
Exact Analysis of the M/M/k/setup Class of
Markov Chains via Recursive Renewal

Reward
Anshul Gandhi Sherwin Doroudi∗

Mor Harchol-Balter Alan Scheller-Wolf∗

April 2013
CMU-CS-13-105

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Tepper School of Business, Carnegie Mellon University

This research was sponsored by the National Science Foundation under grant number NSF-CSR-116282 and Intel
Science and Technology Center on Cloud Computing. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.



Keywords: Queueing Theory; Setup Times; Renewal Reward



Abstract

The M/M/k/setup model, where there is a penalty for turning servers on, is common in data centers,
call centers and manufacturing systems. Setup costs take the form of a time delay, and sometimes
there is additionally a power penalty, as in the case of data centers. While the M/M/1/setup was
exactly analyzed in 1964, no exact analysis exists to date for the M/M/k/setup with k > 1.
In this paper we provide the first exact, closed-form analysis for the M/M/k/setup and some of its
important variants including systems in which: (i) idle servers delay for a period of time before
turning off, or (ii) idle servers can either be turned off or put to sleep. Our analysis is made
possible by our development of a new technique, Recursive Renewal Reward (RRR), for solving
Markov chains with a repeating structure. RRR uses ideas from renewal reward theory and busy
period analysis to obtain closed-form expressions for metrics of interest such as the transform of
time in system and the transform of power consumed by the system. The simplicity, intuitiveness,
and versatility of RRR makes it useful for analyzing Markov chains far beyond the M/M/k/setup.
In general, RRR can be used to analyze any 2-dimensional Markov chain which is finite in one
dimension and possibly infinite (with a repeating structure) in the other dimension.





1 Introduction

Setup times (a.k.a. exceptional first service) are a fundamental component of computer systems
and manufacturing systems, and therefore they have always played an important role in queueing
theoretic analysis. In manufacturing systems it is very common for a job that finds a server idle to
wait for the server to “warm up” before the server is initiated. In retail and hospitals, the arrival of
customers may necessitate bringing in an additional human server, which requires a setup time for
the server to arrive. In computer systems, setup times are once again at the forefront of research,
as they are the key issue in dynamic capacity provisioning for data centers.

In data centers, it is desirable to turn idle servers off, or reallocate the servers, to save power.
This is because idle servers burn power at 60–70% of the peak rate, so leaving servers on and
idle is wasteful [4]. Unfortunately, most companies are hesitant to turn off idle servers because
the setup time needed to restart these servers is very costly; the typical setup times for servers is
200 seconds, while a job’s service requirement is typically less than 1 second [15, 6]. Not only
is the setup time prohibitive, but power is also burned at peak rate during the entire setup period,
although the server is still not functional. Thus it is not at all obvious that turning off idle servers
is advantageous.

Many ideas have been proposed to minimize the number of times that servers in a data center
must undergo setup. One major line of research involves load prediction techniques [15, 20, 5,
11]. In the case where load is unpredictable, research has turned to looking at policies such as
delayedoff, which delay turning off an idle server for some fixed amount of time, in anticipation
of a new arrival [13, 10, 8]. Another line of research involves reducing setup times by developing
low power sleep modes [10, 18].

Surprisingly, for all the importance of setup times, very little is known about their analysis. The
M/G/1 with setup times was analyzed in 1964 by Welch [24]. The analysis of an M/M/k system
with setup times, which we refer to as M/M/k/setup, however, has remained elusive, owing largely
to the complexity of the underlying Markov chain. (Fig. 1 shows an M/M/k/setup with exponen-
tially distributed setup times.) In 2010, various analytical approximations for the M/M/k/setup
were proposed in [9]. These approximations work well provided that either load is low or the setup
time is low. The M/M/∞/setup was also analyzed in [9] and found to exhibit product form. Other
than the above, no progress has been made on the M/M/k/setup. Even less is known about the
M/M/k/setup/delayedoff, where idle servers delay for a finite amount of time before turning off,
or the M/M/k/setup/sleep, where idle servers can either be turned off (high setup time, zero power)
or put to sleep (lower setup time, low power). Section 3 describes these models in greater detail.
Section 2 describes related prior work, including existing methods for solving general Markov
chains with a repeating structure.

This paper is the first to derive an exact, closed-form solution for the M/M/k/setup, the M/M/k/set-
up/delayedoff, and the M/M/k/setup/sleep. We obtain the Laplace transform of response time, the
z-transform of power consumption, and other important metrics for all of the above models.

Our solution is made possible by our development of a new technique for solving Markov

1



chains with a repeating structure – one of the key contributions of our work. The technique is
based on using renewal reward theory to obtain the metrics of interest, while utilizing certain
recursion theorems about the chain. We call this technique Recursive Renewal Reward (RRR).
Unlike matrix-analytic methods [16], RRR does not require finding the “rate” matrix. Another
feature of RRR is that it is simple enough to be taught in an elementary stochastic processes
course.

In general, RRR should be able to reduce the analysis of any 2-dimensional Markov chain
which is finite in one dimension and possibly infinite (with repeating structure) in the other to the
problem of solving a system of polynomial equations. Further, if all transitions in the repeating
portion of the Markov chain are skip-free and all up/down arrows are unidirectional, the resulting
system of equations will be at most quadratic, yielding a closed-form solution (see Section 11 and
Fig. 6 for more details). We thus anticipate that RRR will prove useful to other researchers in
analyzing many new problems.

2 Prior work

The few papers that have looked at the M/M/k/setup are discussed in Section 1. For the M/M/k/set-
up/delayedoff, only iterative matrix-analytic approaches have been used [8]. No analysis exists for
M/M/k/setup/sleep. We now discuss papers that have considered repeating Markov chains and
have proposed techniques for solving these. We then comment on how these techniques might or
might not apply to the M/M/k/setup.

2.1 Matrix-analytic based approaches

Matrix-analytic methods are a common approach for analyzing Markov chains with repeating
structure. Such approaches are typically numerical, generally involving iteration to find the rate
matrix, R. These approaches do not, in general, lead to closed forms or to any intuition, but are
very useful for evaluating chains under different parameters.

There are cases where it is known that theRmatrix can be stated explicitly, as described in [16].
This typically involves using a combinatorial interpretation for the R matrix. As described in [16],
the class of chains for which the combinatorial view is tractable is narrow. However, in [23], the
authors show that the combinatorial interpretation extends to a broader class of chains. Their class
does not include the M/M/k/setup, however, which is more complicated because the transition
(setup) rates are not independent of the number of jobs in system. Much research has been done
on improving matrix-analytic methods to make the iteration faster. An example is [22], which
develops a fast iterative procedure for finding the rate matrix for a broader class of chains than that
in [23]. The authors in [22] also provide an explicit solution for the rate matrix in terms of infinite
sums.

2



2.2 Generating function based approaches

Generating functions have also been applied to solve chains with a repeating structure. Like matrix-
analytic methods these are not intuitive: Generating function approaches involve guessing the form
of the solution and then solving for the coefficients of the guess, often leading to long computations.
In theory, they can be used to solve very general chains (see for example [1]). We initially tried
applying a generating function approach to the M/M/2/setup and found it to be incredibly complex
and without intuition. This led us to seek a simpler and more intuitive approach.

2.3 M/M/k with vacations

Many papers have been written about the M/M/k system with vacations, see for example [26, 25,
21, 17]. While the Markov chain for the M/M/k with vacations looks similar to the M/M/k/setup,
the dynamics of the two systems are very different. A server takes a vacation as soon as it is idle
and there are no jobs in the queue. By contrast, a setup time is initiated by jobs arriving to the
queue. In almost all of the papers involving vacations, the vacation model is severely restricted,
allowing only a fixed group of servers to go on vacation at once. This is very different from our
system in which any number of servers may be in setup at any time. The model in [17] comes
closest to our model, although the authors use generating functions and assume that all idle servers
are on vacation, rather than one server being in setup for each job in queue, which makes the
transitions in their chain independent of the number of jobs.

2.4 Restricted models of M/M/k with setup

There have been a few papers [2, 3, 9] that consider a very restricted version of the M/M/k/setup,
wherein at most one server can be in setup at a time. There has also been prior work [19] that
considers an M/M/k system wherein a fixed subset of servers can be turned on and off based on
load. The underlying Markov chains for all of these restricted systems are analytically tractable
and lead to very simple closed-form expressions, since the rate at which servers turn on is always
fixed. Our M/M/k/setup system is more general, allowing any number of servers to be in setup.
This makes our problem much more challenging.

2.5 How our work differs from all of the above

To the best of our knowledge, we are the first to derive exact closed-form results for the M/M/k/setup
problem, with k > 1. Our solution was made possible by our new RRR technique. The RRR tech-
nique results in exact solutions, does not require any iteration, and does not involve infinite sums.
Importantly, the RRR technique is highly intuitive and very easy to apply. Using the RRR tech-
nique, we go much further than the M/M/k setup, deriving exact closed-form results for important

3



Figure 1: Markov chain for the M/M/k/setup system. Each state is denoted by the pair (i, j), where
i is the number of on servers, and j is the number of jobs in the system. The number of servers in
setup is min{j − i, k − i}.

variants, such as the M/M/k/setup/delayedoff and the M/M/k with multiple types of setups, neither
of which has been solved analytically.

