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Prove that Hamiltonian Path is NP -complete.

This is not a special case of Hamiltonian cycle! (G may have
a HP but not cycle)
The easiest argument says thatG contains a HP but no HC iff
(x, y) in G such that adding edge(x, y) to G causes to have a
HC, soO(n2) calls to a HC function solves HP.
The cleanest proof modifies theV C andHC reduction from
the book:
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Formal Languages and the Theory of
NP-completeness

The theory of NP-completeness is based on formal languages
and Turing machines, and so we will must work on a more
abstract level than usual.
For a given alphabet of symbolsΣ =0, 1, &, we can form
an infinite set ofstrings or words by arranging them in any
order: ‘&10’, ‘111111’,‘&&&’, and ‘&’.
A subset of the set of strings over some alphabet is aformal
language.
Formal language theory concerns the study of how powerful
a machine you need to recognize whether a string is from a
particular language.



Example: Is the string a binary representation of a even
number? A simple finite machine can check if the last symbol
is zero:
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No memory is required, except for the current state.



Observe that solving decision problems can be thought of
as formal language recognition. The problem instances are
encoded as strings and strings in the language if and only if
the answer to the decision problem is YES!
What kind of machine is necessary to recognize this
language? A Turing Machine!
A Turing machine has a finite-state-control (its program), a
two way infinite tape (its memory) and a read-write head (its
program counter)
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So, where are we?

Each instance of an optimization or decision problem can be
encoded as string on some alphabet. The set of all instances
which return True for some problem define a language.
Hence, any problem which solves this problem is equivalent
to a machine which recognizes whether an instance is in the
language!
The goal of all this is going to be a formal way to talk about
the set of problems which can be solved in polynomial time,
and the set that cannot be.



Non-deterministic Turing Machines

Suppose we buy aguessing module peripherial for our Turing
machine, which looks at a Turing machine program and
problem instance and in polynomial time writes something
it says is an answer. To convince ourselves it really is an
answer, we can run another program to check it.
Ex: The Traveling Salesman Problem
The guessing module can easily write a permutation of the
vertices in polynomial time. We can check if it is correct
by summing up the weights of the special edges in the
permutation and see that it is less thank.



TAPE

finite
state
control

guessing
module

The class of languages which we can recognize in time
polynomial in the size of the string or a deterministic Turing
Machine (without guessing module) is calledP .
The class of languages we can recognize in time polynomial
in the length of the string or a non-deterministic Turing
Machine is calledNP .
Clearly, P ∈ NP , since for any DTM program we can run
it on a non-deterministic machine, ignore what the guessing
module is doing, and it will just as fast.



P ?= NP

Observe that any NDTM program which takes timeP (n)
can simulated inP (N )2P (n) time on a deterministic machine,
by running the checking program2P (n) times, once on each
possible guessed string.
The $10,000 question is whether a polynomial time simula-
tion exists, or in other words whetherP = NP ?. Do there
exist languages which can be verified in polynomial time and
still take exponential time on deterministic machines?
This is the most important question in computer science.
Since proving an exponential time lower bound for a problem
in NP would make us famous, we assume that we cannot do
it.



What we can do is prove that it is at least as hard as any
problem inNP . A problem inNP for which a polynomial
time algorithm would imply all languages inNP are inP is
calledNP -complete.



Turing Machines and Cook’s Theorem

Cook’s Theorem proves that satisfiability isNP -complete by
reducing all non-deterministic Turing machines toSAT .
Each Turing machine has access to a two-way infinite tape
(read/write) and a finite state control, which serves as the
program.
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A program for a non-deterministic TM is:

1. Space on the tape for guessing a solution and certificate to
permit verification.



2. A finite set of tape symbols

3. A finite set of statesΘ for the machine, including the start
stateq0 and final statesZyes, Zno

4. A transition function, which takes the current machine
state, and current tape symbol and returns the new state,
symbol, and head position.

We know a problem is inNP if we have a NDTM program to
solve it in worst-case timep[n], wherep is a polynomial and
n is the size of the input.



Cook’s Theorem - Satisfiability is NP-complete!

Proof: We must show that any problem inNP is at least
as hard as SAT. Any problem inNP has a non-deterministic
TM program which solves it in polynomial time, specifically
P (n).
We will take this program and create from it an instance of
satisfiability such that it is satisfiable if and only if the input
string was in the language.
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polynomial time transform

If a polynomial time transform exists, then SAT must be
NP -complete, since a polynomial solution to SAT gives a
polynomial time algorithm to anything inNP .
Our transformation will use boolean variables to maintain the
state of the TM:



Variable Range Intended meaning
Q[i, j] 0 ≤ i ≤ p(n) At time i, M is in

0 ≤ k ≤ r stateqk

H[i, j] 0 ≤ i ≤ p(n) At time i, the read-write head
−p(n) ≤ j ≤ p(n) + 1 is scanning tape squarej

S[i, j, k] 0 ≤ i ≤ p(n) At time i, the contents of
−p(n) ≤ j ≤ p(n) + 1 tape squarej is symbolSk

0 ≤ k ≤ v

Note that there arerp(n) + 2p2(n) + 2p2(n)v literals, a
polynomial number ifp(n) is polynomial.
We will now have to add clauses to ensure that these variables
takes or the values as in the TM computation.
The group6 clauses enforce the transition function of the
machine. If the read-write head is not on tape squarej at
time i, it doesn’t change ....
There areO(p(2(n)) literals andO(p2(n)) clauses in all, so
the transformation is done in polynomial time!



Polynomial Time Reductions

A decision problem isNP -hard if the time complexity on
a deterministic machine is within a polynomial factor of the
complexity of any problem inNP .
A problem isNP -complete if it is NP -hard and inNP .
Cook’s theorem proved SATISFIABILITY wasNP -hard by
using a polynomial time reduction translating each problem
in NP into an instance of SAT:
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Since a polynomial time algorithm for SAT would imply a



polynomial time algorithm for everything inNP , SAT is
NP -hard. Since we can guess a solution to SAT, it is inNP

and thusNP -complete.
The proof of Cook’s Theorem, while quite clever, was
certainly difficult and complicated. We had to show that all
problems inNP could be reduced to SAT to make sure we
didn’t miss a hard one.
But now that we have a knownNP -complete problem in
SAT. For any other problem, we can prove itNP -hard by
polynomially transforming SAT to it!
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Since the composition of two polynomial time reductions can
be done in polynomial time, all we need show is that SAT, ie.
any instance of SAT can be translated to an instance ofx in
polynomial time.


