
Lecture 5:
Elementary Data Structures (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Hashing, Hashing, and Hashing

Udi Manber says that the three most important algorithms at
Yahoo are hashing, hashing, and hashing.
Hashing has a variety of clever applications beyond just
speeding up search, by giving you a short but distinctive
representation of a larger document.

• Is this new document different from the rest in a large
corpus? – Hash the new document, and compare it to
the hash codes of corpus.

• Is part of this document plagerized from part of a
document in a large corpus?– Hash all overlapping
windows of lengthw in the document and the corpus. If

there is a match of hash codes, there is possibly a text
match.

• How can I convince you that a file isn’t changed?– Check
if the cryptographic hash code of the file you give me
today is the same as that of the original. Note that any
changes to the file will result in changing the hash code.

(a) Is 2n+1 = O(2n)?
(b) Is 22n = O(2n)?

(a) Is2n+1 = O(2n)?
Is 2n+1 ≤ c ∗ 2n?
Yes, if c ≥ 2 for all n

(b) Is 22n = O(2n)?
Is 22n ≤ c ∗ 2n?
note22n = 2n ∗ 2n

Is 2n ∗ 2n ≤ c ∗ 2n?
Is 2n ≤ c?

No! Certainly for any constantc we can find ann such that
this is not true.

Elementary Data Structures

“Mankind’s progress is measured by the number of things we
can do without thinking.”
Elementary data structures such as stacks, queues, lists, and
heaps will be the “of-the-shelf” components we build our
algorithm from. There are two aspects to any data structure:

• The abstract operations which it supports.

• The implementation of these operations.

The fact that we can describe the behavior of our data
structures in terms of abstract operations explains why we
can use them without thinking, while the fact that we have

different implementation of the same abstract operations
enables us to optimize performance.

Stacks and Queues

Sometimes, the order in which we retrieve data is independent
of its content, being only a function of when it arrived.
A stacksupports last-in, first-out operations: push and pop.
A queuesupports first-in, first-out operations: enqueue and
dequeue.
A deque is a double ended queue and supports all four
operations: push, pop, enqueue, dequeue.
Lines in banks are based on queues, while food in my
refrigerator is treated as a stack.
Both can be used to traverse a tree, but the order is completely
different.

1

2 3

4 5 6 7

1

5 2

7 6 4 3

StackQueue

Which order is better for WWW crawler robots?

Stack Implementation

Although this implementation uses an array, a linked list
would eliminate the need to declare the array size in advance.

STACK-EMPTY(S)
if top[S] = 0

then return TRUE
else return FALSE

PUSH(S, x)
top[S]← top[S] + 1
S[top[S]← x

POP(S)
if STACK-EMPTY(S)

then error “underflow”
elsetop[S]← top[S]− 1

returnS[top[S] + 1]

1

2

3

4 top

All are O(1) time operations.

Queue Implementation

A circular queue implementation requires pointers to the head
and tail elements, and wraps around to reuse array elements.

ENQUEUE(Q, x)
Q[tail[Q]] ← x
if tail[Q] = length[Q]

then tail[Q]← 1
else tail[Q]← tail[Q] + 1

tail head

X X X

DEQUEUE(Q)
x = Q[head[Q]]
if head[Q] = length[Q]

then head[Q] = 1
else head[Q] = head[Q] + 1

return x

A list-based implementation would eliminate the possibility
of overflow.
All are O(1) time operations.

Dynamic Set Operations

Perhaps the most important class of data structures maintain
a set of items, indexed by keys.
There are a variety of implementations of thesedictionary
operations, each of which yield different time bounds for
various operations.

• Search(S,k)– A query that, given a set S and a key value
k, returns a pointerx to an element inS such thatkey[x]
= k, or nil if no such element belongs toS.

• Insert(S,x)– A modifying operation that augments the set
S with the elementx.

• Delete(S,x)– Given a pointerx to an element in the setS,

removex from S. Observe we are given a pointer to an
elementx, not a key value.

• Min(S), Max(S)– Returns the element of the totally
ordered setS which has the smallest (largest) key.

• Next(S,x), Previous(S,x)– Given an elementx whose key
is from a totally ordered setS, returns the next largest
(smallest) element inS, or NIL if x is the maximum
(minimum) element.

Pointer Based Implementation

We can maintain a dictionary in either a singly or doubly
linked list.

L

L

A B C D E F

A B C D E F

We gain extra flexibility on predecessor queries at a cost of
doubling the number of pointers by using doubly-linked lists.
Since the extra big-Oh costs of doubly-linkly lists is zero,
we will usually assume they are, although it might not be
necessary.

Singly linked to doubly-linked list is as a Conga line is to a
Can-Can line.

Array Based Sets

Unsorted Arrays

• Search(S,k) - sequential search,O(n)

• Insert(S,x) - place in first empty spot,O(1)

• Delete(S,x) - copynth item to thexth spot,O(1)

• Min(S,x), Max(S,x) - sequential search,O(n)

• Successor(S,x), Predecessor(S,x) - sequential search,
O(n)

Sorted Arrays

• Search(S,k) - binary search,O(lg n)

• Insert(S,x) - search, then move to make space,O(n)

• Delete(S,x) - move to fill up the hole,O(n)

• Min(S,x), Max(S,x) - first or last element,O(1)

• Successor(S,x), Predecessor(S,x) - Add or subtract 1 from
pointer,O(1)

What are the costs for a heap?

Unsorted List Implementation

LIST-SEARCH(L, k)
x = head[L]
while x <> NIL andkey[x] <> k

dox = next[x]
returnx

Note: the while loop might require two lines in some
programming languages.

HEAD(L)

X

X

INSERTION

DELETION

LIST-INSERT(L, x)
next[x] = head[L]
if head[L] <> NIL

then prev[head[L]] = x
head[L] = x
prev[x] = NIL

LIST-DELETE(L, x)
if prev[x] <> NIL

then next[prev[x]] = next[x]
else head[L] = next[x]

if next[x] <> NIL
then prev[next[x]] = prev[x]

Sentinels

Boundary conditions can be eliminated using a sentinel
element which doesn’t go away.

NIL

LIST-SEARCH’(L, k)
x = next[nil[L]]
while x <> NIL[L] andkey[x] <> k

dox = next[x]
returnx

LIST-INSERT’(L, x)
next[x] = next[nil[L]]
prev[next[nil[L]]] = x
next[nil[L]] = x
prev[x] = NIL[L]

LIST-DELETE’(L, x)
next[prev[x]]<> next[x]
next[prev[x]] = prev[x]

Hash Tables

Hash tables are avery practicalway to maintain a dictionary.
As with bucket sort, it assumes we know that the distribution
of keys is fairly well-behaved.
The idea is simply that looking an item up in an array isΘ(1)
once you have its index. A hash function is a mathematical
function which maps keys to integers.
In bucket sort, our hash function mapped the key to a bucket
based on the first letters of the key. “Collisions” were the set
of keys mapped to the same bucket.
If the keys were uniformly distributed, then each bucket
contains very few keys!
The resulting short lists were easily sorted, and could justas

easily be searched!

0 1 2 3 4 5 6 7 8 9 10 11

Hash Functions

It is the job of the hash function to map keys to integers. A
good hash function:

1. Is cheap to evaluate

2. Tends to use all positions from0 . . . M with uniform
frequency.

3. Tends to put similar keys in different parts of the tables
(Remember the Shifletts!!)

The first step is usually to map the key to a big integer, for
example

h =
keylength∑

i=0

128i
× char(key[i])

This large number must be reduced to an integer whose size
is between 1 and the size of our hash table.
One way is byh(k) = k mod M , whereM is best a large
prime not too close to2i − 1, which would just mask off the
high bits.
This works on the same principle as a roulette wheel!

Good and Bad Hash functions

The first three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

The last three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

The Birthday Paradox

No matter how good our hash function is, we had better be
prepared for collisions, because of the birthday paradox.

J F M A M J J1 A S O N D

The probability of there beingnocollisions aftern insertions
into anm-element table is

(m/m)×((m−1)/m)×...×((m−n+1)/m) = Πn−1

i=0 (m−i)/m

Whenm = 366, this probability sinks below 1/2 whenN =
23 and to almost 0 whenN ≥ 50.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Collision Resolution by Chaining

The easiest approach is to let each element in the hash table
be a pointer to a list of keys.

Insertion, deletion, and query reduce to the problem in linked
lists. If then keys are distributed uniformly in a table of size
m/n, each operation takesO(m/n) time.
Chaining is easy, but devotes a considerable amount of
memory to pointers, which could be used to make the table

larger. Still, it is my preferred method.

Open Addressing

We can dispense with all these pointers by using an implicit
reference derived from a simple function:

1 2 3 4 5 6 7 8 9 10 11

X X X X X

If the space we want to use is filled, we can examine the
remaining locations:

1. Sequentiallyh, h + 1, h + 2, . . .

2. Quadraticallyh, h + 12, h + 22, h + 32 . . .

3. Linearlyh, h + k, h + 2k, h + 3k, . . .

The reason for using a more complicated science is to avoid
long runs from similarly hashed keys.

Deletion in an open addressing scheme is ugly, since
removing one element can break a chain of insertions, making
some elements inaccessible.

Performance on Set Operations

With either chaining or open addressing:

• Search -O(1) expected,O(n) worst case

• Insert -O(1) expected,O(n) worst case

• Delete -O(1) expected,O(n) worst case

• Min, Max and Predecessor, SuccessorΘ(n+m) expected
and worst case

Pragmatically, a hash table is often the best data structureto
maintain a dictionary. However, we will not use it much in
proving the efficiency of our algorithms, since the worst-case
time is unpredictable.

The best worst-case bounds come from balanced binary trees,
such as red-black trees.

