
Lecture 21:
Heuristic Methods (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

x is majority elementof a set S if the number of times it
occurs is > |S|/2. Give an O(n) algorithm to test whether
an unsorted array S of n elements has a majority element.

Sorting the list and checking the median element yields an
O(n log n) algorithm – correct, but too slow.
Observe that if I delete two occurences ofdifferent elements
from the set, I have not changed the majority element – since
n is reduced by two while the count of the majority element
is decreased by at most one.
Thus we can scan the set from left to right, and keep count
of how many times we see the first element before we see
an instance of a second element. We delete this pair and
continue. If we are left with one element at the end, this is

the only candidate for the majority element.
We must verify that this candidate is in fact a majority
element, but that can be tested by counting in a secondO(n)
sweep over the data.

Combinatorial Optimization

In most of the algorithmic problems we study, we seek to find
the best answer as quickly as possible.
Traditional algorithmic methods fail when (1) the problem is
provably hard, or (2) the problem is not clean enough to lead
to a nice formulation.
In most problems, there is a natural way to (1) construct
possible solutions and (2) measure how good agiven solution
is, but it is not clear how to find the best solution short of
searching all configurations.
Heuristic methods like simulated annealing give us a general
approach to search for good solutions.

MAX

MIN

Simulated Annealing

The inspiration for simulated annealing comes from cooling
molten materials down to solids. To end up with the globally
lowest energy state you must cool slowly so things cool
evenly.
In thermodynamic theory, the likelihood of a particular
particle jumping to ahigher energy state is given by:

e(Ei−Ej)/(kBT)

whereEi, Ej denote the before/after energy states,kB is the
Boltzman constant, andT is the temperature.
Since minimizing energy is a combinatorial optimization
problem, we can mimic the physics for computing.

Simulated-Annealing()
Create initial solutionS
Initialize temperaturet
repeat

for i = 1 to iteration-length do
Generate a random transition fromS to Si

If (C(S) ≤ C(Si)) thenS = Si

else if(e(C(S)−C(Si))/(k·t) > random[0, 1))
thenS = Si

Reduce temperaturet
until (no change inC(S))
ReturnS

Components of Simulated Annealing

There are three components to any simulated annealing
algorithm for combinatorial search:

• Concise problem representation – The problem represen-
tation includes both a representation of the solution space
and an appropriate and easily computable cost function
C(s) measuring the quality of a given solution.

• Transition mechanism between solutions – To move from
one state to the next, we need a collection of simple
transition mechanisms that slightly modify the current so-
lution. Typical transition mechanisms include swapping
the position of a pair of items or inserting/deleting a single
item.

• Cooling schedule – These parameters govern how likely
we are to accept a bad transition, which should decrease
as a function of time. At the beginning of the search,
we are eager to use randomness to explore the search
space widely, so the probability of accepting a negative
transition is high. The cooling schedule can be regulated
by the following parameters:

– Initial system temperature – Typically t1 = 1.

– Temperature decrement function – Typically tk =
α · tk−1, where0.8 ≤ α ≤ 0.99. This implies an
exponential decay in the temperature, as opposed to
a linear decay.

– Number of iterations between temperature change –

Typically, 100 to 1,000 iterations might be permitted
before lowering the temperature.

– Acceptance criteria – A typical criterion is to accept
any transition fromsi to si+1 whenC(si+1) > C(si)
and to accept a negative transition whenever

e
−

(C(si+1)−C(si)
c·ti ≥ r,

where r is a random number0 ≤ r < 1. The
constantc normalizes this cost function, so that almost
all transitions are accepted at the starting temperature.

– Stop criteria – Typically, when the value of the current
solution has not changed or improved within the last
iteration or so, the search is terminated and the current
solution reported.

We provide several examples to demonstrate how these com-
ponents can lead to elegant simulated annealing algorithms
for real combinatorial search problems.

Traveling Salesman Problem

Solution space – set of all(n − 1)! circular permutations.
Cost function – sum up the costs of the edges defined byS.
Transition mechanism – The most obvious transition mecha-
nism would be to swap the current tour positions of a random
pair of verticesSi andSj. This changes up to eight edges on
the tour, deleting the edges currently adjacent to bothSi and
Sj, and adding their replacements. Better would be to swap
two edges on the tour with two others that replace it

Since only four edges change in the tour, the transitions can
be performed and evaluated faster. Faster transitions mean
that we can evaluate more positions in the given amount of
time.
In practice, problem-specific heuristics for TSP outperform
simulated annealing, but the simulated annealing solution
works admirably, considering it uses very little knowledge

about the problem.