3 Model

In our model jobs arrive according to a Poisson process with rate λ and are served at rate µ = 1
E[S]

,
where S denotes the job size and is exponentially distributed. For stability, we assume that k · µ >
λ, where k is the number of servers in the system.

3.1 M/M/k/setup

In the M/M/k/setup system, each of the k servers is in one of three states: off, on (being used
to serve a job), or setup. When a server is on or in setup, it consumes peak power of Ppeak
watts. When a server is off, it consumes zero power. Thus, when servers are not in use, they
are immediately turned off to save power. Every arriving job that comes into the system picks an
off server, if one exists, and puts it into setup mode; the job then joins the queue. We use I to
denote the setup times, with E[I] = 1

α
. Unless stated otherwise, we assume that setup times are

exponentially distributed. When a job completes service at a server, say server s1, and there are no
remaining jobs left in the queue, then server s1 is immediately turned off. However, if the queue
is not empty, then server s1 is not turned off, and the job at the head of the queue is directed to
server s1. Note that if the job at the head of the queue was already waiting on another server, say

4



Figure 2: Markov chain for the M/M/k/setup/delayedoff system. Each state is denoted by the pair
(i, j), where i is the number of on or idle servers, and j is the number of jobs in the system. If
i < j, then the number of servers in setup is min{j − i, k − i}, and there are no idle servers. If
i > j (gray shaded states), the number of idle servers is (i− j), and there are no servers in setup.
If i = j, no servers are idle or in setup.

server s2, in setup mode, the job at the head of the queue is still directed to server s1. At this point,
if there is a job in the queue that did not setup an off server on arrival (because there were no off
servers), then server s2 continues to be in setup for this job. If no such job exists in the queue, then
server s2 is turned off.

The Markov chain for the M/M/k/setup system is shown in Fig. 1. Each state is denoted by the
pair (i, j), where i is the number of on servers, and j is the number of jobs in the system. Thus,
the number of servers in setup is min{j − i, k − i}. Note that the Markov chain is infinite in one
dimension.

3.2 M/M/k/setup/delayedoff

The M/M/k/setup/delayedoff system is the same as the M/M/k/setup system, except that idle
servers are not immediately turned off. Specifically, when a job completes service at a server,
say server s1, and there are no remaining jobs in the queue, s1 remains waiting in the idle state for
an exponentially distributed amount of time with mean twait = 1

β
. If a new job arrives while server

s1 is waiting, the job is immediately directed to s1, which is already on. However, if no jobs arrive
during server s1’s waiting period, then server s1 is turned off. Intuitively, a higher twait results in
lower response time, since servers are on longer, but may also increase power usage, since idle
servers consume significant power.

5



Figure 3: Markov chain for the M/M/k/setup/sleep system. Each state is denoted by the pair (i, j),
where i is the number of on servers, and j is the number of jobs in the system. The number
of servers in fast setup is s, which in this case is s = 2. The number of servers in setup is
min{j− i, k− i}. If i < s (gray shaded states), the first (s− i) servers setting up have a fast setup
rate, ω, while the other servers in setup have a slow setup rate, α.

The Markov chain for the M/M/k/setup/delayedoff system is shown in Fig. 2. The chain is the
same as that for M/M/k/setup, except for the new gray shaded states which represent states with
idle servers. As before, each state is denoted by the pair (i, j), where i is the number of on or idle
servers, and j is the number of jobs in the system. For the M/M/k/setup/delayedoff system, each
server can be in one of four states: off, on (busy), idle, or setup. If i < j, then the number of
servers in setup is min{j − i, k − i}, and there are no idle servers. If i > j (gray shaded states),
the number of idle servers is (i− j), and there are no servers in setup. If i = j, no servers are idle
or in setup.

3.3 M/M/k/setup/sleep

The M/M/k/setup/sleep is motivated by servers with sleep modes [10, 18], which allow an idle
server to either be turned off or put to sleep. When a server is turned off, it consumes zero power.
However, turning on an off server requires an exponentially distributed setup time, with rate α.
By contrast, when a server is sleeping, it consumes some non-zero power, Psleep watts, which is
usually [10, 18] much smaller than the idle power, Pidle watts. When a sleeping server is turned
on, it requires an exponentially distributed setup time, with rate ω > α. Thus, there is a trade-off
between turning off an idle server vs putting it to sleep.

The Markov chain for the M/M/k/setup/sleep is the same as that for the M/M/k/setup, except

6



that in the case of M/M/k/setup/sleep servers that are setting up can either have a fast setup rate of
ω or a slow setup rate of α. In our setting s ≤ k servers have a fast setup rate and (k − s) servers
have a slow setup rate, where s is a decision variable. In order to leverage the benefits of fast setup
times, given all servers are initially off, the first s servers setting up have a setup rate of ω and the
rest of the servers in setup have a setup rate of α.

For ease of analysis, we make the following assumptions about the M/M/k/setup/sleep model:
(i) If we have a group of servers in setup, with some servers in fast setup, we assume that the first
server to complete setting up is one that had a fast setup rate (ω). Thus, if we are in state (i, j)
with i < s (gray shaded states in Fig. 3), the first (s − i) servers in setup will have a fast setup
rate. Note that the i servers already on in state (i, j), with i ≤ s, are those that had a fast setup
rate. Thus, when we have i ≤ s servers busy, and a server is no longer in use, we put the server
to sleep (as opposed to turning it off). (ii) If we have i > s servers busy, and a server is no longer
in use, we turn the server off (as opposed to putting it to sleep). This assumption allows us to
save a lot of power when load goes down since off servers consume zero power. The above two
assumptions are primarily for tractability of the M/M/k/setup/sleep Markov chain. We simulated
an M/M/k/setup/sleep system with and without the above two assumptions and found the results to
be qualitatively unchanged.

4 The Recursive Renewal Reward technique

In this section we provide a high-level description of our new Recursive Renewal Reward (RRR)
technique, which yields exact, closed-form solutions for a range of Markov chains, including
the M/M/k/setup (see Sections 5, 6 and 7), the M/M/k/setup/delayedoff (see Section 9) and the
M/M/k/setup/sleep (see Section 10).

The RRR technique works by deriving the expected “reward” earned per unit time in a Markov
chain, where the reward could be any quantity of interest. In the context of our M/M/k/setup
problem, the reward earned at time t, R(t), could be the number of jobs in system at time t, the
square of the number of jobs in system, the current power usage, the number of servers that are on,
or any other reward that can be expressed as a function of the states of the Markov chain.

To analyze the average rate of earning reward, we designate a renewal state, say (0, 0),1 which
we call the home state, and then consider a renewal cycle to be the process of moving from the
home state back to the home state. By renewal-reward theory, the overall rate of earning reward is
the same as the mean reward earned over a renewal cycle, which we denote by R, divided by the
mean length of the renewal cycle, denoted by T .

Average rate of earning =
R
T

=
E
[∫

cycle
R(t)dt

]
E
[∫

cycle
1dt
]

1In principle any state can be chosen as the renewal state, but some states allow for an easier (or shorter) analysis.

7



Figure 4: Markov chain for the M/M/1/setup. The repeating portion is highlighted in gray and the
border states are shaded black.

For example, if the goal is to find the mean number of jobs, E[N ], for our chain, we simply define
R(t) to be the number of jobs at time t, which can be obtained from the state of the Markov chain
at time t.

It turns out that the quantities, T and R, are very easy to compute! Consider a Markov chain,
such as that in Fig. 4 or Fig. 5. The repeating portion of the chain is shown in gray. There are a
finite number of border states which sit at the edge of the repeating chain and are colored black.
We will see that computing T and R basically reduces to writing one equation for each border
state. For the case of T , we will need the mean time to move one step left from each border state.
For the case of R, we will need the mean reward earned when moving one step left from each
border state. Computing these border state quantities is made very easy via some neat recursion
theorems. We demonstrate this process in the examples below. There are a few details which we
will defer until after these examples. For instance, in general, it is necessary to also add equations
for the non-repeating portion of the Markov chain. See Sections 7 and 11 for more details on the
RRR technique.

5 M/M/1/setup

In this section we illustrate the RRR technique by applying it to the simple M/M/1/setup system,
whose Markov chain is shown in Fig. 4. Here, the state of the system is represented as (i, j), where
i ∈ {0, 1} is the number of servers on and 0 ≤ j < ∞ is the number of jobs in the system. In
general, i represents the depth (or row number) of the state, and j represents the level (or column
number) of the state. We start by deriving E[N ], the mean number of jobs, and then move to more
complex metrics. We choose the renewal state to be (0, 0) and we define the reward earned at time
t, R(t), to be N(t), the number of jobs in the system at time t. As explained in Section 4, all we
need is T andR.

