
Lecture 2:
Asymptotic Notation (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

How can we modify almost any algorithm to have a good
best-case running time?

To improve the best case, all we have to do it to be able to
solve one instance of each size efficiently. We could modify
our algorithm to first test whether the input is the special
instance we know how to solve, and then output the canned
answer.
For sorting, we can check if the values are already ordered,
and if so output them. For the traveling salesman, we can
check if the points lie on a line, and if so output the points in
that order.
The supercomputer people pull this trick on the linpack
benchmarks!

Because it is so easy to cheat with the best case running time,
we usually don’t rely too much about it.
Because it is usually very hard to compute the average
running time, since we must somehow average over all the
instances, we usually strive to analyze the worst case running
time.
The worst case is usually fairly easy to analyze and often
close to the average or real running time.

Exact Analysis is Hard!

We have agreed that the best, worst, and average case
complexity of an algorithm is a numerical function of the size
of the instances.

1 2 3 4

However, it is difficult to work with exactly because it is
typically very complicated!
Thus it is usually cleaner and easier to talk aboutupper and
lower boundsof the function.
This is where the dreaded big O notation comes in!
Since running our algorithm on a machine which is twice
as fast will effect the running times by a multiplicative
constant of 2 - we are going to have to ignore constant factors
anyway.

Names of Bounding Functions

Now that we have clearly defined the complexity functions
we are talking about, we can talk about upper and lower
bounds on it:

• g(n) = O(f (n)) meansC × f (n) is anupper boundon
g(n).

• g(n) = Ω(f (n)) meansC×f (n) is alower boundong(n).

• g(n) = Θ(f (n)) meansC1 × f (n) is an upper bound on
g(n) andC2 × f (n) is a lower bound ong(n).

Got it?C, C1, andC2 are all constants independent ofn.
All of these definitions imply a constantn0 beyond whichthey
are satisfied. We do not care about small values ofn.

O, Ω, and Θ

(a) (b) (c)

c2g(n)

f(n)

c1g(n)

cg(n)

f(n)

f(n) = O(g(n))

f(n)

cg(n)

nn n
n0 n0 n0

The value ofn0 shown is the minimum possible value; any
greater value would also work.
(a)f (n) = Θ(g(n)) if there exist positive constantsn0, c1, and
c2 such that to the right ofn0, the value off (n) always lies

betweenc1 · g(n) andc2 · g(n) inclusive.
(b) f (n) = O(g(n)) if there are positive constantsn0 andc
such that to the right ofn0, the value off (n) always lies on
or belowc · g(n).
(c) f (n) = Ω(g(n)) if there are positive constantsn0 andc
such that to the right ofn0, the value off (n) always lies on
or abovec · g(n).
Asymptotic notation (O, Θ, Ω) are as well as we can
practically deal with complexity functions.

What does all this mean?
3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6

3n2 − 100n + 6 = O(n3) because .01n3 > 3n2 − 100n + 6

3n2 − 100n + 6 6= O(n) because c · n < 3n2 when n > c

3n2 − 100n + 6 = Ω(n2) because 2.99n2 < 3n2 − 100n + 6

3n2 − 100n + 6 6= Ω(n3) because 3n2 − 100n + 6 < n3

3n2 − 100n + 6 = Ω(n) because 1010
10

n < 3n2 − 100 + 6

3n2 − 100n + 6 = Θ(n2) because O and Ω

3n2 − 100n + 6 6= Θ(n3) because O only

3n2 − 100n + 6 6= Θ(n) because Ω only

Think of the equality as meaningin the set of functions.
Note that time complexity is every bit as well defined a
function as sin(x) or you bank account as a function of
time.

Testing Dominance

f (n) dominatesg(n) if limn→∞ g(n)/f (n) = 0, which is the
same as sayingg(n) = o(f (n)).
Note the little-oh – it means “grows strictly slower than”.
Knowing the dominance relation between common functions
is important because we want algorithms whose time
complexity is as low as possible in the hierarchy. Iff (n)
dominatesg(n), f is much larger (ie. slower) thang.

• na dominatesnb if a > b since

lim
n→∞nb/na = nb−a → 0

• na + o(na) doesn’t dominatena since

lim
n→∞na/(na + o(na)) → 1

Complexity 10 20 30 40 50 60
n 0.00001 sec 0.00002 sec 0.00003 sec 0.00004 sec 0.00005 sec 0.00006 sec
n
2 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec 0.025 sec 0.036 sec

n
3 0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec 0.216 sec

n
5 0.1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min

2
n 0.001 sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 cent

3
n 0.59 sec 58 min 6.5 years 3855 cent 2 × 10

8 cent 1.3 × 10
13 cent

Logarithms

It is important to understand deep in your bones what
logarithms are and where they come from.
A logarithm is simply an inverse exponential function.
Sayingbx = y is equivalent to saying thatx = logb y.
Exponential functions, like the amount owed on an year
mortgage at an interest rate ofc% per year, are functions
which grow distressingly fast, as anyone who has tried to pay
off a mortgage knows.
Thus inverse exponential functions, ie. logarithms, grow
refreshingly slowly.
Binary search is an example of anO(lg n) algorithm. After
each comparison, we can throw away half the possible

number of keys. Thus twenty comparisons suffice to find any
name in the million-name Manhattan phone book!
If you have an algorithm which runs inO(lg n) time, take it,
because this is blindingly fast even on very large instances.

