Lecture 11:
| ntroduction to Dynamic Programming (1997)

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

The Partition Problem

Suppose the job scanning through a shelf of books is to
split betweent workers. To avoid the need to rearrange tl
books or separate them into piles, we can divide the shelf |
k regions and assign each region to one worketr.

What is the fairest way to divide the shelf up?

If each book is the same length, partition the books into kqt
sized regions,

100 100 100 | 100 100 100 | 100 100 100

But what if the books are not the same length? This partiti
would yield

100 200 300 | 400 500 600 | 700 800 900

Which part of the job would you volunteer to do?
How can we find the fairest possible partition, I.e.

100 200 300 400 500 | 600 700 | 800 900

The Linear Partition Problem

Input: A given arrangement of nonnegative numbers
{s1,...,s,} and an integek.

Problem: PartitionS into k£ ranges, so as to minimize the
maximum sum over all the ranges.

Try to find an algorithm which always gives the optims
solution.

Does fixed partition positions always work?

Does taking the average value of a pdrt; s;/k from the left
always work?

How about the right?

Any other ideas?

Recursive ldea

Consider a recursive, exhaustive search approach. Noate
the kth partition starts right after we placed the — 1)st
divider.

Where can we place this last divider? Between iieand
(2 + 1)st elements for somg wherel < < n.

What is the cost of this? The total cost will be the larger
two quantities, (1) the cost of the last partitiof,, ., s; and
(2) the cost of the largest partition cost formed to the léft o
What is the size of this left partition? To partition th
elements{sy,...,s;} as equally as possibleBut this is a
smaller instance of the same problem!

Dynamic Programming Recurrence

Define M|n, k| to be the minimum possible cost over a
partitionings of{sy, ..., s,} into k ranges, where the cost o
a partition is the largest sum of elements in one of its pa
Thus defined, this function can be evaluated:

Mn, k] = min max(M i, k — 1], > 5;)

i=1 j=i+1
with the natural basis cases of
M1, k] = s, forall k£ > 0 and,
M[’FL, 1] — ‘£:1 S

What is the running time?

It is the number of cells times the running time per cell.

A total of k£ - n cells exist in the table.
Each cell depends anothers, and can be computed in line:

time, for a total ofO(kn?).

| mplementation

To evaluate this efficiently, we must make sure we do t
smaller cases before the larger cases that depend upon ti

Partition|S, k]
(* compute prefix sumsplk] = =F | s; %)

pl0] =0
fori =1tondopli] =pli — 1]+ s;

(* initialize boundary conditions *)
fori =1ton doM]|i, 1] = pli]
fori =1tokdoM][l, j] = s

(* evaluate main recurrence *)

for: =2ton do
forj =2tokdo
Mli, j| = o0
forxr =1t0:—1do
s = max(M{z, j — 1], pli] — plz])
if (Mli,j] > s)then
Mli,jl = s
Dli,jl ==

DP Matrices

For the input{1,2,3,4,5,6,7,8,9}

M D k

=
N
w

(@)
|_\
_ OO0 WNE N T
OO WNE W

28 15 11
36 21 15
45 24 17

©OCO~NOOUITS,WDNPESI
ol

©OCOO~NOOUITS,WDNPESI
|

OO A~ WWN P |

~NOoO O O D WNBEF |

For the input{1,1,1,1,1,1,1,1,1}

- 11
~ 12
~ 22
~ 23
~ 34
~ 34
— 45
— 46

nil 2 3

1
1

n |12 3
1 1111
1 1211

1 1321

1 (4 22

1 |5 32
1 |16 32
1 |7 4 3
1 |8 43
119 53

Par allel Bubblesort

In order for me to give back your midterms, please form
line and sort yourselves in alphabetical order, from A to Z.
There iIs traditionally a strong correlation between tl
midterm grades and the number of daily problems attempt
daily: O, sum: 134, count: 3, avg: 44.67

daily: 1, sum: O, count: 2, avg: XXXXX

daily: 2, sum: 63, count: 1, avg: 63.00

daily: 3, sum: 194, count: 3, avg: 64.67

daily: 4, sum: 335, count: 5, avg: 67.00

daily: 5, sum: 489, count: 8, avg: 61.12

daily: 6, sum: 381, count: 6, avg: 63.50

daily: 7, sum: 432, count: 6, avg: 72.00

daily: 8, sum: 217, count: 3, avg: 72.33
daily: 9, sum: 293, count: 4, avg: 73.25

Show that there is no sorting algorithm which sorts at |east
(1/2") x n!instancesin O(n) time.