8



5.1 Deriving T via TL
0,1 and TL

1,1

T is the mean time to get from our home state (0, 0) back to (0, 0). This can be viewed as 1
λ

, the
mean time until we leave (0, 0) (which takes us to (0, 1)) plus the mean time to get home from
(0, 1). We make the further observation that the mean time to get home from (0, 1) is equal to TL0,1
(using notation from Table 1), the mean time to move left one level from (0, 1) (since moving left
can only put us in (0, 0)). We thus have:

T =
1

λ
+ TL0,1 (1)

We now need an equation for TL0,1 for the border state (0, 1), which will require looking at the
other border state, (1, 1), as well. Starting with border state (1, 1), it is clear that TL1,1 is simply the
mean length of an M/M/1 busy period, B1. Thus, we have:

TL1,1 = B1 =
1

µ− λ
(2)

TL0,1 involves waiting in state (0, 1) for expected time 1
α+λ

, before conditioning on where we
transition to next. If we go to state (1, 1) we need an additional TL1,1. However if we go to state
(0, 2) we need to add on the time to move one step left from (0, 2) (which by Fig. 4 takes us to
(1, 1)) and then an additional TL1,1. That is:

TL0,1 =
1

λ+ α
+

α

λ+ α
· TL1,1 +

λ

λ+ α

(
TL0,2 + TL1,1

)
(3)

It is now time to invoke one of our recursion theorems, which holds for any M/M/k/setup chain:

Theorem 1 (Recursion theorem for mean time).
For the M/M/k/setup, the mean time to move one step left from state (i, j), TLi,j , is the same for all
j ≥ k.

Thm. 1 follows from the fact that the repeating portion of the Markov chain is identical for
all states in a given row. The full proof of Thm. 1 (along with the proofs of all other theorems
appearing in this paper) is presented in Appendix A.

Using Thm. 1, we can replace TL0,2 in Eq. (3) with TL0,1 to get:

TL0,1 =
1

λ+ α
+

α

λ+ α
· TL1,1 +

λ

λ+ α

(
TL0,1 + TL1,1

)
(4)

Finally, noting that TL1,1 = B1 from Eq. (2), we have that:

TL0,1 =
1

λ+ α
+

α

λ+ α
·B1 +

λ

λ+ α

(
TL0,1 +B1

)
=⇒ TL0j = TL0,1 =

1 + (λ+ α)B1

α
(5)

This completes the derivation of T via Eq. (1).

9



Variable Description
T Mean length of the renewal cycle
R Mean reward earned during a renewal cycle
TLi,j Mean time until we first move one level left of (i, j), starting from (i, j)

RL
i,j Mean reward earned until we first move one level left of (i, j), starting from (i, j)

pLi→d Probability that after we first move one level left from state (i, j), we are at depth d
Bk Mean length of an M/M/k busy period

Table 1: Description of the variables used in our analysis of E[N ].

5.2 DerivingR via RL
0,1 and RL

1,1

R denotes the reward earned in moving from (0, 0) back to (0, 0). Observing that we earn 0 reward
in state (0, 0) (because there are no jobs in the system in that state), and observing that from state
(0, 0) we can only next move to (0, 1), we have (using notation from Table 1):

R = RL
0,1 (6)

It now remains to compute the reward earned in moving one step left from (0, 1), which will require
looking at the other border state, (1, 1), as well.

To do this, we invoke another recursion theorem, which again holds for any M/M/k/setup sys-
tem:

Theorem 2 (Recursion theorem for mean reward).
For the M/M/k/setup, the mean reward earned in moving one step left from state (i, j + 1), RL

i,j+1,
satisfies RL

i,j+1 = RL
i,j + TLi,j for all j ≥ k, where the reward tracks the number of jobs in the

system.

Applying Thm. 2 to the Markov chain in Fig. 4, we have:

RL
1,1 =

1

λ+ µ
· 1 + µ

λ+ µ
· 0 + λ

λ+ µ

(
RL

1,2 +RL
1,1

)
(7)

=
1

λ+ µ
+

λ

λ+ µ

(
(RL

1,1 + TL1,1) +RL
1,1

)
=

1

λ+ µ
+

λ

λ+ µ

(
(RL

1,1 +B1) +RL
1,1

)
(from Eq. (2))

=⇒ RL
1,1 =

1 + λB1

µ− λ
(8)

10



Variable Description
Ṙ Mean reward earned (for z-transform) during a renewal cycle
Ė Mean reward earned (for transform of power) during a renewal cycle

ṘL
i,j

Mean reward earned (for z-transform) until we first move one level left of (i, j),
starting from (i, j)

ĖL
i,j

Mean reward earned (for z-transform of power) until we first move one level left of (i, j),
starting from (i, j)

Table 2: Description of the variables used in our transform analyses.

Similarly, for border state (0, 1), we have:

RL
0,1 =

1

λ+ α
· 1 + α

λ+ α
·RL

1,1 +
λ

λ+ α

(
RL

0,2 +RL
1,1

)
=

1

λ+ α
+

α

λ+ α
·RL

1,1 +
λ

λ+ α

(
(RL

0,1 + TL0,1) +RL
1,1

)
(from Thm. 2)

=⇒ RL
0,1 =

1 + λTL0,1 + (λ+ α)RL
1,1

α
. (9)

This completes the derivation ofR via Eq. (6).

5.3 Deriving E[N]

Since E[N ] = R
T , combining Eq. (1) and Eq. (6), we get:

E[N ] =
R
T

=
λ

α
+

λ

µ− λ
(10)

The second term in the Right Hand Side of Eq. (10) can be identified [14] as the mean number of
jobs in an M/M/1 system (without setup). Thus, Eq. (10) is consistent with the known decomposi-
tion property for the M/M/1/setup system [24].

5.4 Deriving N̂(z) and T̃(s)

Deriving the z-transform of the number of jobs, N̂(z) = E[zN ], is just as easy as deriving E[N ].
The only difference is that our reward function is now R(t) = zN(t), where N(t) is again the
number of jobs in the system at time t. Thus

N̂(z) = E[zN ] =
Ṙ
T
,

11



where Ṙ = E
[∫

cycle
zN(t)dt

]
and T is the same as before.

We will again invoke a recursion theorem which applies to any M/M/k/setup (using notation
from Table 2):

Theorem 3 (Recursion theorem for transform of reward).
For the M/M/k/setup, ṘL

i,j+1 = z · ṘL
i,j , for all j ≥ k, where Ṙ tracks the z-transform of the number

of jobs in the system.

Let us now express Ṙ by conditioning on the first step from (0, 0):

Ṙ =
1

λ
+ ṘL

0,1 (11)

We again need one equation per border state:

ṘL
1,1 =

1

λ+ µ
· z + λ

λ+ µ

(
z · ṘL

1,1 + ṘL
1,1

)
ṘL

0,1 =
1

λ+ α
· z + α

λ+ α
· ṘL

1,1 +
λ

λ+ α

(
z · ṘL

0,1 + ṘL
1,1

)
Solving the above system and substituting ṘL

0,1 into Eq. (11) allows us to express Ṙ in closed
form. This gives us N̂(z), after some algebra, as follows:

N̂(z) = E[zN ] =
Ṙ
T

=
α(µ− λ)

(µ− λz)(α + λ− λz)
(12)

To get the Laplace transform of response time, T̃ (s), we use the distributional Little’s Law [12]
(since M/M/1/setup is a First-In-First-Out system):

T̃ (s) = N̂
(
1− s

λ

)
=

α(µ− λ)
(s+ α)(µ+ s− λ)

(13)

5.5 Deriving P̂(z)

We now derive P̂ (z), the z-transform of the power consumed for the M/M/1/setup. The server
consumes zero power when it is off, but consumes peak power, Ppeak watts, when it is on or in
setup. This time, the reward is simply the transform of the energy consumed over the renewal
cycle, Ė = E

[∫
cycle
zP (t)dt

]
, where P (t) is the power consumed at time t. We begin with the

recursive theorem for ĖL
i,j , just like we had Thm. 3 for ṘL

i,j .

Theorem 4 (Recursion theorem for transform of power).
For the M/M/k/setup, ĖL

i,j+1 = ĖL
i,j = TLi,j · zk·Ppeak , for all j ≥ k.

12



Thm. 4 gives us ĖL
i,j in closed form, in terms of TLi,j . Following the usual renewal-reward

approach, we get:

P̂ (z) = E[zP ] =
Ė
T

=
α(µ− λ) + λ(µ+ α)zPpeak

µ(λ+ α)
(14)

6 M/M/2/setup

The M/M/2/setup chain shown in Fig. 5 is analyzed similarly to the M/M/1/setup, except that there
are now three border states, (0, 2), (1, 2), and (2, 2). The only complication is that when moving
one level left from a given state, the resulting row is non-deterministic. For example, when moving
left from (1, 3) in Fig. 5, we may end up in row 1 at (1, 2) or row 2 at (2, 2). We use pLi→d to denote
the probability that once we move one level left from (i, j), we will be at depth d.2 The following
theorem proves that pLi→d is independent of j for all states (i, j) in the repeating portion.

Theorem 5 (Recursion theorem for probability).
For the M/M/k/setup, for each 0 ≤ d ≤ k and for each 0 ≤ i ≤ k, pLi→d is the same for all j ≥ k.

