The effect of increasing server farm size

We now show the effect of increasing the size of the server
farm. Figure 6 considers server farms of size (a) k = 10,
(b) k = 25, and (c) k = 50. Throughout, utilization is held
constant at ρ = 30%. A range of values of job size and setup

times is shown. The metric shown is:

NPPW =
PPW On/Off

PPW AlwaysOn

Hence a value greater than 1 implies that On/Off is superior
to AlwaysOn.

While in the case of k = 10 servers NPPW is almost
always below 1, in the case of k = 50, NPPW is almost
always above 1. The superiority of On/Off clearly increases
as the size of the server farm goes up. In fact, for the case of
50 servers, for about a third of the region, On/Off improves
upon AlwaysOn by more than 25%.

It may not be obvious why On/Off suddenly appears
superior to AlwaysOn when the size of the server farm
increases, given that utilization is constant, and hence the
arrival rate has increased proportionately to the increase in
server farm size. The answer lies in response time. Recall
that the problem for On/Off in the case of k = 10 servers
was not its power usage, which was often superior to that of
AlwaysOn, but rather its response time, which was heavily
influenced by the setup time. In a larger server farm, even
with the proportional increase in the arrival rate, an arrival is
much more likely to quickly end up being served (with many
more busy servers, it is more likely that one will quickly free
up quickly). Hence, while On/Off will never have as low a
response time as AlwaysOn, the response time of On/Off
approaches that of AlwaysOn as k increases, and, coupled
with superior power consumption, the result is a higher PPW
for On/Off.

(a) tsetup = 10s, E [S] = 1s (b) tsetup = 50s, E [S] = 1s (c) tsetup = 100s, E [S] = 1s

(d) tsetup = 10s, E [S] = 10s (e) tsetup = 50s, E [S] = 10s (f) tsetup = 100s, E [S] = 10s

Fig. 7. In all configurations, t∗wait ≈ 10 · tsetup, regardless of k or E [S].

IV. THE BENEFITS OF DelayedOff

The idea behind DelayedOff is to try to mitigate the
damage caused by large setup times by simply not turning
the servers off in the first place. Of course if we never turn the
servers off, we are left with AlwaysOn. The key is to turn
servers off less frequently. Whenever a server would normally
shut off, it now waits for some Twait time (with mean
twait) before shutting off. The DelayedOff algorithm is
described in Section II-B. Surprisingly, as we’ll show, this
very simple idea has huge impact in the performance of
dynamic power management.

We start in Section IV-A with a discussion of how long
a timer to use and derive a heuristic for the optimal twait.
We then derive the performance of DelayedOff using this
twait value and show its performance in Section IV-B.

A. How long to wait: optimizing twait

The performance of DelayedOff is clearly affected
by twait. When twait is very small, the behavior of
DelayedOff is like that of On/Off. When twait is huge,
the behavior of DelayedOff becomes that of AlwaysOn.
However DelayedOff can actually be far better than either
of these policies if twait is chosen carefully.

Figure 7 shows t∗wait, the optimal value of twait for a range
of values of server farm sizes, k, mean job size, E [S], and
mean setup time, tsetup. Surprisingly, of all these parameters,
the only one with a strong effect on t∗wait is the setup time.
We find that a heuristic rule of thumb that appears to work

under our full range of parameters is:

t∗wait = 10 · tsetup (1)

Some justification for rule of thumb (1) comes from the
observation that twait should be chosen so that the extra
energy consumed by leaving the server on for twait extra
seconds should equal the energy spent in setting up a new
server. That is:

140 · twait = 200 · tsetup

This says that twait should be directly proportional to tsetup,
although it does not explain the factor of 10. We believe that
the heuristic rule of thumb will change based on the server
farm utilization. As the server farm utilization goes up, we
might want to have more spare servers to absorb occasional
spikes in request rate. Thus, the t∗wait should go up. When we
increased the server farm utilization to about 70%, we found
that the desired ratio of t∗wait

tsetup
went up from 10 to about 100,

indicating that it was beneficial to have more spare servers.

B. The effect of increasing server farm size

We now assume that twait is set according to Eq. (1) and
we derive the PPW for DelayedOff. Figure 8 shows PPW
for both DelayedOff and AlwaysOn as a function of
server farm size, k.

As in the case of On/Off, we find that as k increases,
DelayedOff improves upon AlwaysOn by bigger and
bigger factors. What is significant however, is that the cross-
over point where DelayedOff first surpasses AlwaysOn

(a) E [S] = 1 (b) E [S] = 10

Fig. 8. AlwaysOn vs. DelayedOff for different server farm sizes for tsetup = 100.

occurs already when k is very low. In fact, for a mean job
size of E [S] = 1 second, the cross-over point is k = 4,
and for a mean job size of E [S] = 10 seconds, the cross-
over point is k = 3! For relatively small server farms with
k = 10, we already see that DelayedOff outperforms
AlwaysOn by more than 50%, even with a high setup time
of tsetup = 100 seconds. This type of improvement wasn’t
visible under On/Off until we got to k = 50 servers, and
even there we required that the setup time was much lower
and job sizes were large.

V. CONCLUSION AND FUTURE WORK

In this paper we examine the effectiveness of dynamic
power management policies in data centers. We find that
dynamic power management policies are very effective when
the setup time is small or when the job size is large. Further,
we find that the effectiveness of dynamic power management
policies increases with the size of the data center. In fact,
while the dynamic power management policies considered
in this paper seem ineffective for small data centers, these
same policies outclass widely employed static policies when
the data center size is large.

While there has been some recent work (see, for example,
[3], [6]) in the area of analyzing dynamic power management
policies, there is still a long way to go. In particular, while the
authors in [3] were able to derive closed-form approximations
for Tavg and Pavg for On/Off, no closed-form solutions or
approximations have yet been found for DelayedOff.

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California, Berkeley, Feb 2009.

[2] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[3] Anshul Gandhi, Mor Harchol-Balter, and Ivo Adan. Server farms with
setup costs. Perform. Eval., 67:1123–1138, November 2010.

[4] Green Grid. Unused Servers Survey Results Analy-
sis. http://www.thegreengrid.org/en/Global/Content/white-
papers/UnusedServersSurveyResultsAnalysis, 2010.

[5] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic
Methods in Stochastic Modeling. ASA-SIAM, Philadelphia, 1999.

[6] Isi Mitrani. Managing performance and power consumption in a server
farm. 3rd Madrid Conference on Queueing Theory, 2010.

[7] Neil MacDonald. Addressing the most common security risks in data
center virtualization projects, 2010.