Maximum Cut

Given a weighted graph, partition the vertices to maximize
the weight of the edges cut.

This NP-complete problem arises in circuit design applica-
tions.
Solution space – set of all2n−1 vertex partitions, represented

as a bit string.
Cost function – the weight of the edges which are cut.
Transition mechanism – move one vertex across the partition.

∆f = (weight of old neighbors - weight of new neighbors)

This kind of procedure seems to be the right way to do maxcut
in practice.

Independent Set

An independent set of a graphG is a subset of verticesS such
that there is no edge with both endpoints inS. The maximum
independent set of a graph is the largest such empty induced
subgraph.

Solution space – set of all2n vertex subsets, represented as a
bit string.

Cost function –C(S) = |S|−λ·mS/T , whereλ is a constant,
T is the temperature, andmS is the number of edges in the
subgraph induced byS.
The dependence ofC(S) on T ensures that the search will
drive the edges out faster as the system cools.
Transition mechanism – move one vertex in/out of the subset.
More flexibility in the search space and quicker∆f compu-
tations result from allowing non-empty graphs at the early
stages of the cooling.

Chromatic Number

What is the smallest number of colors needed to color vertices
such that no edge links two vertices of the same color?

The solution is complicated by the fact that many vertices
have to shift (potentially) to reduce the chromatic number by
one.
To insure that the proposed colorings are biased in favor of

low cardinality subsets (i.e. 28 red, 1 blue, and 1 green is
better than 10 red, 10, blue, and 10 green), we will make
certain colors more expensive than others.
By weighting the colorswj+1 < 2wj − w1 (ex: 100, 99,
97, 93, 85, 69, 37) we get faster convergence, although
certain configurations might be cheaper than ones achieving
the chromatic number! This can be enforced with a more
complicated scheme.
By Brooks’ Theorem, every graph can be colored with∆ + 1
colors. In fact∆ colors suffice unlessG is complete or an
odd-cycle.
Solution space – all possible partitions of vertices into∆ + 1
color classes, where∆ is the maximum vertex degree.
Cost function – ∑∆+1

i=1 wi(|Vi| − λ|Ei|), whereλ > 1 is the

penalty constant.
Transition mechanism – randomly move one vertex to another
subset.

Circuit Board Placement

In designing printed circuit boards, we are faced with the
problem of positioning modules (typically integrated circuits)
on the board.
Desired criteria in a layout include (1) minimizing the area
or aspect ratio of the board, so that it properly fits within the
allotted space, and (2) minimizing the total or longest wire
length in connecting the components.
Circuit board placement is an example of the kind of messy,
multicriterion optimization problems for which simulated
annealing is ideally suited.
We are given a collection of a rectangular modulesr1, . . . , rn,
each with associated dimensionshi × li. For each pair of

modulesri, rj, we are given the number of wireswij that
must connect the two modules. We seek a placement of the
rectangles that minimizes area and wire-length, subject tothe
constraint that no two rectangles overlap each other.
Solution space – The positions of each rectangle. To provide
a discrete representation, the rectangles can be restricted to
lie on vertices of an integer grid.
Cost function – A natural cost function would be

C(S) = λarea(Sheight·Swidth)+
n∑

i=1

n∑

j=1
(λwire·wij·dij+λoverlap(ri∩r

whereλarea, λwire, andλoverlap are constants governing the
impact of these components on the cost function.
Transition mechanism – moving one rectangle to a different
location, or swapping the position of two rectangles.

Lessons from the Backtracking contest

• As predicted, the speed difference between the fastest
programs and average program dwarfed the difference be-
tween a supercomputer and a microcomputer. Algorithms
have a bigger impact on performance than hardware!

• Different algorithms perform differently on different data.
Thus even hard problems may be tractable on the kind of
data you might be interested in.

• None of the programs could efficiently handle all in-
stances forn ≈ 30. We will find out why after the
midterm, when we discuss NP-completeness.

• Many of the fastest programs were very short and simple
(KISS). My bet is that many of the enhancements students
built into them actually showed them down! This is where
profiling can come in handy.

• The fast programs were often recursive.

Winning Optimizations

• Finding a good initial solution via randomization or
heuristic improvement helped by establishing a good
upper bound, to constrict search.

• Using half the largest vertex degree as a lower bound
similarly constricted search.

• Pruning a partial permutation the instant an edge was≥
the target made the difference in going from (say) 8 to 18.

• Positioning the partial permutation vertices separated byb
instead of 1 meant significantly earlier cutoffs, since any
edge does the job.

• Mirror symmetry can only save a factor of 2, but perhaps
more could follow from partitioning the vertices into
equivalence classes by the same neighborhood.

