
Lecture 12:
Examples of Dynamic Programming (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Give an O(n2) algorithm to find the longest montonically
increasing sequence in a sequence ofn numbers.

Build an example first:(5, 2, 8, 7, 1, 6, 4)
Ask yourself what would you like to know about the firstn−1
elements to tell you the answer for the entire sequence?

1. The length of the longest sequence ins1, s2, . . . , sn−1.
(seems obvious)

2. The length of the longest sequencesn will extend! (not as
obvious - this is the idea!)

Let si be the length of the longest sequence ending with the
ith character:

sequence5 2 8 7 3 1 6 4
si 1 1 2 2 2 1 3 3

How do we computesi?
si = max0<j<i,seq[j]<seq[i] sj + 1
s0 = 0
To find the longest sequence - we know it ends somewhere,
so Length =maxn

i=1 si

The Principle of Optimality

To use dynamic programming, the problem must observe
the principle of optimality, that whatever the initial state is,
remaining decisions must be optimal with regard the state
following from the first decision.
Combinatorial problems may have this property but may use
too much memory/time to be efficient.

Example: The Traveling Salesman Problem

Let T (i; j1, j2, . . . , jk) be the cost of the optimal tour fori to
1 that goes thru each of the other cities once

T (i; i1, j2, . . . , ji) = Min1≤m≤kC[i, jm] + T (jm; j1, j2, . . . , jk)

T (i, j) = C(i, j) + C(j, 1)

Here there can be any subset ofj1, j2, . . . , jk instead of any
subinterval - hence exponential.
Still, with other ideas (some type of pruning or best-first
search) it can be effective for combinatorial search.

When can you use Dynamic Programming?

Dynamic programming computes recurrences efficiently by
storing partial results. Thus dynamic programming can only
be efficient when there are not too many partial results to
compute!
There aren! permutations of ann-element set – we cannot
use dynamic programming to store the best solution for each
subpermutation. There are2n subsets of ann-element set
– we cannot use dynamic programming to store the best
solution for each.
However, there are onlyn(n−1)/2 continguous substrings of
a string, each described by a starting and ending point, so we
can use it for string problems.

There are onlyn(n−1)/2 possible subtrees of a binary search
tree, each described by a maximum and minimum key, so we
can use it for optimizing binary search trees.
Dynamic programming works best on objects which are
linearly ordered and cannot be rearranged – characters in
a string, matrices in a chain, points around the boundary of
a polygon, the left-to-right order of leaves in a search tree.
Whenever your objects are ordered in a left-to-right way, you
should smell dynamic programming!

Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting
diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal
lengths.
We seek to find the minimum length triangulation. For a
convex polygon, or part thereof:

i j

k

Once we identify the correct connecting vertex, the polygon
is partitioned into two smaller pieces, both of which must be
triangulated optimally!

t[i, i + 1] = 0

t[i, j] =
j

min
k=i

t[i, k] + t[k, j] + |ik| + |kj|

Evaluation proceeds as in the matrix multiplication example -
(n

2) values oft, each of which takesO(j−i) time if we evaluate
the sections in order of increasing size.

1

6

5

4

3

2

J-i = 2

13, 24, 35, 46, 51, 62

J-i = 3

14, 25, 36, 41, 52, 63

J-i = 4

15, 26, 31, 42, 53, 64

Finish with 16

What if there are points in the interior of the polygon?

Dynamic Programming and High Density Bar
Codes

Symbol Technology has developed a new design for bar
codes, PDF-417 that has a capacity of several hundred bytes.
What is the best way to encode text for this design?

They developed a complicated mode-switching data com-
pression scheme.

MIXEDLOWER

 CASE

OTHER

CHARS

ALPHA

latch
latch

latch

shift

latch

shiftlatch

shift

latch

Latch commands permanently put you in a different mode.
Shift commands temporarily put you in a different mode.

Originally, Symbol used a greedy algorithm to encode a
string, making local decisions only. We realized that for any
prefix, you want an optimal encoding which might leave you
in every possible mode.

X

Alpha
Lower
Mixed
Punct.

The Quick Brown Fox

M [i, j] = min(M [i − 1, k]+ the cost of encoding theith
character and ending up in nodej).
Our simple dynamic programming algorithm improved to

capacity of PDF-417 by an average of8%!

Dynamic Programming and Morphing

Morphing is the problem of creating a smooth series of
intermediate images given a starting and ending image.
The key problem is establishing a correspondence between
features in the two images. You want to morph an eye to an
eye, not an ear to an ear.
We can do this matching on a line-by-line basis:

T = 0

T = 1

T = 0.5

Object A’s segments

Object B’s segments

This should sound like string matching, but with a different
set of operations:

• Full run match: We may match runi on top to runj on
bottom for a cost which is a function of the difference in
the lengths of the two runs and their positions.

• Merging runs:We may match a string of consecutive runs
on top to a run on bottom. The cost will be a function of
the number of runs, their relative positions, and lengths.

• Splitting runs: We may match a big run on top to a
string of consecutive runs on the bottom. This is just the
converse of the merge. Again, the cost will be a function
of the number of runs, their relative positions, and lengths.

This algorithm was incorported into a morphing system, with
the following results:

