
Lecture 11:
Introduction to Dynamic Programming (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

The Partition Problem

Suppose the job scanning through a shelf of books is to be
split betweenk workers. To avoid the need to rearrange the
books or separate them into piles, we can divide the shelf into
k regions and assign each region to one worker.
What is the fairest way to divide the shelf up?
If each book is the same length, partition the books into equal-
sized regions,

100 100 100 | 100 100 100 | 100 100 100

But what if the books are not the same length? This partition
would yield

100 200 300 | 400 500 600 | 700 800 900

Which part of the job would you volunteer to do?
How can we find the fairest possible partition, i.e.

100 200 300 400 500 | 600 700 | 800 900

The Linear Partition Problem

Input: A given arrangementS of nonnegative numbers
{s1, . . . , sn} and an integerk.
Problem: PartitionS into k ranges, so as to minimize the
maximum sum over all the ranges.
Try to find an algorithm which always gives the optimal
solution.
Does fixed partition positions always work?
Does taking the average value of a part∑n

i=1 si/k from the left
always work?
How about the right?
Any other ideas?

Recursive Idea

Consider a recursive, exhaustive search approach. Notice that
the kth partition starts right after we placed the(k − 1)st
divider.
Where can we place this last divider? Between theith and
(i + 1)st elements for somei, where1 ≤ i ≤ n.
What is the cost of this? The total cost will be the larger of
two quantities, (1) the cost of the last partition∑n

j=i+1 sj and
(2) the cost of the largest partition cost formed to the left of i.
What is the size of this left partition? To partition the
elements{s1, . . . , si} as equally as possible.But this is a
smaller instance of the same problem!

Dynamic Programming Recurrence

Define M [n, k] to be the minimum possible cost over all
partitionings of{s1, . . . , sn} into k ranges, where the cost of
a partition is the largest sum of elements in one of its parts.
Thus defined, this function can be evaluated:

M [n, k] =
n

min
i=1

max(M [i, k − 1],
n∑

j=i+1

sj)

with the natural basis cases of

M [1, k] = s1, for all k > 0 and,

M [n, 1] =
n∑

i=1

si

What is the running time?

It is the number of cells times the running time per cell.
A total of k · n cells exist in the table.
Each cell depends onn others, and can be computed in linear
time, for a total ofO(kn2).

Implementation

To evaluate this efficiently, we must make sure we do the
smaller cases before the larger cases that depend upon them.

Partition[S, k]
(* compute prefix sums:p[k] = ∑k

i=1 si *)
p[0] = 0
for i = 1 to n dop[i] = p[i − 1] + si

(* initialize boundary conditions *)
for i = 1 to n doM [i, 1] = p[i]
for i = 1 to k doM [1, j] = s1

(* evaluate main recurrence *)

for i = 2 to n do
for j = 2 to k do

M [i, j] = ∞
for x = 1 to i − 1 do

s = max(M [x, j − 1], p[i] − p[x])
if (M [i, j] > s) then

M [i, j] = s
D[i, j] = x

DP Matrices

For the input{1, 2, 3, 4, 5, 6, 7, 8, 9}
M k D k
n 1 2 3 n 1 2 3
1 1 1 1 1 – – –
2 3 2 2 2 – 1 1
3 6 3 3 3 – 2 2
4 10 6 4 4 – 3 3
5 15 9 6 5 – 3 4
6 21 11 9 6 – 4 5
7 28 15 11 7 – 5 6
8 36 21 15 8 – 5 6
9 45 24 17 9 – 6 7

For the input{1, 1, 1, 1, 1, 1, 1, 1, 1}
M k D k
n 1 2 3 n 1 2 3
1 1 1 1 1 – – –
1 2 1 1 1 – 1 1
1 3 2 1 1 – 1 2
1 4 2 2 1 – 2 2
1 5 3 2 1 – 2 3
1 6 3 2 1 – 3 4
1 7 4 3 1 – 3 4
1 8 4 3 1 – 4 5
1 9 5 3 1 – 4 6

Parallel Bubblesort

In order for me to give back your midterms, please form a
line and sort yourselves in alphabetical order, from A to Z.
There is traditionally a strong correlation between the
midterm grades and the number of daily problems attempted:
daily: 0, sum: 134, count: 3, avg: 44.67
daily: 1, sum: 0, count: 2, avg: XXXXX
daily: 2, sum: 63, count: 1, avg: 63.00
daily: 3, sum: 194, count: 3, avg: 64.67
daily: 4, sum: 335, count: 5, avg: 67.00
daily: 5, sum: 489, count: 8, avg: 61.12
daily: 6, sum: 381, count: 6, avg: 63.50
daily: 7, sum: 432, count: 6, avg: 72.00

daily: 8, sum: 217, count: 3, avg: 72.33
daily: 9, sum: 293, count: 4, avg: 73.25

Show that there is no sorting algorithm which sorts at least
(1/2n) × n! instances in O(n) time.

