L ecture9:
Quicksort (1997)

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Show that an n-element heap has height [lg n|.

Since it is balanced binary tree, the height of a heap islgle:
O(lgn), but the problem asks for an exact answer.

The height is defined as the number of edges in the lonc
simple path from the root.

The number of nodes in a complete balanced binary tree
heighth is 2/+1 — 1.

Thus the height increases only when= 2'¢", or in other
words wheng n IS an integer.

|s areverse sorted array a heap?

In a heap, each element is greater than or equal to each ¢
descendants.

In the array representation of a heap, the descendants o
ith element are th2ith and(2: + 1)th elements.

If Ais sorted in reverse order, theti] > A[j] implies that
i <.

Since2: > ¢ and2i+ 1 > i thenA[2i] < AlilandA[2i + 1] <
Alil.

Thus by definitionA is a heap!

Quicksort

Although mergesort i®)(nlgn), it is quite inconvenient for
Implementation with arrays, since we need space to merg
In practice, the fastest sorting algorithm is Quicksortjclih
usespartitioning as its main idea.

Example: Pivot about 10.

17126192385 10 — before

6851023191217 — after

Partitioning places all the elements less than the pivahen
|eft part of the array, and all elements greater than the pivo
theright part of the array. The pivot fits in the slot betwee
them.

Note that the pivot element ends up in the correct place In

total order!

Partitioning the elements

Once we have selected a pivot element, we can partition
array in one linear scan, by maintaining three sections ®f
array: < pivot, > pivot, and unexplored.

Example: pivot about 10

—17126192385—10

—512619238—17

5—12619238—17

5—861923—1217

58—61923—1217

586—1923—1217

586—23—191217

586——23191217

5861019121723

As we scan from left to right, we move the left bound to tt
right when the element is less than the pivot, otherwise
swap it with therightmost unexplored element and move the
right bound one step closer to the left.

Since the partitioning step consists of at moswaps, takes
time linear in the number of keys. But what does it buy us’

1. The pivot element ends up in the position it retains in t
final sorted order.

2. After a partitioning, no element flops to the other side
the pivot in the final sorted order.

Thus we can sort the elements to the left of the pivot and the
right of the pivot independently!

This gives us a recursive sorting algorithm, since we can |
the partitioning approach to sort each subproblem.

Quicksort Animations

Pseudocode

Sort(A)
Quicksort(A,1,n)

Quicksort(A, low, high)
If (low < high)
pivot-location = Partition(A,low,high)
Quicksort(A,low, pivot-location - 1)
Quicksort(A, pivot-location+1, high)

Partition(A,low,high)
pivot = A[low]

leftwall = low
for i = low+1 to high
If (A[i] < pivot) then
leftwall = leftwall+1
swap(A[i],Alleftwall])
swap(A[low],Alleftwall])

Best Case for Quicksort

Since each element ultimately ends up in the correct positi
the algorithm correctly sorts. But how long does it take?
The best case falivide-and-conquer algorithms comes when
we split the input as evenly as possible. Thus in the best ¢
each subproblem is of size/2.

The partition step on each subproblem is linear in its si.
Thus the total effort in partitioning th&* problems of size
n/2%is O(n).

The recursion tree for the best case looks like this:

‘ ﬁ ‘
ﬁ ﬁ

The total partitioning on each level ©(n), and it take
lgn levels of perfect partitions to get to single eleme
subproblems. When we are down to single elements,
problems are sorted. Thus the total time in the best cas
O(nlgn).

Wor st Case for Quicksort

Suppose instead our pivot element splits the array
unequally as possible. Thus insteadng® elements in the
smaller half, we get zero, meaning that the pivot elemen
the biggest or smallest element in the array.

Now we have:.—1 levels, instead dg n, for a worst case time
of ©(n?), since the first:/2 levels each have n /2 elements

to partition.

Thus the worst case time for Quicksort is worse than Heap:
or Mergesort.

To justify its name, Quicksort had better be good in ftl
average case. Showing this requires some fairly intric
analysis.

The divide and conguer principle applies to real life. If yc
will break a job into pieces, it is best to make the pieces
equal size!

Intuition: The Average Case for Quicksort

Suppose we pick the pivot element at random in an array c
keys.

1 n/4 n/2 3n/4 n

Half the time, the pivot element will be from the center he
of the sorted array.

Whenever the pivot element is from positionst to 3n /4, the
larger remaining subarray contains at most4 elements.

If we assume that the pivot element is always in this ran
what is the maximum number of partitions we need to ¢
from n elements down to 1 element?

(3/4) - n=1—n=(4/3)

lgen =1-1g(4/3)

Therefore =1g(4/3) - 1g(n) < 21gn good partitions suffice.

