
Lecture 16:
Topological Sort / Connectivity (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Give an efficient algorithm to test if a graph is bipartite.

Bipartite means the vertices can be colored red or black such
that no edge links vertices of the same color.

R

R

R

W

W

W

W

Suppose we color a vertex red - what color must its neighbors
be?black!

We can augment either BFS or DFS when we first discover a
new vertex, color it opposited its parents, and for each other
edge, check it doesn’t link two vertices of the same color. The
first vertex in any connected component can be red or black!
Bipartite graphs arise in many situations, and special algo-
rithms are often available for them. What is the interpretation
of a bipartite “had-sex-with” graph?
How would you break people into two groups such that no
group contains a pair of people who hate each other?

Give anO(n) algorithm to test whether an undirected graph
contains a cycle.

If you do a DFS, you have a cycle iff you have a back edge.
This gives anO(n+m) algorithm. But where does them go?
If the graph contains more thann − 1 edges, it must contain
a cycle! Thus we never need look at more thann edges if we
are given an adjacency list representation!

Topological Sorting

A directed, acyclic graph is a directed graph with no directed
cycles.

DAG NON-DAG

A topological sort of a graph is an ordering on the vertices so
that all edges go from left to right.
Only a DAG can have a topological sort.

Any DAG has (at least one) topological sort.

Applications of Topological Sorting

Topological sorting is often useful in scheduling jobs in their
proper sequence. In general, we can use it to order things
given constraints, such as a set of left-right constraints on the
positions of objects.
Example: Dressing schedule from CLR.
Example: Identifying errors in DNA fragment assembly.
Certain fragments are constrained to be to the left or right of
other fragments, unless there are errors.

A B R A C
A C A D A
A D A B R
D A B R A
R A C A D

A B R A C

R A C A D

A C A D A

A D A B R

D A B R A

A B R A C A D A B R A

Solution – build a DAG representing all the left-right
constraints. Any topological sort of this DAG is a consistant
ordering. If there are cycles, there must be errors.
A DFS can test if a graph is a DAG (it is iff there are no
back edges - forward edges are allowed for DFS on directed
graph).

Algorithm

Theorem: Arranging vertices in decreasing order of DFS
finishing time gives a topological sort of a DAG.
Proof: Consider any directed edgeu, v, when we encounter
it during the exploration of vertexu:

• If v is white - we then start a DFS ofv before we continue
with u.

• If v is grey - thenu, v is a back edge, which cannot happen
in a DAG.

• If v is black - we have already finished withv, sof [v] <

f [u].

Thus we can do topological sorting inO(n + m) time.

Articulation Vertices

Suppose you are a terrorist, seeking to disrupt the telephone
network. Which station do you blow up?

An articulation vertexis a vertex of a connected graph whose
deletion disconnects the graph.
Clearly connectivity is an important concern in the design of
any network.
Articulation vertices can be found inO(n(m+n)) – just delete
each vertex to do a DFS on the remaining graph to see if it is
connected.

A Faster O(n + m) DFS Algorithm

Theorem: In a DFS tree, a vertexv (other than the root) is
an articulation vertex iffv is not a leaf and some subtree ofv

has no back edge incident until a proper ancestor ofv.

X

The root is a special case since
it has no ancestors.

X is an articulation vertex since
the right subtree does not have
a back edge to a proper ancestor.

Leaves cannot be
articulation vertices

Proof: (1) v is an articulation vertex→ v cannot be a leaf.

Why? Deletingv must seperate a pair of verticesx andy.
Because of the other tree edges, this cannot happen unlessy

is a decendant ofv.

X

Y

V

v separatingx, y implies there is no back edge in the subtree

of y to a proper ancestor ofv.
(2) Conditions→ v is a non-root articulation vertex.v
separates any ancestor ofv from any decendant in the
appropriate subtree.
Actually implementing this test inO(n + m) is tricky – but
believable once you accept this theorem.

Strongly Connected Components

A directed graph is strongly connected iff there is a directed
path between any two vertices.
The strongly connected components of a graph is a partition
of the vertices into subsets (maximal) such that each subsetis
strongly connected.

a b

c d g h

e f

Observe that no vertex can be in two maximal components,
so it is a partition.

There is an amazingly elegant, linear time algorithm to find
the strongly connected components of a directed graph, using
DFS.

• Call DFS(σ) to compute finishing times for each vertex.

• Compute the transpose graphGT (reverse all edges in G)

• Call DFS(GT), but order the vertices in decreasing order
of finish time.

• The vertices of each DFS tree in the forest of DFS(GT) is
a strongly connected component.

This algorithm takesO(n + m), but why does it compute
strongly connected components?
Lemma: If two vertices are in the same strong component,
no path between them ever leaves the component.

u

z

y

x

x must also be in

the strong component!

Lemma: In any DFS forest, all vertices in the same strongly

connected component are in the same tree.
Proof: Consider the first vertexv in the component to be
discovered. Everything in the component is reachable from
it, so we will traverse it before finishing withv.

What does DFS(GT , v) Do?

It tells you what vertices have directed paths tov, while
DFS(σ,v) tells what vertices have directed paths fromv. But
why must any vertex in the search tree of DFS(GT , v) also
have a path fromu?

v

G GT

Because there is no edge from any previous DFS tree into
the last tree!! Because we ordered the vertices by decreasing

order of finish time, we can peel off the strongly connected
components from right to left just be doing a DFS(GT).

Example of Strong Components Algorithm

a b

c d g h

e f

9, 10, 11, 12 can reach9, oldest remaining finished is5.
5, 6, 8 can reach5, oldest remaining is7.
7 can reach7, oldest remaining is1.
1, 2, 3 can reach1, oldest remaining is4.
4 can reach4.

1 5 9

1062

3 4 7 8 11 12

DFG(G) 9 is the last vertex to finish