Thus, it suffices to compute pLi→d for the border states. These probabilities are used in Sec-
tion 6.2.

6.1 Deriving pL
i→d

Solving for the pLi→d is easiest “bottom-up” (starting from the greatest depth, i). For i = 2, we have
pL2→2 = 1 for all j > 2, since we stay at depth 2 after moving left. For i = 1 and i = 0, we follow
the same approach of conditioning on the first step and using recursion theorems:

pL1→1 =
µ

λ+ µ+ α
+

λ

λ+ µ+ α

(
pL1→1

)2
(15)

pL0→1 =
2α

λ+ 2α

(
pL1→1

)
+

λ

λ+ 2α

(
pL0→1

) (
pL1→1

)
(16)

Eqs. (15) and (16) can now be solved in closed form since they are of degree at most 2. Note that
pL1→2 = 1− pL1→1 and pL0→2 = 1− pL0→1.

6.2 Deriving N̂(z) via ṘL
0,2, ṘL

1,2, and ṘL
2,2

To derive N̂(z) = E[zN ], we again need to find Ṙ and T , where Ṙ = E
[∫

cycle
zN(t)dt

]
, and

T = E
[∫

cycle
1dt
]
= Ṙ

∣∣∣∣
z=1

. Using (1, 1) as our renewal state and the same arguments as in

13



Figure 5: Markov chain for the M/M/2/setup. The repeating portion is highlighted in gray and the
border states are shaded black.

Section 5.4, we have:

Ṙ =
z

λ+ µ
+

µ

λ+ µ

(
1

λ
+

z

λ+ α
+

λ

λ+ α
· ṘL

0,2

)
+

λ

λ+ µ
· ṘL

1,2 (17)

It now remains to compute the reward equations for the border states: ṘL
0,2, Ṙ

L
1,2, and ṘL

2,2.

ṘL
2,2 =

z2

λ+ 2µ
+

λ

λ+ 2µ

(
z · ṘL

2,2 + ṘL
2,2

)
(18)

ṘL
1,2 =

z2

λ+ µ+ α
+

α

λ+ µ+ α
· ṘL

2,2 +
λ

λ+ µ+ α

(
z · ṘL

1,2 +
(
pL1→1

)
ṘL

1,2 +
(
1− pL1→1

)
ṘL

2,2

)
(19)

ṘL
0,2 =

z2

λ+ 2α
+

2α

λ+ 2α
· ṘL

1,2 +
λ

λ+ 2α

(
z · ṘL

0,2 +
(
pL0→1

)
ṘL

1,2 +
(
1− pL0→1

)
ṘL

2,2

)
(20)

Solving the above system of linear equations and substituting ṘL
0,2 and ṘL

1,2 into Eq. (17) allows us
to solve for N̂(z) in closed form as follows:

N̂(z) = E[zN ] =
Ṙ
T

=
Ṙ
Ṙ
∣∣
z=1

=
λ(λ+ α)(z + λṘL

1,2) + µ(α + λ(1 + z + λṘL
0,2))

λ(λ+ α)(1 + λTL1j) + µ(α + λ(2 + λTL0j))
(21)

14



6.3 Deriving T̃(s)

For the M/M/1/setup system, we were able to derive T̃ (s) directly from N̂(z) via the distributional
Little’s Law, since the M/M/1/setup is a FIFO system. Unfortunately, the M/M/2/setup system is
not FIFO, since overtaking can occur. However, we can still apply the distributional Little’s Law
to the queue of the M/M/2/setup since the queue is FIFO. The analysis of N̂Q(z) is very similar to
that of N̂(z) and is thus omitted:

N̂Q(z) =
λ(λ+ α)(1 + λṘL

1,2) + µ(α + λ(1 + z + λṘL
0,2))

λ(λ+ α)(1 + λTL1j) + µ(α + λ(2 + λTL0j))
(22)

We now apply the distributional Little’s Law to get T̃Q(s) from N̂Q(z). Finally, since T =
TQ + S, where S ∼ Exp(µ) is the job size distribution, we have:

T̃ (s) = T̃Q(s) ·
µ

s+ µ
= N̂Q

(
1− s

λ

)
· µ

s+ µ

=
µ
(
λ(λ+ α)(1 + λṘL

1,2) + µ(α− s+ λ(2 + λṘL
0,2))

)
(s+ µ)

(
λ(λ+ α)(1 + λTL1j) + µ(α + λ(2 + λTL0j))

) (23)

6.4 Deriving P̂(z)

The derivation of P̂ (z) is similar to that of N̂(z) in Section 6.2, and is thus omitted.

P̂ (z) =
µ(α+ λ) + λ(λ+ µ+ α)zPpeak

µ(α+ λ) + λ(λ+ µ+ α) + λ2(µTL0j + (λ+ α)TL1j)

+
λ2(µTL0j + (λ+ α)TL1j)z

2Ppeak

µ(α+ λ) + λ(λ+ µ+ α) + λ2(µTL0j + (λ+ α)TL1j)
(24)

7 M/M/k/setup

The M/M/k/setup chain shown in Fig. 1 is analyzed similarly to M/M/2/setup. The border states
for M/M/k/setup are (i, k), with 0 ≤ i ≤ k. In the M/M/k/setup, the non-repeating portion consists
of O(k2) states. For k = 1 and k = 2, we did not have to explicitly write reward equations for
the non-repeating states; these were implicitly folded into other equations (see, for example, the
term in parentheses in Eq. (17)). However, for arbitrarily large k, it is necessary to write reward
equations for the states in the non-repeating portion. We use RH

i,j to denote the reward earned until
we reach the home state, starting from state (i, j) in the non-repeating portion. The RH

i,j equations
will be discussed in Section 7.3.

15



We illustrate the RRR technique for M/M/k/setup by deriving N̂Q(z), from which we can obtain
T̃ (s). One might think that analyzing the M/M/k/setup will require solving a kth degree equation.
This turns out to be false. Analyzing the M/M/k/setup via RRR only requires solving equations
which are, at worst, quadratic.

We choose (k − 1, k − 1) to be the renewal state. Using RRR, Ṙ can be expressed as:

Ṙ =
1 + (k − 1)µṘH

k−2,k−2 + λṘL
k−1,k

λ+ (k − 1)µ
(25)

We now derive the necessary pL
i→d, ṘL

i,k, and ṘH
i,j for computing Ṙ.

7.1 System of equations for pL
i→d

The system of equations for pLi→d is as follows:2

pLi→i =
λ(pLi→i)

2 + iµ

λ+ iµ+ (k − i)α
, (i < k) (26)

pLi→d =
λ
(∑d

`=i

{
(pLi→`)(p

L
`→d)

})
+ (k − i)α(pLi+1→d)

λ+ iµ+ (k − i)α
, (i < d < k) (27)

pLi→k = 1−
k−1∑
`=i

pLi→`, (i ≤ k) (28)

The summation in Eqs. (27) above denotes the possible intermediate depths ` through which we
can move from initial depth i to final depth d. The above system of equations involves linear and
quadratic equations (including products of two unlike variables), and can be solved symbolically
to find pLi→d in closed form (see Appendix B).

2The definition given for pLi→d applies in all cases except when j = k and d ∈ {k − 1, k}. When j = k, we can
never end in depth k when moving one step to the left; in this case, we interpret pLi→k (or pLi→k−1) as the probability
that we first moved one step left by transitioning out of a state in depth k (or k − 1).

16



7.2 Deriving ṘL
i,k for the repeating portion

The system of equations for ṘL
i,k is as follows:

ṘL
0,k =

zk + λ
(
zṘL

0,k +
∑k

`=1

{
(pL0→`)(Ṙ

L
`,k)
})

+ kαṘL
1,k

λ+ kα
(29)

ṘL
i,k =

zk−i + λ
(
zṘL

i,k +
∑k

`=i

{
(pLi→`)(Ṙ

L
`,k)
})

+ (k − i)αṘL
i+1,k

λ+ iµ+ (k − i)α
, (0 < i < k) (30)

ṘL
k,k =

1 + λ(zṘL
k,k + ṘL

k,k)

λ+ kµ
(31)

In the above, we have used the fact that ṘL
i,k+1 = zṘL

i,k from Thm. 3. The above system of linear
equations can be easily solved to find ṘL

i,k in closed form (see Appendix B).

