
Lecture 9:
Quicksort (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Show that an n-element heap has height ⌊lg n⌋.

Since it is balanced binary tree, the height of a heap is clearly
O(lg n), but the problem asks for an exact answer.
The height is defined as the number of edges in the longest
simple path from the root.



The number of nodes in a complete balanced binary tree of
heighth is 2h+1 − 1.
Thus the height increases only whenn = 2lg n, or in other
words whenlg n is an integer.



Is a reverse sorted array a heap?

In a heap, each element is greater than or equal to each of its
descendants.
In the array representation of a heap, the descendants of the
ith element are the2ith and(2i + 1)th elements.
If A is sorted in reverse order, thenA[i] ≥ A[j] implies that
i ≤ j.
Since2i > i and2i + 1 > i thenA[2i] ≤ A[i] andA[2i + 1] ≤
A[i].
Thus by definitionA is a heap!



Quicksort

Although mergesort isO(n lg n), it is quite inconvenient for
implementation with arrays, since we need space to merge.
In practice, the fastest sorting algorithm is Quicksort, which
usespartitioning as its main idea.
Example: Pivot about 10.
17 12 6 19 23 8 5 10 – before
6 8 5 10 23 19 12 17 – after
Partitioning places all the elements less than the pivot in the
left part of the array, and all elements greater than the pivot in
the right part of the array. The pivot fits in the slot between
them.
Note that the pivot element ends up in the correct place in the



total order!



Partitioning the elements

Once we have selected a pivot element, we can partition the
array in one linear scan, by maintaining three sections of the
array:< pivot, > pivot, and unexplored.
Example: pivot about 10
— 17 12 6 19 23 8 5 — 10
— 5 12 6 19 23 8 — 17
5 — 12 6 19 23 8 — 17
5 — 8 6 19 23 — 12 17
5 8 — 6 19 23 — 12 17
5 8 6 — 19 23 — 12 17
5 8 6 — 23 — 19 12 17
5 8 6 ——23 19 12 17



5 8 6 10 19 12 17 23
As we scan from left to right, we move the left bound to the
right when the element is less than the pivot, otherwise we
swap it with therightmost unexplored element and move the
right bound one step closer to the left.



Since the partitioning step consists of at mostn swaps, takes
time linear in the number of keys. But what does it buy us?

1. The pivot element ends up in the position it retains in the
final sorted order.

2. After a partitioning, no element flops to the other side of
the pivot in the final sorted order.

Thus we can sort the elements to the left of the pivot and the
right of the pivot independently!
This gives us a recursive sorting algorithm, since we can use
the partitioning approach to sort each subproblem.



Quicksort Animations



Pseudocode

Sort(A)
Quicksort(A,1,n)

Quicksort(A, low, high)
if (low < high)

pivot-location = Partition(A,low,high)
Quicksort(A,low, pivot-location - 1)
Quicksort(A, pivot-location+1, high)

Partition(A,low,high)
pivot = A[low]



leftwall = low
for i = low+1 to high

if (A[i] < pivot) then
leftwall = leftwall+1
swap(A[i],A[leftwall])

swap(A[low],A[leftwall])



Best Case for Quicksort

Since each element ultimately ends up in the correct position,
the algorithm correctly sorts. But how long does it take?
The best case fordivide-and-conquer algorithms comes when
we split the input as evenly as possible. Thus in the best case,
each subproblem is of sizen/2.
The partition step on each subproblem is linear in its size.
Thus the total effort in partitioning the2k problems of size
n/2k is O(n).
The recursion tree for the best case looks like this:



The total partitioning on each level isO(n), and it take
lg n levels of perfect partitions to get to single element
subproblems. When we are down to single elements, the
problems are sorted. Thus the total time in the best case is
O(n lg n).



Worst Case for Quicksort

Suppose instead our pivot element splits the array as
unequally as possible. Thus instead ofn/2 elements in the
smaller half, we get zero, meaning that the pivot element is
the biggest or smallest element in the array.



Now we haven−1 levels, instead oflg n, for a worst case time
of Θ(n2), since the firstn/2 levels each have≥ n/2 elements
to partition.
Thus the worst case time for Quicksort is worse than Heapsort
or Mergesort.
To justify its name, Quicksort had better be good in the
average case. Showing this requires some fairly intricate
analysis.
The divide and conquer principle applies to real life. If you
will break a job into pieces, it is best to make the pieces of
equal size!



Intuition: The Average Case for Quicksort

Suppose we pick the pivot element at random in an array ofn
keys.

1 n/4 3n/4 nn/2

Half the time, the pivot element will be from the center half
of the sorted array.
Whenever the pivot element is from positionsn/4 to3n/4, the
larger remaining subarray contains at most3n/4 elements.
If we assume that the pivot element is always in this range,
what is the maximum number of partitions we need to get
from n elements down to 1 element?



