
Lecture 20:
Combinatorial Search (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Give anO(n lg k)-time algorithm which mergesk sorted lists
with a total ofn elements into one sorted list. (hint: use a
heap to speed up the elementaryO(kn)-time algorithm).

The elementary algorithm compares the heads of each of the
k sorted lists to find the minimum element, puts this in the
sorted list and repeats. The total time isO(kn).
Suppose instead that we build a heap on the head elements of
each of thek lists, with each element labeled as to which list
it is from. The minimum element can be found and deleted in
O(lg k) time. Further, we can insert the new head of this list
in the heap inO(lg k) time.
An alternateO(n lg k) approach would be to merge the lists
from as in mergesort, using a binary tree onk leaves (one for

each list).

Combinatorial Search

We have seen how clever algorithms can reduce sorting from
O(n2) to O(n log n). However, the stakes are even higher for
combinatorially explosive problems:

The Traveling Salesman Problem

Given a weighted graph, find the shortest cycle which visits
each vertex once.

Applications include minimizing plotter movement, printed-

circuit board wiring, transportation problems, etc.
There is no known polynomial time algorithm (ie.O(nk) for
some fixedk) for this problem, so search-based algorithms
are the only way to go if you need an optional solution.

But I want to use a Supercomputer

Moving to a faster computer can only buy you a relatively
small improvement:

• Hardware clock rates on the fastest computers only
improved by a factor of 6 from 1976 to 1989, from 12ns
to 2ns.

• Moving to a machine with 100 processors can only give
you a factor of 100 speedup, even if your job can be
perfectly parallelized (but of course it can’t).

• The fast Fourier algorithm (FFT) reduced computation
from O(n2) to O(n lg n). This is a speedup of 340

times onn = 4096 and revolutionized the field of image
processing.

• The fast multipole method forn-particle interaction
reduced the computation fromO(n2) to O(n). This is a
speedup of 4000 times onn = 4096.

Can Eight Pieces Cover a Chess Board?

Consider the 8 main pieces in chess (king, queen, two rooks,
two bishops, two knights). Can they be positioned on a
chessboard so every square is threatened?

R

B

Q

N B

N

R

K

Only 63 square are threatened in this configuration. Since
1849, no one had been able to find an arrangement with
bishops on different colors to cover all squares.
Of course, this is not an important problem, but we will use
it as an example of how to attack a combinatorial search
problem.

How many positions to test?

Picking a square for each piece gives us the bound:

64!/(64 − 8)! = 178, 462, 987, 637, 760 ≈ 1015

Anything much larger than108 is unreasonable to search on a
modest computer in a modest amount of time.
However, we can exploit symmetry to save work. With
reflections along horizontal, vertical, and diagonal axis,the
queen can go in only 10 non-equivallent positions.
Even better, we can restrict the white bishop to16 spots and
the queen to16, while being certain that we get all distinct
configurations.

Q Q Q

. . .

. . . b

b
b

b
b

b
b

b

b

b
b
b

b

. . .

. . . .

. . . .

16×16×32×64×2080×2080 = 2, 268, 279, 603, 200 ≈ 1012

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a search space.
In the general case, we assume our solution is a vectorv =
(a1, a2, ..., an) where each elementai is selected from a finite
ordered setSi,
We build from a partial solution of lengthk v = (a1, a2, ..., ak)
and try to extend it by adding another element. After
extending it, we will test whether what we have so far is still
possible as a partial solution.
If it is still a candidate solution, great. If not, we deleteak and
try the next element fromSk:

ComputeS1, the set of candidate first elements ofv.

k = 1
While k > 0 do

While Sk 6= ∅ do (*advance*)
ak = an element inSk

Sk ← Sk − ak

if (a1, a2, ..., ak) is solution, print!
k = k + 1
computeSk, the candidatekth elements givenv.

k = k − 1 (*backtrack*)

Recursive Backtracking

Recursion can be used for elegant and easy implementation
of backtracking.

Backtrack(a, k)
if a is a solution, print(a)
else{

k = k + 1
computeSk

while Sk 6= ∅ do
ak = an element inSk

Sk = Sk − ak

Backtrack(a, k)
}

Backtracking can easily be used to iterate through all subsets
or permutations of a set.
Backtracking ensures correctness by enumerating all possi-
bilities.
For backtracking to be efficient, we must prune the search
space.

Constructing all Subsets

How many subsets are there of ann-element set?
To construct all2n subsets, set up an array/vector ofn cells,
where the value ofai is either true or false, signifying whether
theith item is or is not in the subset.
To use the notation of the general backtrack algorithm,Sk =
(true, false), andv is a solution wheneverk ≥ n.
What order will this generate the subsets of{1, 2, 3}?