7.3 Deriving ṘH
i,j for the non-repeating portion

The system of equations for ṘH
i,j is as follows:

ṘH
0,j =

zj + λṘH
0,j+1 + jαṘH

1,j

λ+ jα
, (j < k − 1) (32)

ṘH
i,j =

zj−i + λṘH
i,j+1 + iµṘH

i,j−1 + (j − i)αṘH
i+1,j

λ+ iµ+ (j − i)α
, (0 < i < j < k − 1) (33)

ṘH
i,i =

1 + λṘH
i,i+1 + iµṘH

i−1,i−1

λ+ iµ
, (0 < i < k − 1) (34)

ṘH
i,k−1 =

zk−1−i + λ
(
ṘL
i,k +

∑k
`=i

{
(pLi→`)(Ṙ

H
`,k−1)

})
+ iµṘH

i,k−2 + (k − 1− i)αṘH
i+1,k−1

λ+ iµ+ (k − 1− i)α
,

(i < k − 1) (35)

ṘH
k−1,k−1 = 0 (36)

Eqs. (32), (33), and (34), are simply based on the rate transitions in the non-repeating portion of the
Markov chain. Eqs. (35) describe the rewards earned when starting in states in the non-repeating
portion of the chain that can transition to the repeating portion of the chain via the border states.
When we have an arrival in one of these states, we transition to the repeating portion of the chain,
and after earning some reward, return to the non-repeating portion of the chain. Finally, Eq. (36)

17



guarantees that any transition to state (k − 1, k − 1) will end the renewal cycle. The above system
of linear equations can again be easily solved to find ṘH

i,j in closed form (see Appendix B).

After solving for pLi→d, Ṙ
L
i,k and ṘH

i,j , we can derive Ṙ, and consequently N̂Q(z), via Eq. (25).
T̃ (s) can then be derived by using the fact T̃ (s) = T̃Q(s) · µ

s+µ
= N̂Q

(
1− s

λ

)
· µ
s+µ

.

8 M/M/3/setup

In this section we present the systems of equation in Section 7 for the special case k = 3. Solving
this system yields a closed for solution for N̂Q(z) for the M/M/3/setup system.

• The family of equations given in (26)–(28) are as follows:

pL0→1 =
λ(pL0→1)(p

L
1→1) + 3α(pL1→1)

λ+ 3α

pL0→2 =
λ((pL0→1)(p

L
1→2) + (pL0→2)(p

L
2→2)) + 3α(pL1→2)

λ+ 3α

pL0→3 = 1− pL0→1 − pL0→2

pL1→1 =
λ(pL1→1)

2 + µ

λ+ µ+ 2α

pL1→2 =
λ((pL1→1)(p

L
1→2) + (pL1→2)(p

L
2→2)) + 2α(pL2→2)

λ+ µ+ 2α

pL1→3 = 1− pL1→1 − pL1→2

pL2→2 =
λ(pL2→2)

2 + 2µ

λ+ 2µ+ α

pL2→3 = 1− pL2→2

pL3→3 = 1

• The family of equations given in (29)–(31) are as follows:

ṘL
0,3 =

z3 + λ(zṘL
0,3 + (pL0→1)Ṙ

L
1,3 + (pL0→2)Ṙ

L
2,3 + (pL0→3)Ṙ

L
3,3) + 3αṘL

1,3

λ+ 3α

ṘL
1,3 =

z2 + λ(zṘL
1,3 + (pL1→1)Ṙ

L
1,3 + (pL1→2)Ṙ

L
2,3 + (pL1→3)Ṙ

L
3,3) + 2αṘL

2,3

λ+ µ+ 2α

ṘL
2,3 =

z + λ(zṘL
2,3 + (pL2→2)Ṙ

L
2,3 + (pL2→3)Ṙ

L
3,3) + αṘL

3,3

λ+ 2µ+ α

ṘL
3,3 =

1 + λ(1 + z)(ṘL
3,3)

λ+ 3µ

18



• The family of equations given in (32)–(36) are as follows:

ṘH
0,0 =

1 + λṘH
0,1

λ

ṘH
0,1 =

z + λṘH
0,2 + αṘH

1,1

λ+ α

ṘH
1,1 =

1 + λṘH
1,2 + µṘH

0,0

λ+ µ

ṘH
0,2 =

z2 + λ(ṘL
0,3 + (pL0→1)Ṙ

H
1,2 + (pL0→2)Ṙ

H
2,2 + (pL0→3)Ṙ

H
2,2) + 2αṘH

1,2

λ+ 2α

ṘH
1,2 =

z + λ(ṘL
1,3 + (pL1→1)Ṙ

H
1,2 + (pL1→2)Ṙ

H
2,2 + (pL1→3)Ṙ

H
2,2) + µṘH

1,1 + αṘH
2,2

λ+ µ+ α

ṘH
2,2 = 0

Note that no equations from family (33) are presented above, as there do not exist integers i
and j such that 0 < i < j < k − 1 when k = 3; equations from this family will appear in
the system of equations for the M/M/k/setup when k ≥ 4.

• Finally, after solving these equations, we compute

Ṙ =
1 + λṘL

2,3 + 2µṘH
1,1

λ+ 2µ

This allows us to compute

N̂Q(z) =
Ṙ

Ṙ |z→1

Carrying out the computations in this section symbolically with Mathematica, we find a closed-
form expression for Ṙ as follows:

Ṙ =
1

λ+ 2µ

(
1−

Hλ
(
D − 2z2λ− 3µ+ 6zµ+A

)
zλ− 3µ

− 2

D

(
X −

(
(α+ λ)(B + λ+ µ)

(
Xλ

α+ λ

+µ

(
1− µ

(
− 1

λ
− z

α+ λ
− λ

V

(
2z2 + λ(G− zλ)−1

(
6GJ2Y z + 2z3 − 6GJWz2(−4α+B − λ+ µ)

+(zλ− 3µ)−1GJ2
(
λ2 + 3W (4α−B + λ− µ)

(
2α2 + 2α(B + 4µ− 2A) + (B + λ− µ)(µ−A)

)
−3Y (D − 3µ+A)− 3

(
α2 + µ(λ+ µ−A) +B(−µ+A) + α(−2(B + µ) +A)

))))))))
/(

λ

(
B + λ+ µ+

µ(−V + Jµ(3(α+ λ)µ−G(10α− 3B + 3λ)))

D(2α+ λ)

))))
,

19



where we make use of the following auxiliary expressions:

D = α+ λ+ µ,

A =
√
µ+ (D + µ)2 − 8λ,

B =
√
µ+ (D + α)2 − 4λ,

G = 3α+ λ,

J =
1

G− 3µ
,

H = 1/(α+ λ− 2zλ+ 2µ+A),

W = 1/(2α+B + λ− 2zλ+ µ),

V = 2(α+ λ)(2α+ λ),

X = D

(
z +Wλ

(
2z2 + 2HJz

(
8α2 + α(5B + 5λ− µ− 4A) + (B + λ− µ)(λ− 2µ−A)

)
− JH

zλ− 3µ

(
6α3

+α2(3B + (11 + 4z)λ− 29µ+ 6A) + α
(
6λ2 − 17Bµ− 11µ2 + 3BA+ 7µA+ λ(4(1 + z)B + (−23 + 16z)µ

+(5− 8z)A)) + (B + λ− µ)
(
λ2 + µ(2µ+A) + λ((−5 + 2z)µ+A− 2zA)

))))
,

Y = HW
(
18α3 + λ(B − 2zB + λ+ (−3 + 2z)µ)(λ− 2µ−A) + α2(15B + (15 + 14z)λ− 9(µ+ 2A))

+α
(
6(1 + z)λ2 − 3(B − 3µ)(2µ+A)− λ(2(−4 + 5z)B + 2(9 + 5z)µ+ (9− 2z)A)

))
.

We numerically verified the correctness of E[NQ] obtained via the expression for N̂Q(z) (from Ṙ
above) with matrix-analytic methods.

9 M/M/k/setup/delayedoff

The Markov chain for M/M/k/setup/delayedoff is shown in Fig. 2. Our renewal state this time will
be (k, k − 1); thus, Ṙ, the reward earned when going from (k, k − 1) back to (k, k − 1) can be
expressed as:

Ṙ =
1 + (k − 1)µṘH

k,k−2 + λṘL
k,k + βṘH

k−1,k−1

λ+ (k − 1)µ+ β
(37)

The analysis for M/M/k/setup/delayedoff via RRR is very similar to that of M/M/k/setup in
Section 7 above. In fact, since the repeating portion for the two chains is the same, the system of
equations for pLi→d and ṘL

i,j is identical, but the non-repeating portion for the two chains is different.
We now set up the system of equations for solving ṘH

i,j .

20



9.1 Deriving ṘH
i,j for the non-repeating portion

The system of equations for ṘH
i,j is as follows:

ṘH
0,j =

zj + λṘH
0,j+1 + jαṘH

1,j

λ+ jα
, (j < k − 1) (38)

ṘH
i,0 =

1 + λṘH
i,1 + iβṘH

i−1,0

λ+ iβ
, (0 < i ≤ k) (39)

ṘH
k,j =

1 + λṘH
k,j+1 + jµṘH

k,j−1 + (k − j)βṘH
k−1,j

λ+ jµ+ (k − j)β
, (1 ≤ j < k − 1) (40)

ṘH
i,j =

zj−i + λṘH
i,j+1 + iµṘH

i,j−1 + (j − i)αṘH
i+1,j

λ+ iµ+ (j − i)α
, (0 < i < j < k − 1) (41)

ṘH
i,i =

1 + λṘH
i,i+1 + iµṘH

i,i−1

λ+ iµ
, (0 < i < k − 1) (42)

ṘH
i,j =

1 + λṘH
i,j+1 + jµṘH

i,j−1 + (i− j)βṘH
i−1,j

λ+ jµ+ (i− j)α
, (0 < j < i < k) (43)

ṘH
i,k−1 =

zk−1−i + λ
(
ṘL
i,k +

∑k
`=i

{
(pLi→`)(Ṙ

H
`,k−1)

})
+ iµṘH

i,k−2 + (k − 1− i)αṘH
i+1,k−1

λ+ iµ+ (k − 1− i)α
,

(i ≤ k − 1) (44)

ṘH
k,k−1 = 0 (45)

The above system of linear equations can again be solved to find ṘH
i,j in closed form. This

yields Ṙ, and consequently N̂Q(z), via Eq. (37).

