
Lecture 24:
More Reductions (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Prove that subgraph isomorphism is NP -complete.

1. Guessing a subgraph ofG and proving it is isomorphism
to h takesO(n2) time, so it is inNP .

2. Clique and subgraph isomorphism. We must transform
all instances of clique into some instances of subgraph
isomorphism. Clique is a special case of subgraph
isomorphism!

Thus the following reduction suffices. LetG = G′ and
H = Kk, the complete subgraph onk nodes.

Other NP -complete Problems

• Partition - can you partitionn integers into two subsets so
that the sums of the subset are equal?

• Bin Packing - how many bins of a given size do you need
to holdn items of variable size?

• Chromatic Number - how many colors do you need to
color a graph?

• N × N checkers - does black have a forced win from a
given position?

• Scheduling, Code Optimization, Permanent Evaluation,
Quadratic Programming, etc.

Open: Graph Isomorphism, Composite Number, Minimum
Length Triangulation.

Polynomial or Exponential?

Just changing a problem a little can make the difference
between it being inP or NP -complete:

P NP -complete
Shortest Path Longest Path
Eulerian Circuit Hamiltonian Circuit
Edge Cover Vertex Cover

The first thing you should do when you suspect a problem
might be NP-complete is look in Garey and Johnson,
Computers and Intractability. It contains a list of several
hundred problems known to beNP -complete. Either what

you are looking for will be there or you might find a closely
related problem to use in a reduction.

Techniques for ProvingNP -completeness

1. Restriction - Show that a special case of the problem
you are interested in isNP -complete. For example, the
problem of finding a path of lengthk is really Hamiltonian
Path.

2. Local Replacement - Make local changes to the structure.
An example is the reductionSAT ∝ 3 − SAT . Another
example is showing isomorphism is no easier for bipartite
graphs:

For any graph, replacing an edge with makes it bipartite.

3. Component Design - These are the ugly, elaborate
constructions

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you get the
hang of it, it is surprisingly straightforward and pleasurable to
do. Indeed, the dirty little secret of NP-completeness proofs
is that they are usually easier to recreate than explain, in the
same way that it is usually easier to rewrite old code than the
try to understand it.
I offer the following advice to those needing to prove the
hardness of a given problem:

• Make your source problem as simple (i.e. restricted) as
possible.

Never use the general traveling salesman problem (TSP)
as a target problem. Instead, use TSP on instances re-

stricted to the triangle inequality. Better, use Hamiltonian
cycle, i.e. where all the weights are 1 or∞. Even better,
use Hamiltonian path instead of cycle. Best of all, use
Hamiltonian path on directed, planar graphs where each
vertex has total degree 3. All of these problems are
equally hard, and the more you can restrict the problem
you are reducing, the less work your reduction has to do.

• Make your target problem as hard as possible.

Don’t be afraid to add extra constraints or freedoms
in order to make your problem more general (at least
temporarily).

• Select the right source problem for the right reason.

Selecting the right source problem makes a big difference

is how difficult it is to prove a problem hard. This is the
first and easiest place to go wrong.

I usually consider four and only four problems as
candidates for my hard source problem. Limiting them
to four means that I know a lot about these problems –
which variants of these problems are hard and which are
soft. My favorites are:

– 3-Sat – that old reliable. . . When none of the three
problems below seem appropriate, I go back to the
source.

– Integer partition – the one and only choice for
problems whose hardness seems to require using large
numbers.

– Vertex cover – for any graph problems whose hardness
depends uponselection. Chromatic number, clique,
and independent set all involve trying to select the
correct subset of vertices or edges.

– Hamiltonian path – for any graph problems whose
hardness depends uponordering. If you are trying to
route or schedule something, this is likely your lever.

• Amplify the penalties for making the undesired transition.

