L ecture 22
The NP-Completeness Challenge

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.edu/~skiena

Problem of the Day

Show that the Hitting Set problem is NP-complete:

Input: A collection C' of subsets of a set .S, positive integer k.
Question: Does S contain a subset S’ such that |.S’| < & and
each subset in C' contains at least one element from S’?

Techniques for Proving N P-completeness

1. Restriction — Show that a special case of your problem
Is N P-complete. E.g. the problem of finding a path of
length £ is really Hamiltonian Path.

2. Local Replacement — Make local changes to the structure.
An example is the reduction SAT « 3 — SAT. Another
IS showing isomorphism is no easier for bipartite graphs:

e

For any graph, replacing an edge with makes it bipartite.

3. Component Design - These are the ugly, elaborate
constructions

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you get the
hang of it, it is surprisingly straightforward and pleasurable to
do. Indeed, the dirty little secret of NP-completeness proofs
Is that they are usually easier to recreate than explain, in the
same way that it is usually easier to rewrite old code than the
try to understand it.

| offer the following advice to those needing to prove the
hardness of a given problem:

M ake your source problem assimple (i.e.
restricted) aspossible

Never use the general traveling salesman problem (TSP) as a
target problem. Instead, use TSP on instances restricted to the
triangle inequality. Better, use Hamiltonian cycle, i.e. where
all the weights are 1 or oco. Even better, use Hamiltonian
path instead of cycle. Best of all, use Hamiltonian path on
directed, planar graphs where each vertex has total degree 3.
All of these problems are equally hard, and the more you
can restrict the problem you are reducing, the less work your
reduction has to do.

M ake your target problem as hard as possible

Don’t be afraid to add extra constraints or weights or
freedoms in order to make your problem more general (at
least temporarily).

Select theright source problem for theright
reason

Selecting the right source problem makes a big difference is
how difficult it is to prove a problem hard. This is the first
and easiest place to go wrong.

| usually consider four and only four problems as candidates
for my hard source problem. Limiting them to four means
that 1 know a lot about these problems — which variants of
these problems are hard and which are soft. My favorites are:

e 3-Sat — that old reliable...When none of the three
problems below seem appropriate, | go back to the source.

e Integer partition — the one and only choice for problems
whose hardness seems to require using large numbers.

e \ertex cover — for any graph problems whose hardness
depends upon selection. Chromatic number, clique, and
independent set all involve trying to select the correct
subset of vertices or edges.

e Hamiltonian path — for any graph problems whose
hardness depends upon ordering. If you are trying to route
or schedule something, this is likely your lever.

Amplify the penalties for making the undesired
transition

You are trying to translate one problem into another, while
making them stay the same as much as possible. The easiest
way to do this is to be bold with your penalties, to punish
anyone trying to deviate from your proposed solution. “If
you pick this, then you have to pick up this huge set which
dooms you to lose.” The sharper the consequences for doing
what is undesired, the easier it is to prove if and only if.

Think strategically at a high level, then build
gadgetsto enforce tactics.

You should be asking these kinds of questions. “How can |
force that either A or B but not both are chosen?” “How can
| force that A is taken before B?” “How can | clean up the
things I did not select?”

Alternate between looking for an algorithm or
areduction if you get stuck

Sometimes the reason you cannot prove hardness is that there
Is an efficient algorithm to solve your problem! When you

can’t prove hardness, it likely pays to change your thinking at
least for a little while to keep you honest.

Now watch metry it!

To demonstrate how one goes about proving a problem hard,
| accept the challenge of showing how a proof can be built on
the fly.

| need a volunteer to pick a random problem from the 400+
hard problems in the back of Garey and Johnson.

The Problem

The Solution

Other N P-complete Problems

e Partition - can you partition n integers into two subsets so
that the sums of the subset are equal?

e Bin Packing - how many bins of a given size do you need
to hold n items of variable size?

e Chromatic Number - how many colors do you need to
color a graph?

e N x N checkers - does black have a forced win from a
given position?

Open: Graph Isomorphism, Factoring Integers.

Polynomial or Exponential?

Just changing a problem a little can make the difference
between it being in P or N P-complete:

P N P-complete
Shortest Path Longest Path
Eulerian Circuit | Hamiltonian Circuit
Edge Cover Vertex Cover

The first thing you should do when you suspect a problem
might be NP-complete is look in Garey and Johnson,
Computers and Intractability.