What have we shown?

At most 21gn levels of decent partitions suffices to sort an
array ofn elements.

But how often when we pick an arbitrary element as piv
will it generate a decent partition?

Since any number ranked betweefnl and3n /4 would make
a decent pivot, we get one half the time on average.

If we need2lgn levels of decent partitions to finish the jok
and half of random partitions are decent, then on average
recursion tree to quicksort the array mad Ign levels.

Since O(n) work is done partitioning on each level, th
average time i§)(nlgn).

More careful analysis shows that the expected number
comparisons isz 1.38n Ign.

Average-Case Analysis of Quicksort

To do a precise average-case analysis of quicksort,
formulate a recurrence given the exact expected fiime:

T(n) = pé ~(T(p 1)+ T(n—p)+n-1

Each possible pivat is selected with equal probability. The
number of comparisons needed to do the partition-s1.

We will need one useful fact about the Harmonic numbe
H,,, namely

H, = %11/2' ~Inn
It is important to understand (1) where the recurrenceioglat

comes from and (2) how the log comes out from tl
summation. The rest is just messy algebra.

() = ¥ (T(p~1)+ Tln—p)) +n—1

2 n
Tn)=—>XTp—1)+n—-1
n p=1

nT'(n) =2 §1T<p —1)+n(n—1) multiply by n
=

(n—1)T(n—1) = QZgT(p—l)jL(n—l)(n—Q) apply to n-1

nl’'n)—n—1)Tn—-1)=2Tn—-1)+2(n—1)
rearranging the terms give us:

Tn) Tmn-1) 2n-—1)
n+1 n +n(n+1)

substitutinga,, = A(n)/(n + 1) gives

n = Qn_1 1 —
fin = fin—1 n(n +1) ¢§12(2+1)
n 1
A, =2 — ~ 2Inn
i=1 (74 1)

We are really interested iA(n), SO

An)=n+1)a, =2(n+1)Inn~ 1.38nlgn

What isthe Wor st Case?

The worst case for Quicksort depends upon how we select
partition or pivot element. If we always select either thetfi
or last element of the subarray, the worst-case occurs w
the input is already sorted!

ABDFHJK

BDFHJK

DFHJK

FHJK

HJK

JK

K

Having the worst case occur when they are sorted or alnr

sorted isvery bad, since that is likely to be the case in certa
applications.
To eliminate this problem, pick a better pivot:

1. Use the middle element of the subarray as pivot.
2. Use arandom element of the array as the pivot.

3. Perhaps best of all, take the median of three eleme
(first, last, middle) as the pivot. Why should we us
median instead of the mean?

Whichever of these three rules we use, the worst case rem
O(n?). However, because the worst case is no longer a nat
order it iIs much more difficult to occur.

s Quicksort really faster than Heapsort?

Since Heapsort i§)(nlgn) and selection sort i®(n?), there
IS no debate about which will be better for decent-sized.file
But how can we compare tw6(nlgn) algorithms to see
which is faster? Using the RAM model and the big C
notation, we can't!

When Quicksort is implemented well, it is typically 2-3 time
faster than mergesort or heapsort. The primary reasontis
the operations in the innermost loop are simpler. The b
way to see this is to implement both and experiment w
different inputs.

Since the difference between the two programs will be lichit
to a multiplicative constant factor, the details of how yc

program each algorithm will make a big difference.
If you don’t want to believe me when | say Quicksort is fastt

| won't argue with you. It is a question whose solution lie
outside the tools we are using.

Randomization

Suppose you are writing a sorting program, to run on d
given to you by your worst enemy. Quicksort is good
average, but bad on certain worst-case instances.

If you used Quicksort, what kind of data would your enen
give you to run it on? Exactly the worst-case instance,
make you look bad.

But instead of picking the median of three or the first eleme
as pivot, suppose you picked the pivot elemembatiom.
Now your enemy cannot design a worst-case instance to ¢
to you, because no matter which data they give you,
would have the same probability of picking a good pivot!
Randomization is a very important and useful idea. By eitl

picking a random pivot or scrambling the permutation befc
sorting it, we can say:

“With high probability, randomized quicksort runs in
O(nlgn) time.”

Where before, all we could say is:

“If you give me random input data, quicksort runs in
expected®(nlgn) time.”

Since the time bound how does not depend upon your Iin
distribution, this means that unless we exeremely unlucky
(as opposed to ill prepared or unpopular) we will certairdy ¢
good performance.

Randomization is a general tool to improve algorithms wi
bad worst-case but good average-case complexity.

The worst-case is still there, but we almost certainly wol
see it.