Think of the decision tree which can do this. What is tl
shortest tree withil /2") x n! leaves?

NIgN

h > lg(n!/2") = lg(n!) —1g(2")

= O(nlgn) —n
= O(nlgn)

Moral: there cannot be too many good cases for any sort
algorithm!

Show that the 2(nlgn) lower bound for sorting still holds
with ternary comparisons.

/O
O @)

/)

AR NN

The maximum number of leaves in a tree of height $'is

lgs(n!) = O(nlgn)
So it goes for any constant base.

Optimization Problems

In the algorithms we have studied so far, correctness ten
to be easier than efficiency. In optimization problems, vee :
Interested in finding a&hing which maximizes or minimizes
some function.

In designing algorithms for optimization problem - we mu
prove that the algorithm in fact gives the best possil
solution.

Greedy algorithms, which makes the best local decision
each step, occasionally produce a global optimum - but \
need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing reci
rence relations efficiently by sorting partial results.

Computing Fibonacci Numbers

Fp=F, 1+ I,

Fy=0F =1

Implementing it as a recursive procedure is easy but slow!
We keep calculating the same value over and over!

F(6)=13
FG) F4)
F(4) F(3) F(3) F(2)
N AN VRN
F@3) FQ) F2 FQ) F@ FO ra) Fo)
RN
F@ FO g1y ro) FO FO FO) RO

F(1) FO)

How dow is slow?

Fy/F,~¢=(1++/5)/2~1.61803
ThusF,, ~ 1.6", and since our recursion tree haand1 as
leaves, means we hawel.6" calls!

What about Dynamic Programming?

We can calculaté’, in linear time by storing small values:

Fy=0

Fi =1

For:=1ton
F,=1F_ 1+ Fio

Moral: we traded space for time.

Dynamic programming is a technique for efficiently compt
Ing recurrences by storing partial results.

Once you understand dynamic programming, it IS USUE
easier to reinvent certain algorithms than try to look thgrh
Dynamic programming is best understood by looking at
bunch of different examples.

| have found dynamic programming to be one of the mc
useful algorithmic techniques in practice:

e Morphing in Computer Graphics
e Data Compression for High Density Bar Codes

e Utilizing Grammatical Constraints for Telephone Ke)
pads

Multiplying a Sequence of Matrices

Suppose we want to multiply a long sequence of matric
AxBxCxD...

Multiplying an X x Y matrix by aY x Z matrix (using the
common algorithm) takeX x Y x Z multiplications.

13 18 23

:| 18 25 32

4 5 23 32 41
We would like to avoid big intermediate matrices, and sin
matrix multiplication is associative, we can parenthesise

however we want.
Matrix multiplication is not communitive, so we cannot

w N
A W
w N
A~ W
g b

permute the order of the matrices without changing t
result.

Example

Considerd x B x C' x D,whereAis30 x 1, Bis1 x 40, C
1S40 x 10, andD is 10 x 25.
There are three possible parenthesizations:

(AB)C)D = 30x1x40430x40x10+30x10x25 = 20, 700
(AB)(CD) = 30x1x40440x10x25430x40x 25 = 41, 200

A((BC)D) =1x40x 1041 x 10 x 25430 x 1 x 25 = 1400

The order makes a big difference in real computation. H
do we find the best order?

Let M(:,7) be the minimum number of multiplications
necessary to compute_, A;.

The key observations are

e The outermost parentheses partition the chain of matric
(z,7) at somek.

e The optimal parenthesization order has optimal order!
on either side ok.

A recurrence for this is:

M(Z,]) = M’inigkgj_l[M@; k) + M<k + 17]) + di—ldkdj]
M{ii) = 0

If there aren matrices, there are + 1 dimensions.

A direct recursive implementation of this will be exponainti
since there is a lot of duplicated work as in the Fibonas
recurrence.

Divide-and-conquer is seems efficient because there is
overlap, but ...

