
Lecture 17:
Minimum Spanning Trees (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Show that you can topologically sort inO(n + m) by
repeatedly deleting vertices of degree0.

The correctness of this algorithm follows since in a DAG
there must always be a vertex of indegree 0, and such a
vertex can be first in topological sort. Suppose each vertex
is initialized with its indegree (do DFS on G to get this).
Deleting a vertex takesO(degree v). Reduce the indegree
of each efficient vertex - and keep a list of degree-0 vertices
to delete next.
Time: ∑n

i=1
O(deg(vi)) = O(n + m)



Minimum Spanning Trees

A tree is a connected graph with no cycles. A spanning tree is
a subgraph ofG which has the same set of vertices ofG and
is a tree.
A minimum spanning tree of a weighted graphG is the
spanning tree ofG whose edges sum to minimum weight.
There can be more than one minimum spanning tree in a
graph→ consider a graph with identical weight edges.
The minimum spanning tree problem has a long history – the
first algorithm dates back at least to 1926!.
Minimum spanning tree is always taught in algorithm courses
since (1) it arises in many applications, (2) it is an important
example wheregreedyalgorithms always give the optimal



answer, and (3) Clever data structures are necessary to make
it work.
In greedy algorithms, we make the decision of what next to
do by selecting the best local option from all available choices
– without regard to the global structure.



Applications of Minimum Spanning Trees

Minimum spanning trees are useful in constructing networks,
by describing the way to connect a set of sites using the
smallest total amount of wire. Much of the work on minimum
spanning (and related Steiner) trees has been conducted by
the phone company.
Minimum spanning trees provide a reasonable way for
clusteringpoints in space into natural groups.
When the cities are points in the Euclidean plane, the min-
imum spanning tree provides a good heuristic for traveling
salesman problems. The optimum traveling salesman tour is
at most twice the length of the minimum spanning tree.



The Option Traveling System tour is at most twice
the length of the minimum spanning tree.

Note: There can be more than one minimum spanning 
          tree considered as a group with identical weight
          edges.



Prim’s Algorithm

If G is connected, every vertex will appear in the minimum
spanning tree. If not, we can talk about a minimum spanning
forest.
Prim’s algorithm starts from one vertex and grows the rest of
the tree an edge at a time.
As a greedy algorithm, which edge should we pick? The
cheapest edge with which can grow the tree by one vertex
without creating a cycle.
During execution we will label each vertex as either in the
tree,fringe - meaning there exists an edge from a tree vertex,
or unseen- meaning the vertex is more than one edge away.

Select an arbitrary vertex to start.



While (there are fringe vertices)
select minimum weight edge between tree and fringe
add the selected edge and vertex to the tree

Clearly this creates a spanning tree, since no cycle can be
introduced via edges between tree and fringe vertices, but is
it minimum?



Why is Prim’s algorithm correct?

Don’t be scared by the proof – the reason is really quite basic:
Theorem: LetG be a connected, weighted graph and letE′ ⊂
E be a subset of the edges in a MSTT = (V, ET ). Let V ′ be
the vertices incident with edges inE′. If (x, y) is an edge of
minimum weight such thatx ∈ V ′ andy is not in V ′, then
E′ ∪ {x, y} is a subset of a minimum spanning tree.
Proof: If the edge is inT , this is trivial.
Suppose(x, y) is not in T Then there must be a path inT
from x to y sinceT is connected. If(v, w) is the first edge
on this path with one edge inV ′, if we delete it and replace it
with (x, y) we get a spanning tree.
This tree must have smaller weight thanT , sinceW (v, w) >



W (x, y). ThusT could not have been the MST.

Y

X

V
U

Thus we cannot go wrong
with the greedy strategy the
way we could with the 
traveling salesman.

PRIM’s Algorithm is correct!

Prim’s Algorithm is correct!
Thus we cannot go wrong with the greedy strategy the way
we could with the traveling salesman problem.



But how fast is Prim’s?

That depends on what data structures are used. In the simplest
implementation, we can simply mark each vertex as tree and
non-tree and search always from scratch:

Select an arbitrary vertex to start.
While (there are non-tree vertices)

select minimum weight edge between tree and fringe
add the selected edge and vertex to the tree

This can be done inO(nm) time, by doing a DFS or BFS to
loop through all edges, with a constant time test per edge, and
a total ofn iterations.
Can we do faster? If so, we need to be able to identify fringe
vertices and the minimum cost edge associated with it, fast.



We will augment an adjacency list with fields maintaining
fringe information.
Vertex:

fringelink pointer to next vertex in fringe list.

fringe weightcheapest edge linkingv to l.

parentother vertex withv having fringeweight.

statusintree, fringe, unseen.

adjacency listthe list of edges.