10 M/M/k/setup/sleep

The Markov chain for M/M/k/setup/sleep is shown in Fig. 3. The analysis for M/M/k/setup/sleep
via RRR is again similar to that of M/M/k/setup in Section 7. The only difference is in the setup
transition rate (downwards transition arrows in the Markov chain): For the M/M/k/setup, the setup
rate in state (i, j) is α · min{j − i, k − i}. For the M/M/k/setup/sleep, the setup rate in state
(i, j) is more complicated. When i ≥ s, the setup rate is still α · min{j − i, k − i}. However,
if i < s, the setup rate is ω · (j − i) if j ≤ s and ω · (s − i) + α · min{j − s, k − s} if j > s.

21



Figure 6: Illustration of the RRR technique for an arbitrary repeating 2-dimensional Markov chain.
The repeating portion is highlighted in gray and the border states, bi, are shaded black. Note that
yi are the neighbors of x.

This can be explained based on the M/M/k/setup/sleep model description in Section 3.3 and the
Markov chain in Fig. 3. Based on the above setup rates, we can easily modify the M/M/k/setup
sets of equations for pLi→d, Ṙ

L
i,k and ṘH

i,j from Sections 7.1, 7.2 and 7.3 respectively, to represent
the M/M/k/setup/sleep system of equations. The equation for Ṙ will change accordingly.

11 The Generalized Recursive Renewal Reward technique

The RRR technique can be applied to solving chains beyond M/M/k/setup and its variants. In this
section, we give a brief overview of applying RRR to find the expected rate of earning reward for
an infinite Markov chain with a repeating structure.

Fig. 6 illustrates the types of chains that RRR can solve. Within Fig. 6, to get closed forms,
it suffices (but is not necessary) that all transitions in the repeating portion are skip-free and all
up/down arrows are unidirectional. RRR can be applied to more general structures, but may require
solving systems of higher-order polynomials.

We first partition the Markov chain into a finite non-repeating portion and an infinite repeating
portion as in Fig. 6; in principle, this partition is not unique. Then, we fix a renewal point, or home
state, within the non-repeating portion. For each state, x, in the non-repeating portion of the chain,
we write an equation for the mean reward earned in traveling from x to the home state. The mean
reward, RH

x , consists of the mean reward during our residence in x, and a weighted combination of
the rewards RH

y , where y is a neighbor of x, as in Fig. 6.3 Observe that all the equations for states
in the non-repeating portion are linear (as in Section 7.3). Since the chain is irreducible, at least
one state in the non-repeating portion of the chain can transition directly to a state in the repeating
portion of the chain. We refer to the states in the repeating portion that are directly accessible from
the non-repeating portion as border states. These are shown as bi in Fig. 6. Before we can solve

3If y is the home state, we replace RH
y with 0 in this weighted combination.

22



the set of linear equations corresponding to each state in the non-repeating portion, we will need
to first derive equations for the border states.

We break the mean reward earned when returning home from each border state, say b, into two
parts: (i) the mean reward earned from the time we enter b until we leave the repeating portion,
and (ii) the mean reward earned from when we first exit the repeating portion until returning home.
For (i), the reward equation can be expressed in terms of the reward equations for the neighbors
of b in the repeating portion. The fact that the chain has a repeating structure allows us to express
the reward from any state in the repeating portion as a function of the rewards of the border states
by using “recursion theorems” (as in Thms. 2 and 3). The precise recursion theorems might look
different from Thms. 2 and 3 which were for the M/M/k/setup.

In order to compute (ii), we first need the probability distribution over the set of states in the
non-repeating portion that we transition to after exiting the repeating portion. The reward in (ii)
can then be expressed as a weighted linear combination of the reward earned before returning home
from these “exit states.” Solving for these probabilities may also require recursion theorems (as in
Thm. 5); in general, the probability equations will require solving a system of polynomial equations
(for the M/M/k/setup, these are provably no worse than quadratic as shown in Section 7.1).

Finally, we will have a system of linear equations for the mean rewards earned before returning
home from the states in the non-repeating portion and the border states. This yields the mean
reward earned during a renewal cycle from home to home; mean time is found analogously.

12 Applications

In this section we use our analytical results to evaluate the performance of M/M/k, M/M/k/setup,
M/M/k/setup/delayedoff and M/M/k/setup/sleep. In particular, we will be interested in the mean
response time, E[T ], and the mean power consumption, E[P ], under these policies. Throughout,
we assume a load of ρ = λ

kµ
= 0.3 (or 30% load), setup times of 1

α
= 100s (when the server is

off) and 1
ω
= 25s (when the server is sleeping), and power consumption values of Ppeak = 200W,

Pidle = 140W, and Psleep = 14W. These parameter values are based on empirical measurements
from prior work [4, 10]. We consider job sizes with mean E[S] = 1s (typical web workloads [6]),
E[S] = 10s (database queries or secured transactions), andE[S] = 100s (file download or upload),
and system sizes ranging from k = 5 to k = 100 servers.

The M/M/k policy keeps k servers always on. Servers that are not busy serving jobs are left
idle. The M/M/k/setup policy (see Section 3.1) immediately turns off idle servers to save power.
However, restarting an off server requires a setup time of 1

α
= 100s. The M/M/k/setup/delayedoff

policy (see Section 3.2)is the same as the M/M/k/setup policy, except that idle servers wait for an
exponentially distributed amount of time with mean twait = 1

β
before turning off. The performance

of this policy depends on the choice of the twait parameter. Finally, the M/M/k/setup/sleep policy
(see Section 3.3) is the same as the M/M/k/setup policy, except that s of the k servers go to sleep as
opposed to turning off, when idle. A sleeping server has a small setup time of 1

ω
= 25s. The per-

23



(a) E[S] = 1s (b) E[S] = 100s (c) E[S] = 1s (d) E[S] = 100s

Figure 7: E[P] versus E[T] for various values of twait and s.

formance of this policy depends on the choice of the s parameter. Before comparing the above four
policies, we first discuss how we choose the parameter value of twait for M/M/k/setup/delayedoff
and s for M/M/k/setup/sleep.

12.1 Choosing optimal parameter values

The tradeoff between E[P ] and E[T ] for M/M/k/setup/delayedoff is shown in Figs. 7(a) and 7(b).
Each plotted point represents an (E[T ], E[P ]) pair associated with a specific value of twait. In-
tuitively, as twait increases, E[T ] decreases since we avoid setup times. Moreover, before some
threshold twait, E[P ] decreases as twait increases, because we avoid consuming power at peak rate
by repeatedly putting servers in setup. However, beyond this threshold twait, E[P ] starts increasing
on account of idle servers. Thus, as twait increases, we get the plots in Figs. 7(a) and 7(b), from
right to left. We choose the twait value that optimizes (i.e., maximizes) the popular Performance-
Per-Watt metric [10, 7], given by PPW = (E[T ] · E[P ])−1. These optimal values are shown in
Figs. 7(a) and 7(b). We find that the optimal twait value decreases with an increase in E[S].

Figs. 7(c) and 7(d) illustrate the tradeoff between E[P ] and E[T ] under M/M/k/setup/sleep for
different values of s. Intuitively, as s increases, E[T ] decreases since we benefit from faster setup
times afforded by sleeping servers. As s increases, E[P ] first decreases since we avoid the severe
power penalty of longer setup times. But beyond a certain s, E[P ] increases on account of the
sleeping servers. Thus, as s increases, we get the plots in Figs. 7(c) and 7(d), from right to left.
Note that E[P ] monotonically decreases for the case of E[S] = 1s in Fig. 7(c). This is because
1
α
� E[S], and thus, the decrease in power consumption by avoiding power penalties of longer

setup times outweighs the increase in power consumption because of Psleep. We choose the s value
that optimizes the PPW metric, as indicated in Figs. 7(c) and 7(d). We find that the optimal s value
decreases with an increase in E[S].

24



(a) E[T] versus k (b) E[P] versus k

Figure 8: Results when mean job size, E[S] = 1.

(a) E[T] versus k (b) E[P] versus k

Figure 9: Results when mean job size, E[S] = 10.

(a) E[T] versus k (b) E[P] versus k

Figure 10: Results when mean job size, E[S] = 100.

25



Figure 11: Var(T) versus k under mean job size of E[S] = 1s.