There are only;) substrings betweenandn. Thusit requires
only ©(n?) space to store the optimal cost for each of then
We can represent all the possibilities in a triangle mate.
can also store the value @f in another triangle matrix to

reconstruct to order of the optimal parenthesisation.

The diagonal moves up to the right as the computati
progresses. On each element of tlile diagonalj — | = k.
For the previous example:

Procedure MatrixOrder

fori =1tondoMli,j] =0

for diagonal = 1ton — 1

fori=1ton — diagonal do

j =1+ diagonal
Mli,] = minlZ, [M[i, k] + Mk + 1, j] + di_1dyd;
fastefi, j) = k

return jn(1,n)]

Procedure ShowOrdgt ;)
if (i = j) write (A;)

else

k. =factor(i, §)

write “(”
ShowOrdefi, k)
write “*”
ShowOrderk + 1, j)
write “)”

A dynamic programming solution hasthree
components.

1. Formulate the answer as a recurrence relation or reeur
algorithm.

2. Show that the number of different instances of ya
recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so y
always have what you need.

Approximate String Matching

A common task in text editing is string matching - finding &
occurrences of a word in a text.

Unfortunately, many words are mispelled. How can v
search for the string closest to the pattern?

Let p be a pattern string and a text string over the same
alphabet.

A k-approximate match betwedhand?’ is a substring of”
with at mostk differences.
Differences may be:

1. the corresponding characters may differ: KAITCAT
2. P is missing a character froffi. CAAT — CAT

3. T is missing a character from: CT— CAT

Approximate Matching is important in genetics as well
spell checking.

A 3-Approximate Match

A match with one of each of three edit operations is:

P = unescessaraly
T = unnecessarily

Finding such a matching seems like a hard problem bece
we must figure out where you adbtanks, but we can solve it
with dynamic programming.
Dli,j] = the minimum number of differences betwee
P, P, ..., P,and the segment af ending atj.
Dli, j] is the minimum of the three possible ways to exten
smaller strings:

1.1f P, =t;thenDli — 1,5 — 1] elseDli — 1,5 — 1] + 1

(corresponding characters do or do not match)

2. D[i—1, j]+1 (extra character in text — we do not advanc
the pattern pointer).

3. D[i, 7 — 1] + 1 (character in pattern which is not in text).

Once you accept the recurrence it is easy.

To fill each cell, we need only consider three other cells, r
O(n) as in other examples. This means we need only st
two rows of the table. The total time {3(mn).

Boundary conditionsfor string matching

What should the value aP|0,] be, corresponding to the cos
of matching the first characters of the text with none of th
pattern?

It depends. Are we doing string matching in the text
substring matching?

e If you want to match all of the pattern against all ¢
the text, this meant that would have to delete the firs
characters of the pattern, 440, ;] = i to pay the cost of
the deletions.

e if we want to find the place in the text where the patte
occurs? We do not want to pay more of a cost If tl

pattern occurs far into the text than near the front, sc
IS Important that starting cost be equal for all positioms.
this case,D[0,i] = 0, since we pay no cost for deleting
the first: characters of the text.

In both cases]|i, 0] = i, since we cannot excuse deleting tf
first 7 characters of the pattern without cost.

What dowereturn?

If we want thecost of comparing all of the pattern against a
of the text, such as comparing the spelling of two words,
we are interested in iB[n, m).

But what if we want the cheapest match between the pati
anywhere in the text? Assuming the initialization fc
substring matching, we seek the cheapest matching of
full pattern ending anywhere in the text. This means the c
equalsmini<;<,, D|n, i].

This only gives the cost of the optimal matching. The actt
alignment — what got matched, substituted, and deleted —
be reconstructed from the pattern/text and table without
auxiliary storage, once we have identified the cell with t

lowest cost.

How much space do we need?

Do we need to keep alb(mn) cells, since if we evaluate the
recurrence filling in the columns of the matrix from left t
right, we will never need more than two columns of cells
do what we need. ThuS(m) space is sufficient to evaluat
the recurrence without changing the time complexity at all
Unfortunately, because we won’'t have the full matrix w
cannot reconstruct the alignment, as above.

Saving space in dynamic programming Iis very importa
Since memory on any computer is limite@(nm) space is
more of a bottleneck thaf(nm) time.

Fortunately, there is a clever divide-and-conquer algarit
which computes the actual alignment @(nm) time and

O(m) space.