(3/4)l · n = 1 −→ n = (4/3)l

lg n = l · lg(4/3)

Thereforel = lg(4/3) · lg(n) < 2 lg n good partitions suffice.



What have we shown?

At most 2 lg n levels ofdecent partitions suffices to sort an
array ofn elements.
But how often when we pick an arbitrary element as pivot
will it generate a decent partition?
Since any number ranked betweenn/4 and3n/4 would make
a decent pivot, we get one half the time on average.
If we need2 lg n levels of decent partitions to finish the job,
and half of random partitions are decent, then on average the
recursion tree to quicksort the array has≈ 4 lg n levels.



Since O(n) work is done partitioning on each level, the
average time isO(n lg n).
More careful analysis shows that the expected number of
comparisons is≈ 1.38n lg n.



Average-Case Analysis of Quicksort

To do a precise average-case analysis of quicksort, we
formulate a recurrence given the exact expected timeT (n):

T (n) =
n∑

p=1

1

n
(T (p − 1) + T (n − p)) + n − 1

Each possible pivotp is selected with equal probability. The
number of comparisons needed to do the partition isn − 1.
We will need one useful fact about the Harmonic numbers
Hn, namely

Hn =
n∑

i=1
1/i ≈ ln n

It is important to understand (1) where the recurrence relation
comes from and (2) how the log comes out from the
summation. The rest is just messy algebra.



T (n) =
n∑

p=1

1

n
(T (p − 1) + T (n − p)) + n − 1

T (n) =
2

n

n∑

p=1
T (p − 1) + n − 1

nT (n) = 2
n∑

p=1
T (p − 1) + n(n − 1) multiply by n

(n−1)T (n−1) = 2
n−1∑

p=1
T (p−1)+(n−1)(n−2) apply to n-1

nT (n) − (n − 1)T (n − 1) = 2T (n − 1) + 2(n − 1)

rearranging the terms give us:

T (n)

n + 1
=

T (n − 1)

n
+

2(n − 1)

n(n + 1)



substitutingan = A(n)/(n + 1) gives

an = an−1 +
2(n − 1)

n(n + 1)
=

n∑

i=1

2(i − 1)

i(i + 1)

an ≈ 2
n∑

i=1

1

(i + 1)
≈ 2 ln n

We are really interested inA(n), so

A(n) = (n + 1)an ≈ 2(n + 1) ln n ≈ 1.38n lg n



What is the Worst Case?

The worst case for Quicksort depends upon how we select our
partition or pivot element. If we always select either the first
or last element of the subarray, the worst-case occurs when
the input is already sorted!
A B D F H J K
B D F H J K
D F H J K
F H J K
H J K
J K
K
Having the worst case occur when they are sorted or almost



sorted isvery bad, since that is likely to be the case in certain
applications.
To eliminate this problem, pick a better pivot:

1. Use the middle element of the subarray as pivot.

2. Use arandom element of the array as the pivot.

3. Perhaps best of all, take the median of three elements
(first, last, middle) as the pivot. Why should we use
median instead of the mean?

Whichever of these three rules we use, the worst case remains
O(n2). However, because the worst case is no longer a natural
order it is much more difficult to occur.



Is Quicksort really faster than Heapsort?

Since Heapsort isΘ(n lg n) and selection sort isΘ(n2), there
is no debate about which will be better for decent-sized files.
But how can we compare twoΘ(n lg n) algorithms to see
which is faster? Using the RAM model and the big Oh
notation, we can’t!
When Quicksort is implemented well, it is typically 2-3 times
faster than mergesort or heapsort. The primary reason is that
the operations in the innermost loop are simpler. The best
way to see this is to implement both and experiment with
different inputs.
Since the difference between the two programs will be limited
to a multiplicative constant factor, the details of how you



program each algorithm will make a big difference.
If you don’t want to believe me when I say Quicksort is faster,
I won’t argue with you. It is a question whose solution lies
outside the tools we are using.



Randomization

Suppose you are writing a sorting program, to run on data
given to you by your worst enemy. Quicksort is good on
average, but bad on certain worst-case instances.
If you used Quicksort, what kind of data would your enemy
give you to run it on? Exactly the worst-case instance, to
make you look bad.
But instead of picking the median of three or the first element
as pivot, suppose you picked the pivot element atrandom.
Now your enemy cannot design a worst-case instance to give
to you, because no matter which data they give you, you
would have the same probability of picking a good pivot!
Randomization is a very important and useful idea. By either



picking a random pivot or scrambling the permutation before
sorting it, we can say:

“With high probability, randomized quicksort runs in
Θ(n lg n) time.”

Where before, all we could say is:

“If you give me random input data, quicksort runs in
expectedΘ(n lg n) time.”

Since the time bound how does not depend upon your input
distribution, this means that unless we areextremely unlucky
(as opposed to ill prepared or unpopular) we will certainly get
good performance.
Randomization is a general tool to improve algorithms with
bad worst-case but good average-case complexity.



The worst-case is still there, but we almost certainly won’t
see it.


