
Lecture 18:
Shortest Paths (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Describe an efficent algorithm that, given an undirected
graph G, determines a spanning treeG whose largest edge
weight is minimum over all spanning trees ofG.

First, make sure you understand the question

5

5

5

5

5

1

6

1

1
1

Lower maximum edge weight Lower total weight

“Hey, doesn’t Kruskal’s algorithm do something like this.”
Certainly! Since Krushal’s algorithm considers the edges in
order of increasing weight, and stops the moment these edges
form a connected graph, the tree it gives must minimize the

edge weight.
“Hey, but then why doesn’t Prim’s algorithm also work?”
It gives the same thing as Kruskal’s algorithm, so it must
be true that any minimum spanning tree minimizes the
maximum edge weight!
Proof: Give me a MST and consider the largest edge weight,

Deleting it disconnects the MST. If there was a lower edge
connects the two subtrees, I didn’t have a MST!

Shortest Paths

Finding the shortest path between two nodes in a graph arises
in many different applications:

• Transportation problems – finding the cheapest way to
travel between two locations.

• Motion planning – what is the most natural way for a
cartoon character to move about a simulated environment.

• Communications problems – how look will it take for a
message to get between two places? Which two locations
are furthest apart, ie. what is thediameterof the network.

Shortest Paths and Sentence Disambiguation

In our work on reconstructing text typed on an (overloaded)
telephone keypad, we had to select which of many possible
interpretations was most likely.

��Token ��Token ��Token ��Token\4483" \63" \2" \7464"� � �� � �- - -��Token ��Token ��Token ��Token\4483" \63" \2" \7464"� � �� � �- - -? ? ? ?givehive ofme a pingringsinggivehive ofme a pingringsing
. . . # 4 4 8 3 � 6 3 � 2 � 7 4 6 4 # . . .

GIVE ME A RING.PPPq ���1 PPPq
INPUT?Blank Recognition?Candidate Construction?Sentence Disambiguating?OUTPUT

1

We constructed a graph where the vertices were the possible
words/positions in the sentence, with an edge between
possible neighboring words.

##

1

2

3

4

P(W /C)

P(W /C)

P(W /C)

P(W /C)

Code C1 Code C2 Code C3

2P(W /C)

1P(W /C)2

2
2

2

12
12

P(W /W)

P(W /#)1
2

P(W /#)1
3

P(W /#)1
4

P(W /#)1
1

1P(W /C)1
1

12P(W /C)1

3P(W /C)1
1

14P(W /C)1

P(#/W)4
1

3

3

3

3
3

3

3

3

The weight of each edge is a function of the probability that
these two words will be next to each other in a sentence. ‘hive

me’ would be less than ‘give me’, for example.
The final system worked extremely well – identifying over
99% of characters correctly based on grammatical and
statistical constraints.
Dynamic programming (the Viterbi algorithm) can be used
on the sentences to obtain the same results, by finding the
shortest paths in the underlying DAG.

Finding Shortest Paths

In an unweighted graph, the cost of a path is just the number
of edges on the shortest path, which can be found inO(n+m)
time via breadth-first search.
In a weighted graph, the weight of a path between two
vertices is the sum of the weights of the edges on a path.
BFS will not work on weighted graphs because sometimes
visiting more edges can lead to shorter distance, ie.
1 + 1 + 1 + 1 + 1 + 1 + 1 < 10.
Note that there can be an exponential number of shortest paths
between two nodes – so we cannot report all shortest paths
efficiently.
Note that negative cost cycles render the problem of finding

the shortest path meaningless, since you can always loop
around the negative cost cycle more to reduce the cost of the
path.
Thus in our discussions, we will assume that all edge weights
are positive. Other algorithms deal correctly with negative
cost edges.
Minimum spanning trees are uneffected by negative cost
edges.

Dijkstra’s Algorithm

We can useDijkstra’s algorithm to find the shortest path
between any two verticess andt in G.
The principle behind Dijkstra’s algorithm is that if
s, . . . , x, . . . , t is the shortest path froms to t, thens, . . . , x

had better be the shortest path froms to x.
This suggests a dynamic programming-like strategy, where
we store the distance froms to all nearby nodes, and use them
to find the shortest path to more distant nodes.
The shortest path froms to s, d(s, s) = 0. If all edge weights
are positive, thesmallestedge incident tos, say(s, x), defines
d(s, x).
We can use an array to store the length of the shortest path to

each node. Initialize each to∞ to start.
Soon as we establish the shortest path froms to a new node
x, we go through each of its incident edges to see if there is a
better way froms to other nodes thrux.

known = {s}
for i = 1 to n, dist[i] = ∞
for each edge(s, v), dist[v] = d(s, v)
last=s
while (last 6= t)

selectv such thatdist(v) = minunknown dist(i)
for each(v, x), dist[x] = min(dist[x], dist[v] + w(v, x))
last=v
known = known ∪ {v}

Complexity→ O(n2) if we use adjacency lists and a Boolean
array to mark what is known.
This is essentially the same as Prim’s algorithm.

An O(m lg n) implementation of Dijkstra’s algorithm would
be faster for sparse graphs, and comes from using a heap of
the vertices (ordered by distance), and updating the distance
to each vertex (if necessary) inO(lg n) time for each edge out
from freshly known vertices.
Even better,O(n lg n + m) follows from using Fibonacci
heaps, since they permit one to do a decrease-key operation
in O(1) amortized time.

