Lecture 22:
Introduction to NP-completeness (1997)

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Amongn people, a celebrity is defined as someone whc
known by everyone but does not know anyone. We see
identify the celebrity (if one is present) by asking questiof
the form “Hey,z, do you know person?”. Show how to find
the celebrity using)(n) questions.

Note that there are’ possible questions to ask, so we cann
ask them all.

What if we ask 1 if she knows 2, and 2 if she knows 17 If bc
know each other neither can be a celebrity. If neither kn
each other, neither can be a celebrity. If one of them knc
the other, the former cannot be a celebrity.

Thus in two questions we can eliminate at least one per

from celebrity status. Thus lin—1) questions, we have only
one possible celebrity. It is now possible to check whether
survivor is really a celebrity using — 1 additional queries,
by checking whether everyone else knows them.

An Eulerian cycle in a graph visits each edge exactly once
graph contains an Eulerian cycle iff it is connected and t
degree of each vertex is even. Give@FE|) algorithm to
find an Eulerian cycle if one exists.

Observe that an cycle of edges defines a graph where ¢
vertex is of degree 2. Thus deleting a cycle from an Euler
graph leaves each vertex with even degree, although thl g
may not be connected.

We can use depth-first search to decompose the edges
graph into cycles. If the graph was connected, these cy
must link together. Splicing them together gives an Euter
cycle. For example, the cyclé, 2,3,1) and(4,5,6,1,4) can
be spliced together a4, 5,6,1,2,3,1,4).

Although Eulerian cycle has an efficient algorithm, tf
Hamiltonian cycle problem (visit each vertex exactly onc
IS NP-complete.

The Theory of NP-Completeness

Several times this semester we have encountered probl
for which we couldn’t find efficient algorithms, such as tr
traveling salesman problem. We also couldn’t prove

exponential time lower bound for the problem.

By the early 1970s, literally hundreds of problems werelstL
In this limbo. The theory of NP-Compleness, developed
Stephen Cook and Richard Karp, provided the tools to sh
that all of these problems were really the same problem.

Polynomial vs. Exponential Time

n F=n [J) =n> | J(m) =2" F(n) = nl

10 0.01us 0.1us 1us 3.63 ms

20 0.02 us 0.4 us 1ms 77.1 years

30 0.03us 0.9 us 1sec 8.4 x 10'° years
40 0.04 us 1.6us 18.3 min

50 0.05 us 2.5us 13 days

100 0.1pus 10 us 4 % 1073 years

1,000 1.00 us 1ms

The Main Idea

Suppose | gave you the following algorithm to solve il
bandersnatclproblem:

Bandersnatclif)
ConvertG to an instance of the Bo-billy problei.
Call the subroutine Bo-billy ofy” to solve this instance
Return the answer of Bo-billy{) as the answer t&'.

Such a translation from instances of one type of problem
Instances of another type such that answers are preserv
called areduction

Now suppose my reduction translatégo Y in O(P(n)):

1. If my Bo-billy subroutine ran iO(P’(n)) | can solve the
Bandersnatch problem @(P(n) + P'(n))

2. 1f 1 know that Q(P'(n)) is a lower-bound to compute
Bandersnatch, thef(P'(n) — P(n)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove probilc
hard!

Convex Hull and Sorting

A nice example of a reduction goes from sorting numbers
the convex hull problem:

We must translate each number to a point. We can mip
(2, 2%).

Why? That means each integer is mapped to a point on
parabolay = 22

Since this parabola is convex, every point is on the cony
hull. Further since neighboring points on the convex hulehe
neighboringr values, the convex hull returns the points sort
by x-coordinate, ie. the original numbers.

Sort(S5)
For eachi € S, create pointi, i%).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,
read off the points from left to right.

Creating and reading off the points tak@&) time.

What does this mean? Recall the sorting lower bound
(nlgn). If we could do convex hull in better thamlg n,
we could sort faster than(n Ig n) — which violates our lower

bound.

Thus convex hull must tak&n Ign) as well!!!

Observe that any)(n lgn) convex hull algorithm also gives
us a complicated but corre@(nlgn) sorting algorithm as

well.

What is a problem?