12.2 Comparison of all policies

Fig. 8 shows our results for E[T ] and E[P ] as a function of k for the case of E[S] = 1s. Compar-
ing M/M/k (squares) and M/M/k/setup (circles), we see that M/M/k/setup has a much higher E[T ],
and only a slightly lower E[P ]. In fact, when k is low, E[P ] for M/M/k/setup is higher than that
of M/M/k. This is because of the power penalty involved in the setup cost. Thus, M/M/k/setup is
not a good policy for small job sizes. The M/M/k/setup/sleep (crosses) has lower E[T ] and lower
E[P ] than the M/M/k/setup. Thus, using sleep modes improves the M/M/k/setup policy. Fi-
nally, we see that M/M/k/setup/delayedoff (diamonds) has E[T ] virtually as low as that of M/M/k,
and has the lowest power consumption among all other policies. Thus, M/M/k/setup/delayedoff
is superior to all the other policies for small job sizes. The reason for lower E[P ] under
M/M/k/setup/delayedoff is because of twait which avoids unnecessary setups (and the associated
power penalties).

Figs. 9 and 10 show our results for the case of E[S] = 10s and E[S] = 100s respectively.
The E[T ] results for these job sizes are qualitatively similar to the results for E[S] = 1s. The
percentage difference between the E[T ] under different policies goes down as E[S] goes up. This
is because the setup time is not changing as E[S] goes up, and thus, the queueing delay caused
by setup times is not as severe for large E[S]. Note that the E[T ] under M/M/k/setup/delayedoff
actually goes up as E[S] goes up. This is a side-effect of the optimal twait setting which trades off
lower E[P ] at the expense of a slightly higher E[T ] for bigger job sizes.

TheE[P ] results for different job sizes indicate thatE[P ] under M/M/k/setup and M/M/k/set-
up/sleep decreases with an increase in job size, and approaches the E[P ] of M/M/k/setup/de-
layedoff. This is because an increase in E[S] necessitates an increase in the inter-arrival time,
given fixed load, ρ. Thus, servers now spend more time in the off or sleep states, and conse-
quently, consume less power. In fact, the M/M/k/setup/sleep has lower E[P ] as compared to
M/M/k/setup/delayedoff for the case of E[S] = 100s. We take a closer look at these two policies
in Section 12.3. Note that under M/M/k, E[P ] = k · ρ · Ppeak + k · (1− ρ) · Pidle, which is linear

26



in k and independent of E[S].

The E[T ] results for these job sizes are qualitatively similar to the results for E[S] = 1s. The
percentage difference between the E[T ] under different policies goes down as E[S] goes up. This
is because the setup time is not changing as E[S] goes up, and thus, the queueing delay caused
by setup times is not as severe for large E[S]. Note that the E[T ] under M/M/k/setup/delayedoff
actually goes up as E[S] goes up. This is a side-effect of the optimal twait setting which trades off
lower E[P ] at the expense of a slightly higher E[T ] for bigger job sizes.

As mentioned in Section 7, RRR also provides closed-form solutions for higher moments of
response time and power. Fig. 11 shows our results for V ar(T ), the variability in response time,
for the case of E[S] = 1s. We see that V ar(T ) follows the same trends as E[T ] in Fig. 8(a). Note
that V ar(T ) is close to 1 for M/M/k and M/M/k/setup/delayedoff. Also, V ar(T ) converges to 1
for all policies for high k. This is because V ar(T ) converges to V ar(S) (no queueing delay) in
these cases, and since S is exponentially distributed with mean E[S] = 1s, we get V ar(T ) →
V ar(S) = 1s2.

All the results above assumed exponential setup times and exponential delay times. However,
in real-world scenarios, these times would be deterministic. We use simulations to find E[T ] and
E[P ] under deterministic setup times for all the above cases. We find that the relative ordering of
the policies and the trends in E[T ] and E[P ] do not change significantly, despite the fact that all
values become slightly higher due to the setup rates no longer being additive.

12.3 A closer look at M/M/k/setup/delayedoff versus M/M/k/setup/sleep

Fig. 12 shows the tradeoff between E[P ] and E[T ] for M/M/k/setup/delayedoff and M/M/k/set-
up/sleep for E[S] = 100s. These plots are identical to Figs. 7(b) and 7(d). We see that no policy
dominates the other. If we are more concerned about reducing E[P ], M/M/k/setup/sleep is the
better choice. However, if we are more concerned about reducing E[T ], M/M/k/setup/delayedoff
is the better choice. Interestingly, by taking a probabilistic mixture of the two policies, we can find
additional policies that are superior to the M/M/k/setup/delayedoff and the M/M/k/setup/sleep. The
probabilistic mixture can be obtained by taking the convex hull of the two policies, as shown by the
dashed line in Fig. 12. This suggests the potential for a policy that combines M/M/k/setup/sleep
with delayedoff.

13 Conclusion

In this paper we develop a new analysis technique, Recursive Renewal Reward (RRR), which
allows us to solve the M/M/k/setup class of Markov chains. RRR is very intuitive, easy to apply,
and can be used to analyze many important Markov chains that have a repeating structure. RRR
combines renewal reward theory with the development of recursion theorems for the Markov chain

27



Figure 12: E[P] versus E[T] for various values of twait and s under mean job size of E[S] = 100s.

to yield exact, closed form results for metrics of interest such as the transform of time in system
and the transform of power consumed by the system. RRR reduces the solution of the M/M/k/setup
chains to solving k quadratic equations and a system of O(k2) linear equations. On an Intel Core
i5-based processor machine we found RRR to be almost 5-10 times faster than the iterative matrix-
analytic based methods, when using standard MATLAB implementations of both methods.

While we have only considered the M/M/k/setup, the M/M/k/setup/delayedoff, and the M/M/k/set-
up/sleep in this paper, we have also been able to use RRR for the derivation of exact, closed-form
solutions for other important Markov chains with a repeating structure such as: (i) M/M/k/stag [9],
wherein at most one server can be in setup, (ii) M/M/k/setup-threshold, wherein servers are turned
on based on some threshold for number of jobs in queue, (iii) M/M/k/disasters, wherein the system
can empty abruptly due to disasters, and (iv) M/E2/k, where the job size distribution is Erlang-2.
We have also been able to apply RRR to analyze other Markov chains such as: (i) Mt/M/1, where
the arrival process is Poisson with a time dependent parameter, (ii) M/H2/k, where the job size
distribution is a 2-phase hyperexponential, and (iii) Mx/M/k, where there is a Poisson batch arrival
process. In the above three cases, RRR reduces the analysis to the problem of solving a polyno-
mial equation, with degree > 2. In general, RRR should be able to reduce the analysis of any
2-dimensional Markov chain which is finite in one dimension and possibly infinite (with repeating
structure) in the other to the problem of solving a polynomial equation, for any reward that can be
expressed as a recursive function over the states of the Markov chain.

While not shown in this paper, it is possible to derive an explicit rate matrix for the M/M/k/setup,
which leads to closed-form expressions for the limiting probabilities. While RRR does not utilize
the rate matrix in any way, it appears that the set of Markov chains that can be solved in closed
form via RRR all have an explicit rate matrix.

28



References

[1] ADAN, I., AND RESING, J. A class of Markov processes on a semi-infinite strip. Tech. Rep.
99-03, Eindhoven University of Technology, Department of Mathematics and Computing
Sciences, 1999.

[2] ADAN, I., AND VAN DER WAL, J. Combining make to order and make to stock. OR Spektrum
20 (1998), 73–81.

[3] ARTALEJO, J. R., ECONOMOU, A., AND LOPEZ-HERRERO, M. J. Analysis of a multiserver
queue with setup times. Queueing Syst. Theory Appl. 51, 1-2 (2005), 53–76.

[4] BARROSO, L. A., AND HÖLZLE, U. The Case for Energy-Proportional Computing. IEEE
Computer 40, 12 (2007), 33–37.

[5] CASTELLANOS, M., CASATI, F., SHAN, M.-C., AND DAYAL, U. iBOM: A platform for
intelligent business operation management. In Proceedings of the 21st International Confer-
ence on Data Engineering (Tokyo, Japan, 2005), ICDE ’05, pp. 1084–1095.

[6] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A.,
PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Ama-
zon’s highly available key-value store. In Proceedings of twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles (Stevenson, WA, 2007), SOSP ’07, pp. 205–220.

[7] GANDHI, A., GUPTA, V., HARCHOL-BALTER, M., AND KOZUCH, M. Optimality Analysis
of Energy-Performance Trade-off for Server Farm Management. Performance Evaluation 67
(2010), 1155–1171.

[8] GANDHI, A., AND HARCHOL-BALTER, M. How Data Center Size Impacts the Effective-
ness of Dynamic Power Management. 49th Annual Allerton Conference on Communication,
Control, and Computing (2011).

[9] GANDHI, A., HARCHOL-BALTER, M., AND ADAN, I. Server farms with setup costs. Per-
formance Evaluation 67 (2010), 1123–1138.

[10] GANDHI, A., HARCHOL-BALTER, M., AND KOZUCH, M. Are Sleep States Effective in
Data Centers? 3rd IEEE International Green Computing Conference (2012).