Properties of Logarithms

Recall the definition,clogc x = x.

Asymptotically, the base of the log does not
matter:

logb a =
logc a

logc b

Thus, log2 n = (1/ log100 2) × log100 n, and note that
1/ log100 2 = 6.643 is just a constant.

Asymptotically, any polynomial function of n
does not matter:

Note that

log(n473 + n2 + n + 96) = O(log n)

sincen473 +n2 +n+96 = O(n473), andlog n473 = 473∗ log n.
Anyexponential dominateseverypolynomial. This is why we
will seek to avoid exponential time algorithms.

Federal Sentencing Guidelines

2F1.1. Fraud and Deceit; Forgery; Offenses Involving
Altered or Counterfeit Instruments other than Counterfeit
Bearer Obligations of the United States.
(a) Base offense Level: 6
(b) Specific offense Characteristics
(1) If the loss exceeded $2,000, increase the offense level as
follows:

Loss(Apply the Greatest) Increase in Level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13

The federal sentencing guidelines are designed to help judges
be consistent in assigning punishment. The time-to-serve is a
roughly linear function of the totallevel.
However, notice that the increase in level as a function of
the amount of money you steal growslogarithmically in the
amount of money stolen.
This very slow growth means it pays to commit one crime
stealing a lot of money, rather than many small crimes adding
up to the same amount of money, because the time to serve if
you get caught is much less.
The Moral:“if you are gonna do the crime, make it worth the
time!”

Working with the Asymptotic Notation

Supposef (n) = O(n2) andg(n) = O(n2).
What do we know aboutg′(n) = f (n) + g(n)? Adding the
bounding constants showsg′(n) = O(n2).
What do we know aboutg′′(n) = f (n) − g(n)? Since the
bounding constants don’t necessary cancel,g′′(n) = O(n2)
We know nothing about the lower bounds ong′ + g′′ because
we know nothing about lower bounds onf , g.

Supposef (n) = Ω(n2) andg(n) = Ω(n2).
What do we know aboutg′(n) = f (n) + g(n)? Adding the
lower bounding constants showsg′(n) = Ω(n2).

What do we know aboutg′′(n) = f (n) − g(n)? We know
nothing about the lower bound of this!

The Complexity of Songs

Suppose we want to sing a song which lasts forn units of
time. Sincen can be large, we want to memorize songs which
require only a small amount of brain space, i.e. memory.
Let S(n) be thespace complexityof a song which lasts forn
units of time.
The amount of space we need to store a song can be
measured in either the words or characters needed to
memorize it. Note that the number of characters isΘ(words)
since every word in a song is at most 34 letters long –
Supercalifragilisticexpialidocious!
What bounds can we establish onS(n)?

• S(n) = O(n), since in the worst case we must explicitly

memorize every word we sing – “The Star-Spangled
Banner”

• S(n) = Ω(1), since we must know something about our
song to sing it.

The Refrain

Most popular songs have a refrain, which is a block of text
which gets repeated after each stanza in the song:

Bye, bye Miss American pie
Drove my chevy to the levy but the levy was dry
Them good old boys were drinking whiskey and rye
Singing this will be the day that I die.

Refrains made a song easier to remember, since you
memorize it once yet sing itO(n) times. But do they reduce
the space complexity?
Not according to the big oh. If

n = repetitions× (verse-size + refrain-size)

Then the space complexity is stillO(n) since it is only halved
(if the verse-size = refrain-size):

S(n) = repetitions× verse-size + refrain-size

The k Days of Christmas

To reduceS(n), we must structure the song differently.
Consider “Thek Days of Christmas”. All one must memorize
is:

On thekth Day of Christmas, my true love gave to me,
giftk

...
On the First Day of Christmas, my true love gave to

me, a partridge in a pear tree

But the time it takes to sing it is
k∑

i=1
i = k(k + 1)/2 = Θ(k2)

If n = O(k2), thenk = O(
√

n), soS(n) = O(
√

n).

100 Bottles of Beer

What do kids sing on really long car trips?

n bottles of beer on the wall,
n bottles of beer.
You take one down and pass it around
n − 1 bottles of beer on the ball.

All you must remember in this song is this template of size
Θ(1), and the current value ofn. The storage size forn
depends on its value, butlog2 n bits suffice.
This for this song,S(n) = O(lg n).

Is there a song which eliminates even the need to count?

That’s the way, uh-huh, uh-huh
I like it, uh-huh, huh

Reference: D. Knuth, ‘The Complexity of Songs’,Comm.
ACM, April 1984, pp.18-24