(1)→ (1, 2)→ (1, 2, 3)∗ →

(1, 2,−)∗ → (1,−)→ (1,−, 3)∗ →

(1,−,−)∗ → (1,−)→ (1)→

(−)→ (−, 2)→ (−, 2, 3)∗ →

(−, 2,−)∗ → (−,−)→ (−,−, 3)∗ →

(−,−,−)∗ → (−,−)→ (−)→ ()

Constructing all Permutations

How many permutations are there of ann-element set?
To construct alln! permutations, set up an array/vector ofn
cells, where the value ofai is an integer from1 to n which
has not appeared thus far in the vector, corresponding to the
ith element of the permutation.
To use the notation of the general backtrack algorithm,Sk =
(1, . . . , n)− v, andv is a solution wheneverk ≥ n.

(1) → (1, 2)→ (1, 2, 3)∗ → (1, 2)→ (1)→ (1, 3)→

(1, 3, 2)∗ → (1, 3)→ (1)→ ()→ (2)→ (2, 1)→

(2, 1, 3)∗ → (2, 1)→ (2)→ (2, 3)→ (2, 3, 1)∗ → (2, 3)→ ()

(2) → ()→ (3)→ (3, 1)(3, 1, 2)∗ → (3, 1)→ (3)→

(3, 2) → (3, 2, 1)∗ → (3, 2)→ (3)→ ()

The n-Queens Problem

The first use of pruning to deal with the combinatorial
explosion was by the king who rewarded the fellow who
discovered chess!
In the eight Queens, we prune whenever one queen threatens
another.

Covering the Chess Board

In covering the chess board, we prune whenever we find
there is a square which wecannot cover given the initial
configuration!
Specifically, each piece can threaten a certain maximum
number of squares (queen 27, king 8, rook 14, etc.) Whenever
the number of unthreated squares exceeds the sum of
the maximum number of coverage remaining in unplaced
squares, we canprune.
As implemented by a graduate student project, this backtrack
search eliminates95% of the search space, when the pieces
are ordered by decreasing mobility.
With precomputing the list of possible moves, this program

could search 1,000 positions per second. But this is too slow!

1012/103 = 109 seconds > 1000 days

Although we might further speed the program by an order of
magnitude, we need to prune more nodes!
By using a more clever algorithm, we eventually were able
to prove no solution existed, in less than one day’s worth of
computing.
You too can fight the combinatorial explosion!

The Backtracking Contest: Bandwidth

The bandwidth problemtakes as input a graphG, with n
vertices andm edges (ie. pairs of vertices). The goal is to find
a permutation of the vertices on the line which minimizes the
maximum length of any edge.

1 2 3 4 5 6 7 8 1 628 7 3 4 5

The bandwidth problem has a variety of applications, includ-
ing circuit layout, linear algebra, and optimizing memory
usage in hypertext documents.

The problem is NP-complete, meaning that it isexceedingly
unlikely that you will be able to find an algorithm with
polynomial worst-case running time. It remains NP-complete
even for restricted classes of trees.
Since the goal of the problem is to find a permutation,
a backtracking program which iterates through all then!
possible permutations and computes the length of the longest
edge for each gives an easyO(n! ·m) algorithm. But the goal
of this assignment is to find as practically good an algorithm
as possible.

The Backtracking Contest: Set Cover

The set coverproblem takes as input a collection of subsets
S = {S1, . . . , Sm} of the universal setU = {1, . . . , n}. The
goal is to find the smallest subset of the subsetsT such that
∪
|T |
i=1Ti = U .

Set cover arises when you try to efficiently acquire or
represent items that have been packaged in a fixed set of lots.
You want to obtain all the items, while buying as few lots as
possible. Findinga cover is easy, because you can always
buy one of each lot. However, by finding a small set cover
you can do the same job for less money.
Since the goal of the problem is to find a subset, a
backtracking program which iterates through all the2m

possible subsets and tests whether it represents a cover gives
an easyO(2m ·nm) algorithm. But the goal of this assignment
is to find as practically good an algorithm as possible.

Rules of the Game

1. Everyone must do this assignment separately. Just this
once, you are not allowed to work with your partner. The
idea is to think about the problem from scratch.

2. If you do not completely understand what the problem
is, you don’t have theslightest chance of producing
a working program. Don’t be afraid to ask for a
clarification or explanation!!!!!

3. There will be a variety of different data files of different
sizes. Test on the smaller files first. Do not be afraid to
create your own test files to help debug your program.

4. The data files are available via the course WWW page.

5. You will be graded on how fast and clever your program
is, not on style. No credit will be given for incorrect
programs.

6. The programs are to run on the whatever computer you
have access to, although it must be vanilla enough that I
can run the program on something I have access to.

7. You are to turn in a listing of your program, along with
a brief description of your algorithm and any interesting
optimizations, sample runs, and the time it takes on
sample data files. Report the largest test file your program
could handle in one minute or less of wall clock time.

8. The top five self-reported times / largest sizes will be
collected and tested by me to determine the winner.

Producing Efficient Programs

1. Don’t optimize prematurely: Worrying about recursion
vs. iteration is counter-productive until you have worked
out the best way to prune the tree. That is where the
money is.

2. Choose your data structures for a reason: What
operations will you be doing? Is case of insertion/deletion
more crucial than fast retrieval?

When in doubt, keep it simple, stupid (KISS).

3. Let the profiler determine where to do final tuning:
Your program is probably spending time where you don’t
expect.