You are trying to translate one problem into another, while
making them stay the same as much as possible. The
easiest way to do this is to be bold with your penalties,
to punish anyone trying to deviate from your proposed
solution. “If you pick this, then you have to pick up
this huge set which dooms you to lose.” The sharper the
consequences for doing what is undesired, the easier it is
to prove if and only if.

• Think strategically at a high level, then build gadgets to
enforce tactics.

You should be asking these kinds of questions. “How can
I force that either A or B but not both are chosen?” “How

can I force that A is taken before B?” “How can I clean
up the things I did not select?”

• Alternate between looking for an algorithm or a reduction
if you get stuck.

Sometimes the reason you cannot prove hardness is that
there is an efficient algorithm to solve your problem!
When you can’t prove hardness, it likely pays to change
your thinking at least for a little while to keep you honest.

Now watch me try it!

To demonstrate how one goes about proving a problem hard,
I accept the challenge of showing how a proof can be built on
the fly.
I need a volunteer to pick a random problem from the 400+
hard problems in the back of Garey and Johnson.

Hamiltonian Cycle

Instance: A graphG
Question: Does the graph contains a HC, i.e. an ordered of
the vertices{v1, v2, ..., vn}?
This problem is intimately relates to the Traveling Salesman.
Question: Is there an ordering of the vertices of a weighted
graph such thatw(v1, vn) + ∑

w(vi, vi+1) ≤ k?
Clearly,HC ∝ TSP . Assign each edge inG weight1, any
edge not inG weight 2. This new graph has a Traveling
Salesman tour of costn iff the graph is Hamiltonian. Thus
TSP isNP -complete if we can show HC isNP -complete.
Theorem: Hamiltonian Circuit is NP -complete
Proof: Clearly HC is inNP -guess a permutation and check

it out. To show it is complete, we use vertex cover. A
vertex cover instance consists of a graph and a constant
k, the minimum size of an acceptable cover. We must
construct another graph. Each edge in the initial graph will
be represented by the following component:

u v u1 v1

u6 v6

All further connections to this gadget will be through vertices
v1, v6, u1 andu6. The key observation about this gadget is
that there are only three ways to traverse all the vertices:

Note that in each case, we exit out the same side we entered.

Each side of each edge gadget is associated with a vertex.
Assuming some arbitrary order to the edges incident on a
particular vertex, we can link successive gadgets by edges
forming a chain of gadgets. Doing this for all vertices in
the original graph createsn intertwined chains withn entry
points andn exits.

...

v2

vk

v1

v3

v4

v2 v3

v1

v4

vk

Thus we have encoded the information about the initial graph.

What aboutk? We set upk additional vertices and connect
each of these to then start points andn end points of each
chain.

N

N

K

......

Total size of new graph:GE+K vertices and12E+2kN+2E
edges→ construction is polynomial in size and time.
We claim this graph has aHC iff G has aV C of sizek.

1. Suppose{v1, v2, ..., vn} is aHC.

Assume it starts at one of thek selector vertices. It
must then go through one of the chains of gadgets until

it reaches a different selector vertex.

Since the tour is aHC, all gadgets are traversed. Thek

chains correspond to the vertices in the cover.

Note that if both vertices associated with an edge are in
the cover, the gadget will be traversal in two pieces -
otherwise one chain suffices.

To avoid visiting a vertex more than once, each chain is
associated with a selector vertex.

2. Now suppose we have a vertex cover of size≤ k.

We can always add more vertices to the cover to bring it
up to sizek.

For each vertex in the cover, start traversing the chain. At
each entry point to a gadget, check if the other vertex is in

the cover and traverse the gadget accordingly.

Select the selector edges to complete the circuit.

Neat, sweet, and NP-complete.
To show that Longest Path or Hamiltonian Path isNP-
complete, add start and stop vertices and distinguish the first
and last selector vertices.

k-1
selector
vertices

Start

Stop

This has a Hamiltonian path from start to stop iff the original

graph has a vertex cover of sizek.