Finding the minimum weight fringe-edge takesO(n) time –
just bump through fringe list.
After adding a vertex to the tree, running through its
adjacency list to update the cost of adding fringe vertices



(there may be a cheaper way through the new vertex) can be
done inO(n) time.
Total time isO(n2).



Kruskal’s Algorithm

Since an easy lower bound argument shows that every edge
must be looked at to find the minimum spanning tree, and the
number of edgesm = O(n2), Prim’s algorithm is optimal in
the worst case. Is that all she wrote?
The complexity of Prim’s algorithm is independent of the
number of edges. Can we do better with sparse graphs? Yes!
Kruskal’s algorithm is also greedy. It repeatedly adds the
smallest edge to the spanning tree that does not create a cycle.
Obviously, this gives a spanning tree, but is it minimal?



Why is Kruskal’s algorithm correct?

Theorem: LetG be a weighted graph and letE′ ⊂ E. If E′

is contained in a MSTT ande is the smallest edge inE −E′

which does not create a cycle,E′ ∪ e ⊆ T .
Proof: As before, supposee is not in T . Adding e to T
makes a cycle. Deleting another edge from this cycle leaves a
connected graph, and if it is one fromE − E′ the cost of this
tree goes down. Since such an edge exists,T could not be a
MST.



1
2

3

4

5

6

7

8



How fast is Kruskal’s algorithm?

What is the simplest implementation?

• Sort them edges inO(m lg m) time.

• For each edge in order, test whether it creates a cycle the
forest we have thus far built – if so discard, else add to
forest. With a BFS/DFS, this can be done inO(n) time
(since the tree has at mostn edges).

The total time isO(mn), but can we do better?
Kruskal’s algorithm builds up connected components. Any
edge where both vertices are in the same connected compo-
nent create a cycle. Thus if we can maintain which vertices
are in which component fast, we do not have test for cycles!



Put the edges in a heap
count = 0
while (count < n − 1) do

get next edge(v, w)
if (component (v)6= component(w))

add to T
component (v)=component(w)

If we can test components inO(log n), we can find the MST
in O(m log m)!
Question:Is O(m log n) better thanO(m log m)?



Union-Find Programs

Our analysis that Kruskal’s MST algorithm isO(m log m)
requires a fast way to test whether an edge links two vertices
in the same connected component.
Thus we need a data structure for maintaining sets which
can test if two elements are in the same and merge two sets
together. These can be implemented byUNION andFIND
operations:

Is si ≡ sj

t = Find(si)
u = Find(sj)
Return (Ist = u?)



Makesi ≡ sj

t = d(si)
u = d(sj)
Union(t, u)

Find returns the name of the set andUnion sets the members
of t to have the same name asu.
We are interested in minimizing the time it takes to execute
anysequence of unions and finds.
A simple implementation is to represent each set as a tree,
with pointers from a node to its parent. Each element is
contained in a node, and thenameof the set is the key at
the root:



s

FIND(S)

t

S

UNION (s, t)

In the worst case, these structures can be very unbalanced:

For i = 1 to n/2 do
UNION(i,i+1)

For i = 1 to n/2 do
FIND(1)

We want the limit the height of our trees which are effected by



UNIONs. When we union, we can make the tree with fewer
nodes the child.
Since the number of nodes is related to the height, the height
of the final tree will increase only if both subtrees are of equal
height!
Lemma: IfUnion(t, v) attaches the root ofv as a subtree of
t iff the number of nodes int is greater than or equal to the
number inv, after any sequence of unions, any tree withh/4
nodes has height at most⌊lg h⌋.
Proof: By induction on the number of nodesk, k = 1 has
height0.
Assume true tok − 1 nodes. Letdi be the height of the treeti



d1

d2T2

k2 nodes
k1 nodes

T1

k =  k1+ k2 nodes

d is the height

If (d1 > d2) thend = d1 ≤ ⌊log k1⌋ ≤ ⌊lg(k1 +k2)⌋ = ⌊log k⌋
If (d1 ≤ d2), thenk1 ≥ k2.
d = d2 + 1 ≤ ⌊log k2⌋ + 1 = ⌊log 2k2⌋ ≤ ⌊log(k1 + k2)⌋ =
log k



Can we do better?

We can dounionsand finds in O(log n), good enough for
Kruskal’s algorithm. But can we do better?
The idealUnion-Findtree has depth 1:

N-1 leaves

... ...

On a find, if we are going down a path anyway, why not
change the pointers to point to the root?



1

2

3

4 5 6 8 9

7 11
12

13

14
10

FIND(4)

1

4 3 7 10
14

13
12

115 6 8 9

2

This path compression will let us do better thanO(n log n)
for n union-finds.
O(n)? Not quite . . . Difficult analysis shows that it takes
O(nα(n)) time, whereα(n) is the inverse Ackerman function
andα(number of atoms in the universe)= 5.