Think of the decision tree which can do this. What is the
shortest tree with(1/2n) × n! leaves?

N

NlgN

h > lg(n!/2n) = lg(n!) − lg(2n)

= Θ(n lg n) − n

= Θ(n lg n)

Moral: there cannot be too many good cases for any sorting
algorithm!

Show that the Ω(n lg n) lower bound for sorting still holds
with ternary comparisons.

The maximum number of leaves in a tree of height h is3h,

lg3(n!) = Θ(n lg n)

So it goes for any constant base.

Optimization Problems

In the algorithms we have studied so far, correctness tended
to be easier than efficiency. In optimization problems, we are
interested in finding athing which maximizes or minimizes
some function.
In designing algorithms for optimization problem - we must
prove that the algorithm in fact gives the best possible
solution.
Greedy algorithms, which makes the best local decision at
each step, occasionally produce a global optimum - but you
need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing recur-
rence relations efficiently by sorting partial results.

Computing Fibonacci Numbers

Fn = Fn−1 + Fn−2

F0 = 0, F1 = 1

Implementing it as a recursive procedure is easy but slow!
We keep calculating the same value over and over!

F(3)

F(2)

F(1) F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(6)=13

F(5)

F(0)

F(0)

How slow is slow?

Fn+1/Fn ≈ φ = (1 +
√

5)/2 ≈ 1.61803
ThusFn ≈ 1.6n, and since our recursion tree has0 and1 as
leaves, means we have≈ 1.6n calls!

What about Dynamic Programming?

We can calculateFn in linear time by storing small values:

F0 = 0
F1 = 1
For i = 1 to n

Fi = Fi−1 + Fi−2

Moral: we traded space for time.
Dynamic programming is a technique for efficiently comput-
ing recurrences by storing partial results.
Once you understand dynamic programming, it is usually
easier to reinvent certain algorithms than try to look them up!
Dynamic programming is best understood by looking at a
bunch of different examples.

I have found dynamic programming to be one of the most
useful algorithmic techniques in practice:

• Morphing in Computer Graphics

• Data Compression for High Density Bar Codes

• Utilizing Grammatical Constraints for Telephone Key-
pads

Multiplying a Sequence of Matrices

Suppose we want to multiply a long sequence of matrices
A × B × C × D
Multiplying an X × Y matrix by aY × Z matrix (using the
common algorithm) takesX × Y × Z multiplications.

2 3

3 4

4 5

2 3 4

3 4 5

13 18 23

18 25 32

23 32 41

We would like to avoid big intermediate matrices, and since
matrix multiplication is associative, we can parenthesise
however we want.
Matrix multiplication is not communitive, so we cannot

permute the order of the matrices without changing the
result.

Example

ConsiderA×B ×C ×D, whereA is 30 × 1, B is 1 × 40, C
is 40 × 10, andD is 10 × 25.
There are three possible parenthesizations:

((AB)C)D = 30×1×40+30×40×10+30×10×25 = 20, 700

(AB)(CD) = 30×1×40+40×10×25+30×40×25 = 41, 200

A((BC)D) = 1× 40× 10 + 1× 10× 25 + 30× 1× 25 = 1400

The order makes a big difference in real computation. How
do we find the best order?
Let M (i, j) be the minimum number of multiplications
necessary to compute∏j

k=i Ak.

The key observations are

• The outermost parentheses partition the chain of matricies
(i, j) at somek.

• The optimal parenthesization order has optimal ordering
on either side ofk.

