
Lecture 15:
Breadth/Depth-First Search (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



The squareof a directed graphG = (V, E) is the graph
G2 = (V, E2) such that(u, w) ∈ E2 iff for somev ∈ V ,
both(u, v) ∈ E and(v, w) ∈ E; ie. there is a path of exactly
two edges.
Give efficient algorithms for both adjacency lists and
matricies.

Given an adjacency matrix, we can check in constant time
whether a given edge exists. To discover whether there is an
edge(u, w) ∈ G2, for each possible intermediate vertexv we
can check whether(u, v) and(v, w) exist inO(1).
Since there are at mostn intermediate vertices to check, and
n2 pairs of vertices to ask about, this takesO(n3) time.
With adjacency lists, we have a list of all the edges in the



graph. For a given edge(u, v), we can run through all
the edges fromv in O(n) time, and fill the results into an
adjacency matrix ofG2, which is initially empty.
It takesO(mn) to construct the edges, andO(n2) to initialize
and read the adjacency matrix, a total ofO((n + m)n). Since
n ≤ m unless the graph is disconnected, this is usually
simplified toO(mn), and is faster than the previous algorithm
on sparse graphs.
Why is it called the square of a graph? Because the square
of the adjacency matrix is the adjacency matrix of the square!
This provides a theoretically faster algorithm.



Traversal Orders

The order we explore the vertices depends upon what kind of
data structure is used:

• Queue– by storing the vertices in a first-in, first out
(FIFO) queue, we explore the oldest unexplored vertices
first. Thus our explorations radiate out slowly from the
starting vertex, defining a so-calledbreadth-first search.

• Stack - by storing the vertices in a last-in, first-out
(LIFO) stack, we explore the vertices by lurching along
a path, constantly visiting a new neighbor if one is
available, and backing up only if we are surrounded by
previously discovered vertices. Thus our explorations



quickly wander away from our starting point, defining a
so-calleddepth-first search.

The three possible colors of each node reflect if it is unvisited
(white), visited but unexplored (grey) or completely explored
(black).



Breadth-First Search

BFS(G,s)
for each vertexu ∈ V [G] − {s} do

color[u] = white
d[u] = ∞, ie. the distance froms
p[u] = NIL, ie. the parent in the BFS tree

color[u] = grey
d[s] = 0
p[s] = NIL

Q = {s}
while Q 6= ∅ do

u = head[Q]
for eachv ∈ Adj[u] do



if color[v] = white then
color[v] = gray

d[v] = d[u] + 1
p[v] = u

enqueue[Q,v]
dequeue[Q]
color[u] = black



Depth-First Search

DFS has a neat recursive implementation which eliminates
the need to explicitly use a stack.
Discovery and final times are sometimes a convenience to
maintain.

DFS(G)
for each vertexu ∈ V [G] do

color[u] = white

parent[u] = nil

time = 0
for each vertexu ∈ V [G] do

if color[u] = white then DFS-VISIT[u]



Initialize each vertex in the main routine, then do a search
from each connected component. BFS must also start from a
vertex in each component to completely visit the graph.

DFS-VISIT[u]
color[u] = grey (*u had been white/undiscovered*)
discover[u] = time

time = time + 1
for eachv ∈ Adj[u] do

if color[v] = white then
parent[v] = u

DFS-VISIT(v)
color[u] = black (*now finished withu*)
finish[u] = time

time = time + 1





BFS Trees

If BFS is performed on a connected, undirected graph, a tree
is defined by the edges involved with the discovery of new
nodes:

r

This tree defines a shortest path from the root to every other



node in the tree.
The proof is by induction on the length of the shortest path
from the root:

• Length = 1First step of BFS explores all neighbors of
the root. In an unweighted graph one edge must be the
shortest path to any node.

• Length = sAssume the BFS tree has the shortest paths up
to lengths − 1. Any node at a distance ofs will first be
discovered by expanding a distances − 1 node.



The key idea about DFS

A depth-first search of a graph organizes the edges of the
graph in a precise way.
In a DFS of an undirected graph, we assign a direction to each
edge, from the vertex which discover it:

1

2 6

3

4

5

1

2
3

4

5

6

In a DFS of a directed graph, every edge is either a tree edge
or a black edge.



In a DFS of a directed graph, no cross edge goes to a higher
numbered or rightward vertex. Thus, no edge from 4 to 5 is
possible:

1 5

6

87

2

43



Edge Classification for DFS

What about the other edges in the graph? Where can they go
on a search?
Every edge is either:

3. A Forward  Edge

4.  A Cross Edge

to a different node

to a decendant1.  A Tree  Edge

2.  A  Back  Edge

to an ancestor

On any particular DFS or BFS of a directed or undirected



graph, each edge gets classified as one of the above.



DFS Trees

The reason DFS is so important is that it defines a very nice
ordering to the edges of the graph.
In a DFS of an undirected graph, every edge is either a tree
edge or a back edge.
Why? Suppose we have a forward edge. We would have
encountered(4, 1) when expanding 4, so this is a back edge.

1

2

3 4



Suppose we have a cross-edge
1

2

3 4 6

5 When expanding 2, we would discover

5, so the tree would look like:

1

2

3
4 5

6



Paths in search trees

Where is the shortest path in a DFS?

s

r

It could use multiple 
back and tree edges,
where BFS only used
tree edges.

It could use multiple back and tree edges, where BFS only
uses tree edges.
DFS gives a better approximation of the longest path than
BFS.



1

2

4

8

12

14

15
3 5 7 9 11 13

6
10

The BFS tree can have height 1, 
independant of the length of the 
longest path.

The DFS must always have  height
>= log P, where P is the length of 
the longest path.