A problemis a general question, with parameters for the inf
and conditions on what is a satisfactory answer or solutior
An instance is a problem with the input parameters specifi
Example: The Traveling Salesman

Problem: Given a weighted graph what tour{vy, v, ..., v, }
minimizess?—! d[v;, v;i1] + d[v,, v1].

Instance: dvy,ds] = 10, dlvy,ds] = 5, dlvy,dy = 9,
d[’Ug, dg] = 6, d[’Ug, d4] = 9, d[’l)g, d4] =3

10

Solution: {vy, vy, v3, v4} COSt=27

A problem with answers restricted t@s and no is called
a decision problem Most interesting optimization problem:
can be phrased as decision problems which capture
essence of the computation.

Example: The Traveling Salesman Decision Problem.
Given a weighted graptr and integerk, does there exist a

traveling salesman tour with costk?

Using binary search and the decision version of the probl
we can find the optimal TSP solution.

For convenience, from now on we will talknly about
decision problems.

Note that there are many possible ways to encode the ir
graph: adjacency matrices, edge lists, etc. All reasone
encodings will be within polynomial size of each other.
The fact that we can ignore minor differences in encodi
IS Important. We are concerned with the difference betwe
algorithms which are polynomial and exponential in the si
of the input.

Satisfiability

Consider the following logic problem:

Instance: A set of variables and a set of clausé€overV'.
Question: Does there exist a satisfying truth assignmant
C?

Example 1.V = U1, U2 andC = {{’1}1,@2}, {@1, ’02}}

A clause Is satisfied when at least one literal in it is TRUE.
IS satisfied whemn; = v, =TRUE.

Example 2:V = vy, vy,

C = {{v1,v2}, {v1, 02}, {v1}}

Although you try, and you try, and you try and you try, ya
can get no satisfaction.

There Is no satisfying assigment since must be FALSE

(third clause), s@, must be FALSE (second clause), but the
the first clause is unsatisfiable!

For various reasons, it is known that satisfiability is a he
problem. Every top-notch algorithm expert in the world (at
countless other, lesser lights) have tried to come up wisis
algorithm to test whether a given set of clauses is satigfjal
but all have failed. Further, many strange and impossik
to-believe things have been shown to be true if someone
fact did find a fast satisfiability algorithm.

Clearly, Satisfiability is inNP, since we can guess al
assignment of TRUE, FALSE to the literals and check it

polynomial time.

P versus NP

The precise distinction between whether a problem i8 or
N P is somewhat technical, requiring formal language thec
and Turing machines to state correctly.

However, intuitively a problem is i®, (ie. polynomial) if it
can be solved in time polynomial in the size of the input.
A problem is INNPf, given the answetr, it is possible to verif
that the answer is correct within time polynomial in the si.
of the input.

ExampleP — Is there a path from to ¢ in G of length less
thank.

ExampleN P — Is there a TSP tour i& of length less thai.
Given the tour, it is easy to add up the costs and convince

It is correct.

Examplenot NP - How many TSP tours are there @ of
length less that. Since there can be an exponential numk
of them, we cannot count them all in polynomial time.
Don't let this issue confuse you — the important idea here
of reductions as a way of proving hardness.

3-Satisfiability

Instance: A collection of claugé where each clause contain
exactly3 literals, boolean variable.

Question: Is there a truth assignmenttso that each clause
IS satisfied?

Note that this is a more restricted problem than SAB-HAT
IS NP-complete, it implies SAT is NP-complete but not vis
versa, perhaps long clauses are what makes SAT difficult’
After all, 1-Sat Is trivial!

Theorem: 3-SAT is NP-Complete

Proof: 3-SAT is NP — given an assignment, just check th
each clause is covered. To prove it is complete, a reduc
from Sat o« 3 — Sat must be provided. We will transform

each clause independantly based oteitgjth
Suppose the clauge containsk literals.

o If £ = 1, meaningC; = {2}, create two new variables
v1, v9 and four news-literal clauses:

{vi,v2, 21}, {v1,02, 21}, {01, 02, 21}, {01, 02, 21}
Note that the only way all four of these can be satisfied
If zis TRUE.

o If £ =2, meaning{zy, 2,}, create one new variable and
two new clauses{uvy, 21, 22}, {v1, 21, 22}

o If £ = 3, meaning{zy, 2o, 23}, copy into the3-SAT
Instance as it is.