A recurrence for this is:

M (i, j) = Mini≤k≤j−1[M (i, k) + M (k + 1, j) + di−1dkdj]

M (i, i) = 0

If there aren matrices, there aren + 1 dimensions.
A direct recursive implementation of this will be exponential,
since there is a lot of duplicated work as in the Fibonacci
recurrence.
Divide-and-conquer is seems efficient because there is no
overlap, but . . .
There are only(n

2) substrings between1 andn. Thus it requires
only Θ(n2) space to store the optimal cost for each of them.
We can represent all the possibilities in a triangle matrix.We
can also store the value ofk in another triangle matrix to

reconstruct to order of the optimal parenthesisation.
The diagonal moves up to the right as the computation
progresses. On each element of thekth diagonal|j − i| = k.
For the previous example:

Procedure MatrixOrder
for i = 1 to n doM [i, j] = 0
for diagonal = 1 to n − 1

for i = 1 to n − diagonal do
j = i + diagonal

M [i, j] = minj−1

i=k [M [i, k] + M [k + 1, j] + di−1dkdj]
faster(i, j) = k

return [m(1, n)]

Procedure ShowOrder(i, j)
if (i = j) write (Ai)
else

k =factor(i, j)
write “(”
ShowOrder(i, k)
write “*”
ShowOrder(k + 1, j)
write “)”

A dynamic programming solution has three
components:

1. Formulate the answer as a recurrence relation or recursive
algorithm.

2. Show that the number of different instances of your
recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so you
always have what you need.

Approximate String Matching

A common task in text editing is string matching - finding all
occurrences of a word in a text.
Unfortunately, many words are mispelled. How can we
search for the string closest to the pattern?
Let p be a pattern string andT a text string over the same
alphabet.
A k-approximate match betweenP andT is a substring ofT
with at mostk differences.
Differences may be:

1. the corresponding characters may differ: KAT→ CAT

2. P is missing a character fromT : CAAT→ CAT

3. T is missing a character fromP : CT→ CAT

Approximate Matching is important in genetics as well as
spell checking.

A 3-Approximate Match

A match with one of each of three edit operations is:

P = unescessaraly
T = unnecessarily

Finding such a matching seems like a hard problem because
we must figure out where you addblanks, but we can solve it
with dynamic programming.
D[i, j] = the minimum number of differences between
P1, P2, . . . , Pi and the segment ofT ending atj.
D[i, j] is theminimum of the three possible ways to extend
smaller strings:

1. If Pi = ti thenD[i − 1, j − 1] elseD[i − 1, j − 1] + 1
(corresponding characters do or do not match)

2. D[i−1, j]+1 (extra character in text – we do not advance
the pattern pointer).

3. D[i, j − 1] + 1 (character in pattern which is not in text).

Once you accept the recurrence it is easy.
To fill each cell, we need only consider three other cells, not
O(n) as in other examples. This means we need only store
two rows of the table. The total time isO(mn).

Boundary conditions for string matching

What should the value ofD[0, i] be, corresponding to the cost
of matching the firsti characters of the text with none of the
pattern?
It depends. Are we doing string matching in the text or
substring matching?

• If you want to match all of the pattern against all of
the text, this meant that would have to delete the firsti
characters of the pattern, soD[0, i] = i to pay the cost of
the deletions.

• if we want to find the place in the text where the pattern
occurs? We do not want to pay more of a cost if the

pattern occurs far into the text than near the front, so it
is important that starting cost be equal for all positions. In
this case,D[0, i] = 0, since we pay no cost for deleting
the firsti characters of the text.

In both cases,D[i, 0] = i, since we cannot excuse deleting the
first i characters of the pattern without cost.

What do we return?

If we want thecost of comparing all of the pattern against all
of the text, such as comparing the spelling of two words, all
we are interested in isD[n, m].
But what if we want the cheapest match between the pattern
anywhere in the text? Assuming the initialization for
substring matching, we seek the cheapest matching of the
full pattern ending anywhere in the text. This means the cost
equalsmin1≤i≤m D[n, i].
This only gives the cost of the optimal matching. The actual
alignment – what got matched, substituted, and deleted – can
be reconstructed from the pattern/text and table without an
auxiliary storage, once we have identified the cell with the

lowest cost.

How much space do we need?

Do we need to keep allO(mn) cells, since if we evaluate the
recurrence filling in the columns of the matrix from left to
right, we will never need more than two columns of cells to
do what we need. ThusO(m) space is sufficient to evaluate
the recurrence without changing the time complexity at all.
Unfortunately, because we won’t have the full matrix we
cannot reconstruct the alignment, as above.
Saving space in dynamic programming is very important.
Since memory on any computer is limited,O(nm) space is
more of a bottleneck thanO(nm) time.
Fortunately, there is a clever divide-and-conquer algorithm
which computes the actual alignment inO(nm) time and

O(m) space.

