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What Is An Algorithm?

Algorithms are the ideas behind computer programs.
An algorithm is the thing which stays the same whether the
program is in Pascal running on a Cray in New York or is in
BASIC running on a Macintosh in Kathmandu!
To be interesting, an algorithm has to solve a general,
specified problem. An algorithmic problem is specified by
describing the set of instances it must work on and what
desired properties the output must have.



Example: Sorting

Input: A sequence of N numbersa1...an

Output: the permutation (reordering) of the input sequence
such asa1 ≤ a2 . . . ≤ an.
We seek algorithms which arecorrectandefficient.



Correctness

For any algorithm, we must prove that italwaysreturns the
desired output for all legal instances of the problem.
For sorting, this means even if (1) the input is already sorted,
or (2) it contains repeated elements.



Correctness is Not Obvious!

The following problem arises often in manufacturing and
transportation testing applications.
Suppose you have a robot arm equipped with a tool, say a
soldering iron. To enable the robot arm to do a soldering job,
we must construct an ordering of the contact points, so the
robot visits (and solders) the first contact point, then visits
the second point, third, and so forth until the job is done.
Since robots are expensive, we need to find the order which
minimizes the time (ie. travel distance) it takes to assemble
the circuit board.



You are given the job to program the robot arm. Give me an
algorithm to find the best tour!



Nearest Neighbor Tour

A very popular solution starts at some pointp0 and then walks
to its nearest neighborp1 first, then repeats fromp1, etc. until
done.

Pick and visit an initial pointp0

p = p0

i = 0
While there are still unvisited points

i = i + 1
Let pi be the closest unvisited point topi−1

Visit pi

Return top0 from pi



This algorithm is simple to understand and implement and
very efficient. However, it isnot correct!

-1 0 1 3 11-21 -5

-1 0 1 3 11-21 -5

Always starting from the leftmost point or any other point
will not fix the problem.



Closest Pair Tour

Always walking to the closest point is too restrictive, since
that point might trap us into making moves we don’t want.
Another idea would be to repeatedly connect the closest pair
of points whose connection will not cause a cycle or a three-
way branch to be formed, until we have a single chain with
all the points in it.

Let n be the number of points in the set
d = ∞
For i = 1 to n − 1 do

For each pair of endpoints(x, y) of partial paths
If dist(x, y) ≤ d then

xm = x, ym = y, d = dist(x, y)



Connect(xm, ym) by an edge
Connect the two endpoints by an edge.

Although it works correctly on the previous example, other
data causes trouble:

This algorithm isnot correct!



A Correct Algorithm

We could try all possible orderings of the points, then select
the ordering which minimizes the total length:

d = ∞
For each of then! permutationsΠi of then points

If (cost(Πi) ≤ d) then
d = cost(Πi) andPmin = Πi

ReturnPmin

Since all possible orderings are considered, we are guaranteed
to end up with the shortest possible tour.
Because it trys alln! permutations, it is extremely slow, much
too slow to use when there are more than 10-20 points.



No efficient, correct algorithm exists for thetraveling
salesman problem, as we will see later.



Efficiency

”Why not just use a supercomputer?”
Supercomputers are for people too rich and too stupid to
design efficient algorithms!
A faster algorithm running on a slower computer willalways
win for sufficiently large instances, as we shall see.
Usually, problems don’t have to get that large before the faster
algorithm wins.



Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm.
In order of increasing precision, we have English, pseu-
docode, and real programming languages. Unfortunately,
ease of expression moves in the reverse order.
I prefer to describe theideas of an algorithm in English,
moving to pseudocode to clarify sufficiently tricky detailsof
the algorithm.



The RAM Model

Algorithms are theonly important, durable, and original part
of computer sciencebecausethey can be studied in a machine
and language independent way.
The reason is that we will do all our design and analysis for
the RAM model of computation:

• Each ”simple” operation (+, -, =, if, call) takes exactly 1
step.

• Loops and subroutine calls arenot simple operations, but
depend upon the size of the data and the contents of a
subroutine. We do not want “sort” to be a single step
operation.



• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the
number of steps.
This model is useful and accurate in the same sense as the
flat-earth model (whichis useful)!



Best, Worst, and Average-Case

The worst case complexityof the algorithm is the function
defined by the maximum number of steps taken on any
instance of sizen.
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The best case complexityof the algorithm is the function
defined by the minimum number of steps taken on any
instance of sizen.



Theaverage-case complexityof the algorithm is the function
defined by an average number of steps taken on any instance
of sizen.
Each of these complexities defines a numerical function –
time vs. size!



Insertion Sort
One way to sort an array of n elements is to start with
an empty list, then successively insert new elements in the
proper position:

a1 ≤ a2 ≤ . . . ≤ ak | ak+1 . . . an

At each stage, the inserted element leaves a sorted list, and
after n insertions contains exactly the right elements. Thus
the algorithm must be correct.
But howefficientis it?
Note that the run time changes with the permutation instance!
(even for a fixed size problem)
How does insertion sort do on sorted permutations?
How about unsorted permutations?



Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode will be
executed.

Line InsertionSort(A) #Inst. #Exec.
1 for j:=2 to len. of A do c1 n
2 key:=A[j] c2 n-1
3 /* put A[j] into A[1..j-1] */ c3=0 /
4 i:=j-1 c4 n-1
5 while i > 0&A[1] > key do c5 tj
6 A[i+1]:= A[i] c6
7 i := i-1 c7
8 A[i+1]:=key c8 n-1



Thefor statement is executed(n − 1) + 1 times (why?)
Within the for statement, ”key:=A[j]” is executed n-1 times.
Steps 5, 6, 7 are harder to count.
Let tj = 1+ the number of elements that have to be slide right
to insert thejth item.
Step 5 is executedt2 + t3 + ... + tn times.
Step 6 ist2−1 + t3−1 + ... + tn−1.



Add up the executed instructions for all pseudocode lines to
get the run-time of the algorithm:
c1 ∗ n + c2(n − 1) + c4(n − 1)+ c5

∑n
j=2 tj+ c6

∑n
j=2(tj − 1)

+c7
∑n

j=2(tj − 1) + c8

What are thet′js? They depend on the particular input.



Best Case

If it’s already sorted, alltj ’s are 1.
Hence, the best case time is

c1n + (c2 + c4 + c5 + c8)(n − 1) = Cn + D

whereC andD are constants.



Worst Case

If the input is sorted indescendingorder, we will have to
slideall of the already-sorted elements, sotj = j, and step 5
is executed

n∑

j=2

j = (n2 + n)/2 − 1