[11] HORVATH, T., AND SKADRON, K. Multi-mode energy management for multi-tier server
clusters. In Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (Toronto, Ontario, Canada, 2008), PACT ’08, pp. 270–279.

[12] KEILSON, J., AND SERVI, L. A distributional form of little’s law. Operations Research
Letters 7, 5 (1988), 223 – 227.

29



[13] KIM, J., AND ROSING, T. S. Power-aware resource management techniques for low-power
embedded systems. In Handbook of Real-Time and Embedded Systems, S. H. Son, I. Lee,
and J. Y.-T. Leung, Eds. Taylor-Francis Group LLC, 2006.

[14] KLEINROCK, L. Queueing Systems, Volume I: Theory. Wiley-Interscience, 1975.

[15] KRIOUKOV, A., MOHAN, P., ALSPAUGH, S., KEYS, L., CULLER, D., AND KATZ, R.
NapSAC: Design and implementation of a power-proportional web cluster. In Proceedings
of the First ACM SIGCOMM Workshop on Green Networking (New Delhi, India, 2010),
Green Networking ’10, pp. 15–22.

[16] LATOUCHE, G., AND RAMASWAMI, V. Introduction to Matrix Analytic Methods in Stochas-
tic Modeling. ASA-SIAM, Philadelphia, 1999.

[17] LEVY, Y., AND YECHIALI, U. An M/M/s queue with servers’ vacations. INFOR 14 (1976),
153–163.

[18] MEISNER, D., GOLD, B. T., AND WENISCH, T. F. PowerNap: Eliminating server idle
power. In Proceeding of the 14th international conference on Architectural Support for
Programming Languages and Operating Systems (Washington, DC, 2009), ASPLOS ’09,
pp. 205–216.

[19] MITRANI, I. Managing performance and power consumption in a server farm. Annals of
Operations Research (2012), 1–14.

[20] QIN, W., AND WANG, Q. Modeling and control design for performance management of
web servers via an IPV approach. IEEE Transactions on Control Systems Technology 15, 2
(March 2007), 259–275.

[21] TIAN, N., LI, Q.-L., AND GAO, J. Conditional stochastic decompositions in the M/M/c
queue with server vacations. Stochastic Models 15, 2 (1999), 367–377.

[22] VAN HOUDT, B., AND VAN LEEUWAARDEN, J. Triangular M/G/1-Type and Tree-Like
Quasi-Birth-Death Markov Chains. INFORMS Journal on Computing 23, 1 (2011), 165–
171.

[23] VAN LEEUWAARDEN, J., AND WINANDS, E. Quasi-birth-and-death processes with an ex-
plicit rate matrix. Stochastic models 22, 1 (2006), 77–98.

[24] WELCH, P. On a generalized M/G/1 queueing process in which the first customer of each
busy period receives exceptional service. Operations Research 12 (1964), 736–752.

[25] XU, X., AND TIAN, N. The M/M/c Queue with (e, d) Setup Time. Journal of Systems
Science and Complexity 21 (2008), 446–455.

[26] ZHANG, Z. G., AND TIAN, N. Analysis on queueing systems with synchronous vacations
of partial servers. Performance Evaluation 52, 4 (2003), 269 – 282.

30



A Recursion theorems

Theorem 1 (Recursion theorem for mean time).
For the M/M/k/setup, the mean time to move one step left from state (i, j), TLi,j , is the same for all
j ≥ k.

Proof. For any j ≥ k, observe that when moving one step left from any state (i, j), we only visit
states with level j or greater, until the final transition to level j − 1. Hence, TLi,j depends only on
the structure of the “subchain” of the M/M/k/setup consisting of levels {j, j + 1, . . .}, including
transition rates to level j − 1. Now consider the subchain for each j ≥ k; these subchains are
isomorphic, by the fact that the chain is repeating from level k onward. Hence, the time to move
one step left is the same regardless of the initial level j ≥ k.

Theorem 2 (Recursion theorem for mean reward).
For the M/M/k/setup, the mean reward earned in moving one step left from state (i, j + 1), RL

i,j+1,
satisfies RL

i,j+1 = RL
i,j + TLi,j for all j ≥ k, where the reward tracks the number of jobs in the

system.

Proof. Consider the process of moving one step left from a given state (i, j) where j ≥ k. At
the same time, consider the same process where everything is shifted over one level to the right,
so that the initial state is (i, j + 1) At any point in time, the number of jobs seen by the second
process is exactly one greater than that seen by the first process. Therefore, the total number of jobs
accumulated (total reward) during the second process is TLi,j greater than that of the first process,
since the duration of both processes is TLi,j by Theorem 1.

Theorem 3 (Recursion theorem for transform of reward).
For the M/M/k/setup, ṘL

i,j+1 = z · ṘL
i,j , for all j ≥ k, where Ṙ tracks the z-transform of the number

of jobs in the system.

Proof. The proof is identical to that of Theorem 2, except that in any moment in time the second
process (starting in level (i, j + 1)) earns z times as much reward as the first process (starting at
(i, j)).

Theorem 4 (Recursion theorem for transform of power).
For the M/M/k/setup, ĖL

i,j+1 = ĖL
i,j = TLi,j · zk·Ppeak , for all j ≥ k.

Proof. When j ≥ k, all k servers are either on or in setup, putting power consumption at k ·
Ppeak. So the transform of power usage is zk·Ppeak , yielding ĖL

i,j = TLi,j · zk·Ppeak . It then follows
immediately from Theorem 1 that ĖL

i,j+1 = ĖL
i,j .

Theorem 5 (Recursion theorem for probability).
For the M/M/k/setup, for each 0 ≤ d ≤ k and for each 0 ≤ i ≤ k, pLi→d is the same for all j ≥ k.

31



Proof. Recall that pLi→d is the probability that, given that we start at depth i, we end at depth d
when moving one step to the left, except when j = k and d ∈ {k − 1, k}; in these cases we
interpret pLi→k (or pLi→k−1) as the probabilities that we first moved one step left by transitioning out
of a state in depth k (or k − 1).

As with TLi,j , p
L
i→d depends only on the structure of the “subchain” consisting of levels {j, j +

1, . . .}, including transition rates to level j − 1. Since for all j ≥ k the resulting subchains are
isomorphic, pLi→d must be the same for all j ≥ k.

B Solution of the system of equations for M/M/k/setup

The steps below illustrate how to solve the system of equations for M/M/k/setup. All of the opera-
tions in the steps below can be performed symbolically to obtain closed-form results.

B.1 Solving for pL
i→d

The system of equations for pLi→d consists of equation sets (26), (27) and (28). Eqs. (26) are
k quadratic equations, each in one variable: pL0→0, p

L
1→1, . . . , p

L
k−2→k−2, p

L
k−1→k−1. Thus, we can

solve each equation easily using the quadratic formula. It can be easily shown that among the two
roots of each equation, the greater root exceeds 1, and is thus disregarded. The lesser root can be
shown to lie in the interval [0, 1), making it the unique solution of interest to the quadratic equation.
Note that pL0→0 = 0, as expected (we cannot move to the left when we have no servers on).

The set of equations (27) is a collection ofO(k2) equations involving linear terms and products
of two unlike variables. However, the structure of this system of equations reduces solving the
system to solving a set of linear equations via back substitution. Consider solving this set of
equations for the unknown values of pLi→d in this order:

pLk−1→k−1, p
L
k−2→k−2, p

L
k−2→k−1, . . . , p

L
0→1 p

L
0→2, . . . , p

L
0→k−1

That is, solving from greatest (k − 1) to least (0) “original depth,” but within each original depth,
solving from least to greatest “target depth.” Solving in this order, each equation we solve will
only have one unknown, as all other variables will already have been solved for in an earlier step
(including the pLi→i from Equations (26)), so these variables can be viewed as coefficients and
constant terms. Once we have solved Equations (27), we can easily solve Equations (28), yielding
pL0→k, p

L
1→k, . . . , p

L
k−1→k, by taking complements. It follows that all pLi→d can be solved in closed

forms that are, at worst, linear combinations of radicals (i.e., square roots).

32



B.2 Solving for ṘL
i,k

The system of equations for ṘL
i,k consists of Equations (29) and (30), and Eq. (31). This system is a

collection of (k+1) linear equations with (k+1) unknowns. Although we could solve this system
using standard linear algebraic techniques, the structure of this system suggests an even simpler
approach using back substitution. Solving for each ṘL

i,k only requires knowing the ṘL
i,` such that

` ∈ {i+1, . . . , k}. Eq. (31) readily gives us ṘL
k,k. Thus, we can now solve for ṘL

k−1,k, then ṘL
k−2,k,

and so on. In this way, each ṘL
i,k is found by solving a linear equation for one unknown variable.

B.3 Solving for ṘH
i,j

The system of equations for ṘH
i,j consists of Equations (32), (33), (34) and (35), and Eq. (36). This

system is a collection of O(k2) dependent linear equations with just as many unknowns. Unlike
the earlier systems of equations, there is no apparent structure we can exploit, so the system can
be solved via standard linear algebraic techniques such as (symbolic) matrix inversion.

33