e If £ > 3, meaning{zy, 2, ...,2,}, Createn — 3 new

variables and: — 2 new clauses in a chairfv;, z;, v; },

If none of the original variables in a clause are TRUE, the
IS no way to satisfy all of them using the additional variable

(F,F,T),(F,F,T),...,(F,F,F)

But if any literal is TRUE, we have — 3 free variables and
n — 3 remaining3-clauses, so we can satisfy each of thel
(BT, (FFT),...,(F, TF),....(T,F,F),(T,F, F)
Since any SAT solution will also satisfy tieSAT instance
and any3-SAT solution sets variables giving a SAT solutio
— the problems are equivallent. If there werelauses anah
total literals in the SAT instance, this transform takesn)
time, so SAT and-SAT.

Note that a slight modification to this construction wou
prove 4-SAT, or 5-SAT,... also NP-complete. However, |
breaks down when we try to use it forSAT, since there is
no way to stuff anything into the chain of clauses. It turns c
that resolution gives a polynomial time algorithm fo6AT.
Having at leass-literals per clause is what makes the proble
difficult. Now that we have showf-SAT is NP-complete,
we may use it for further reductions. Since the set3of
SAT instances is smaller and more regular than $h&l
Instances, it will be easier to uSeSAT for future reductions.
Remember the direction to reduction!

Sat x 3 — Sat x X

A Perpetual Point of Confusion

Note carefully the direction of the reduction.

We must transforneveryinstance of a known NP-complet
problem to an instance of the problem we are interested ir
we do the reduction the other way, all we get is a slow w
to solvex, by using a subroutine which probably will tak
exponential time.

This always is confusing at first - it seems bass-ackwar
Make sure you understand the direction of reduction no\
and think back to this when you get confused.

Integer Programming

Instance: A seb of integer variables, a set of inequalitie
over these variables, a functigiw) to maximize, and integer

B.
Question: Does there exist an assignment of integerstah

that all inequalities are true arfdv) > B?
Example:
vi > 1, vy >0
V1 + v <3
f(v):2vy, B=3
A solution to this isv; = 1, vy = 2.
Example:

V1 + v <3
f(v):2vy, B=5

Since the maximum value of(v) given the constraints is
2 x 2 =4, there is no solution.

Theorem: Integer Programming is NP-Hard

Proof: By reduction from Satisfiability

Any set instance has boolean variables and clauses.
Integer programming problem will have twice as mal
variables as the SAT instance, one for each variable anc
compliment, as well as the following inequalities:

For each variabley;, in the set problem, we will add the
following constraints:

o | <V, <0andl <V; <0

Both IP variables are restricted to values of O or 1, whi
makes them equivalent to boolean variables restrictec
true/false.

e 1< Vi+V,; <1
Exactly one of the IP variables associated with a given
variable is 1. This means that exactly ondpandV; are
true!

e for each claus€’; = {v1,v2,73...v,} in the sat instance,
construct a constraint:

V1 +Us+03+...0, > 1

Thus at least one IP variable must be one in each clat
Thus satisfying the constraint is equivalent to satisfyi

the clause!

Our maximization function and bound are relatively unimpc
tant: f(v) =V B = 0.
Clearly this reduction can be done in polynomial time.

We must show:
1. Any SAT solution gives a solution to the IP problem.

In any SAT solution, a TRUE literal corresponds to i
the IP, since if the expression is SATISFIED, at least o
literal per clause in TRUE, so the sum in the inequality
> 1.

2. Any |P solution gives a SAT solution.

Given a solution to this IP instance, all variables will(be
or 1. Set the literals correspondly tovariable TRUE and
the(to FALSE. No boolean variable and its compleme
will both be true, so itis a legal assignment with also mt
satisfy the clauses.

Neat, sweet, and NP-complete!

Things to Notice

1. The reduction preserved the structure of the proble
Note that the reduction did ngblvethe problem — it just
put it in a different format.

2. The possible IP instances which result are a small sul
of the possible IP instances, but since some of them
hard, the problem in general must be hard.

3. The transformation captures the essence of why IP is I
- It has nothing to do with big coefficients or big ranges ¢
variables; for restricting t6/1 is enough. A careful study
of what properties we do need for our reduction tells u:
lot about the problem.

4. It is not obvious that IR NP, since the numbers assigne
to the variables may be too large to write in polynomi
time - don’t be too hasty!

